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The electric field of the Čerenkov radio pulse produced by a single charged particle track in a dielectric

medium is derived from first principles. An algorithm is developed to obtain the pulse in the time domain

for numerical calculations. The algorithm is implemented in a Monte Carlo simulation of electromagnetic

showers in dense media (specifically designed for coherent radio emission applications) as might be

induced by interactions of ultrahigh energy neutrinos. The coherent Čerenkov radio emission produced by

such showers is obtained simultaneously both in the time and frequency domains. A consistency check

performed by Fourier transforming the pulse in time and comparing it to the frequency spectrum obtained

directly in the simulations yields, as expected, fully consistent results. The reversal of the time structure

inside the Čerenkov cone and the signs of the corresponding pulses are addressed in detail. The results,

besides testing algorithms used for reference calculations in the frequency domain, shed new light into the

properties of the radio pulse in the time domain. The shape of the pulse in the time domain is directly

related to the depth development of the excess charge in the shower and its width to the observation angle

with respect to the Čerenkov direction. This information can be of great practical importance for

interpreting actual data.
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I. INTRODUCTION

It was nearly 50 years ago that Askaryan proposed to
detect high energy particles through the coherent pulse
they emit as they interact in a dense medium [1]. As
secondary electrons, positrons, and gamma rays are pro-
duced they develop electromagnetic showers in the me-
dium which acquire an excess negative charge, which
Askaryan estimated to be of order 10% of the total number
of electrons and positrons. This is so in spite of the inter-
actions being completely charge symmetric because matter
in the medium only contains electrons. Møller, Bhabha,
and Compton scattering of matter electrons, accelerate
them into the shower while electron-positron annihilation
and Bhabha scattering decelerate the shower positrons thus
also contributing to the excess charge, a mechanism re-
ferred to as the Askaryan effect. A more accurate calcula-
tion of the Askaryan effect indicated that the excess charge
is actually �25% of the total number of electrons and
positrons [2]. Such an excess charge develops a coherent
electromagnetic pulse as it travels through a non absorptive
dielectric medium. The coherent part of the pulse is mainly
due to the wavelength components which are large com-
pared to the shower width. The energy radiated in the
coherent pulse scales with the square of the excess charge
and hence with the square of the shower energy. Such

scaling naturally makes the detection of coherent radio
pulses an attractive and promising technique for the detec-
tion of ultrahigh energy particles, such as cosmic rays.
Radio detection of air showers was extensively studied

in the 1960s and 1970s [3]. The drive to detect high energy
neutrinos in the late 1980s turned back the attention onto
radio pulses produced by them in dense media such as
natural ice [4] or the regolith beneath the Moon’s surface
[5]. The first full simulations of the Askaryan effect and the
coherent pulses created in dense media were obtained in
the early 1990s [2,6], which allowed more quantitative
calculations and experimental programs were soon started
to search for neutrinos with arrays of antennas at
Antarctica [7] or with radio telescopes from Earth [8].
The Askaryan effect was measured for the first time firing
photon bunches into sand at SLAC in 2000 [9]—and later
in other dielectric media including ice [10–12]—and since
then the field has received an enormous boost, strengthen-
ing previous initiatives using antennas buried in ice [13,14]
and radiotelescopes [15], and developing new ones such as
a balloon flown antenna array [16–18], new radiotelescope
searches [19–23], and new radio measurements of air
showers [24].
The first calculation of the radio emission from electro-

magnetic showers used a specifically designed
Monte Carlo simulation code—the ZHS code—to calculate
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coherent radio pulses in ice [2,6]. The code has been
extended to include the Landau-Pomeranchuk-Migdal
(LPM) effect [25], to calculate in an approximate manner
hadronic showers [26] and neutrino-induced showers [27],
to treat other dielectric media [28], and to perform an
optimal statistical thinning that allows the simulation of
pulses from ultrahigh energy showers [29], and remains as
a reference in the field. This code was designed to calculate
the Fourier components of the electric field in the fre-
quency domain. Alternative simulations using other codes
such as GEANT3 [30,31], GEANT4 [30–32] and the AIRES

+TIERRAS [33,34] code, have yielded results compatible to
within �5%. Semianalytical calculations have also been
performed [35]. All of these use the same technique to
calculate the radio pulse in the frequency domain, but to
our knowledge no full calculation exists in the time domain
yet.

All experimental arrangements measure the electric field
as a function of time, and full understanding of the prop-
erties of the pulse as a function of time is thus also very
important. Although the conversion from the frequency to
the time domain is in principle straightforward and the
algorithm in ZHS computes all required information to
obtain it, there have been a number of doubts concerning
the unconventional choice of Fourier transform as used in
the code [2], as well as the sign, phase, and causality
properties of the pulse [35] that have complicated the
analysis and interpretation of data.

In this article we develop a formalism to calculate the
pulse directly in the time domain. We simultaneously
calculate the pulse of the same electromagnetic shower in
both the time and frequency domains. An exhaustive com-
parison yields fully compatible results, makes patent the
relative advantages of each approach, and sheds new light
into the properties of the radio pulse in the time domain
which can be related to those of the shower and can be of
great practical importance in interpreting actual data. Some
of these properties are discussed in more detail suggesting
possible applications.

Although the method developed in [2], and extended
here to the time domain, has been obtained in the frame-
work of Čerenkov radiation, it derives directly from
Maxwell’s equations and addresses classical radiation
from charges in a pretty general fashion. Simple extensions
of this work can be used, for instance, to calculate tran-
sition radiaton as particles cross dielectric media interfaces
or to calculate the complete radiation patterns from charges
moving in magnetic fields including Čerenkov radiation
[36], as has been known for long to be important for
ultrahigh energy air showers [3].

This paper is structured as follows. In Sec. II we rederive
the expression for the electric field in both the time and
frequency domain in a form that can be easily used for
practical applications and make the connection to the ex-
pression derived in the original ZHS paper [2]. We also

discuss some simple current density models and relate
them to the results of a full electromagnetic shower simu-
lation. In Sec. III we perform a consistency check by
Fourier-transforming the pulse in time and comparing it
to the frequency spectrum obtained in the simulations. The
summary and outlook constitute the last section.

II. THEORYAND MONTE CARLO
IMPLEMENTATION

A. Theory

We start from Maxwell’s equations for linear, isotropic,
homogeneous, and non dispersive media [37]. Introducing
the vector and scalar potentials (A and �) [37], and choos-
ing the transverse gauge, in which r �A ¼ 0, Maxwell’s
equations imply [37]

r2� ¼ ��

�
; (1)

r2A���
@2A

@2t
¼ ��J?; (2)

where � is the charge density of the source, and J? is the
transverse current, a divergenceless component of the cur-
rent density, which, in the limit of observation at large
distances from the source, can be shown to correspond to
the projection of the current density perpendicular to the
direction of observation (of unit vector û), i.e., J? ¼
�û� ðû� JÞ. Also, � ¼ �r�0 and� ¼ �r�0 are the total
permittivity and permeability expressed in terms of the
relative (�r and �r) and free space (�0 and �0) permittiv-
ities and permeabilities.
Both equations can be formally solved using Green’s

functions:

� ¼ 1

4��

Z �ðx0; t0Þ
jx� x0j d

3x0; (3)

Aðt; �Þ ¼ �

4�

Z J?ðx0; t0Þ
jx� x0j �ð

ffiffiffiffiffiffiffi
��

p jx� x0j � ðt� t0ÞÞd3x0dt0:

(4)

The first is the familiar solution from electrostatics for the
potential produced at the position x by a source with
charge density �ðx0; t0Þ. The second is the solution of the

wave equation with wave velocity ð�0�0�r�rÞ�ð1=2Þ

smaller than the velocity of light in a vacuum, c ¼
ð�0�0Þ�ð1=2Þ, by a factor n ¼ ð�r�rÞ�ð1=2Þ, the index of
refraction. The Green’s function for the wave equation
involves a delta function that gives the familiar retarded
time, t0, earlier than the observing time t. To evaluate the
field at time t at a given position x, the current is to be
evaluated at a time retarded by the time taken by light to
reach observation point from point x0, i.e. jx� x0jn=c.
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B. Radiation from charges traveling in straight lines

We consider the shower as a superposition of finite
particle tracks of constant velocity. Each track is com-
pletely defined by two limiting times t1 and t2, its velocity
v and the position vector of an arbitrary point of the track,
x0, which we have chosen to correspond to the time t ¼ 0.
The transverse current density entering in Eq. (4) for a
point charge moving with constant velocity, v, between the
two end points simply reads

J?ðx0; t0Þ ¼ ev?�3ðx0 � x0 � vt0Þ½�ðt0 � t1Þ ��ðt0 � t2Þ�;
(5)

where �e is the charge of an electron, v? is the projection
of the velocity onto a plane perpendicular to the direction
of observation (recall that we consider large distances so
that this direction is uniquely defined), and �ðxÞ is the
Heaviside step function.

We can now substitute the transverse current into
Eq. (4), integrate the three dimensional delta function
substituting x0 for x0 þ vt0, and approximate the distance
between x and x0 by jx� x0 � vt0j ’ R� v � ût0, where
we define R ¼ jx� x0j. In the limit of large distances of
observation the denominator jx� x0j can be simply ap-
proximated by R. However, we must use the above ap-
proximation in the argument of the retarding delta function

to account for interference effects. This corresponds to the
Fraunhofer approximation, in which the path difference
between light pulses emitted at points x0 and x0 ¼ x0 þ
vt0 is simply the distance between them projected onto the
direction of observation. As a result the delta function
reads �ðt0ð1� n� cos�Þ � ðt� nR

c ÞÞ, with v ¼ �c, which

can be cast into

1

j1� n� cos�j�
�
t0 � t� nR

c

1� n� cos�

�
: (6)

We note that the recurring factor (1� n� cos�), with � the
angle between v and û, gives zero for the Čerenkov angle
�C. Moreover the factor changes sign from positive to
negative as the observation angle changes from being
larger to smaller than the Čerenkov angle. Now we can
perform the integration in t0 in Eq. (4) which simply

implies replacing t0 in the step functions by
t�nR

c

1�n� cos� . We

now make use of the fact that

�ðaxÞ ¼
�
�ðxÞ if a > 0
1��ðxÞ if a < 0

: (7)

In this equation we can take a ¼ ð1� n� cos�Þ�1 and x ¼
t� nR=c� ð1� n� cos�Þt1;2 which allows us to rewrite

Eq. (4) as

A ðt; �Þ ¼ �e

4�R
v?

�ðt� nR
c � ð1� n� cos�Þt1Þ ��ðt� nR

c � ð1� n� cos�Þt2Þ
ð1� n� cos�Þ : (8)

Note that the modulus in the denominator of Eq. (6) is removed because of an effective sgnð1� n� cos�Þ that appears
when changing the argument in the two step functions [according to Eq. (7)]. This expression is easy to implement in a
shower simulation by splitting particle tracks in portions that can be approximated by uniform motion.

As � approaches the Čerenkov angle �C the numerator and denominator of Eq. (8) approach zero. To obtain a formal
limit for the Čerenkov angle we multiply and divide by �t to obtain:

RAðt; �Þ ¼ e�r

4��0c
2
v?�t

�ðt� nR
c � ð1� n� cos�Þt1Þ ��ðt� nR

c � ð1� n� cos�Þt2Þ
ð1� n� cos�Þ�t : (9)

The limit � ! �C is equivalent to ð1� n� cos�Þ�t ! 0
which can be shown to give the first derivative of the step
function, the function �ðtÞ. The limit is then

RAðt; �CÞ ¼
�

e�r

4��0c
2

�
�

�
t� nR

c

�
v?�t: (10)

We note that the vector potential in this limit is simply
proportional (and parallel) to v?�t, i.e. to the projection of

the displacement vector onto a plane perpendicular to the
observation direction. This expression can also be imple-
mented in a shower simulation provided a suitable approxi-
mation is made for the delta function.
The expression for the electric field is given by E ¼

� @A
@t �r� and only the term with the time derivative of

the vector potential gives contribution to the radiation term
so that

REðt; �Þ ¼ � e�r

4��0c
2
v?

�ðt� nR
c � ð1� n� cos�Þt1Þ � �ðt� nR

c � ð1� n� cos�Þt2Þ
ð1� n� cos�Þ : (11)

The radiation field due to a single particle track with e > 0 is similar to the schematic diagram shown in Fig. 1. Such a
particle produces radiation when the track starts or ends. The two pulses ‘‘as seen’’ by the observer (placed at angle �with
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respect to the particle track) are separated by a time inter-
val associated to the difference in propagation time ð1�
n� cos�Þ�t.

Let us first consider an angle exceeding the Čerenkov
angle so that (1� n� cos�) is positive. The electric field of
the first pulse corresponds to the start point of the track (t1)
and it is antiparallel to v? according to Eq. (11), while it is
parallel for the second pulse which corresponds to the end
point (t2). The sign of the electric field pulse is opposite to
the sign of the particle acceleration in both cases. The zero
in the shown arrival time is arbitrary and corresponds to
t ¼ nR=c, i.e. it is a reference time associated to the arrival
of a signal from the reference position x0. The two pulses
associated with the track take place later than this reference
time.

As the angle decreases and becomes smaller than the
Čerenkov angle, the situation is reversed: The first pulse
corresponds to the end point of the track (t2), while the
second corresponds to the start point (t1). Moreover not
only is the arrival of the pulses as seen by the observer
inverted, but both take place before the reference time.
This apparent acausal behavior is due to the fact that the
particle travels at a speed greater than that of light in the
medium. Although the terms responsible for the first and
second pulses are interchanged, and there is a sign change
associated with this interchange, it is compensated by the
denominator of Eq. (11) that also reverses its sign. As a
result there is no change in the sign of the electric field of

the first and second pulses as the Čerenkov angle is
crossed, and the double peak structure at any given time
has the same qualitative behavior as the observation angle
changes. This seems physically sound since there can be no
discontinuity of the electric field across the Čerenkov cone
boundary.
For observation at the Čerenkov angle both signals

arrive simultaneously. In this limiting case the electric field
can be formally obtained taking minus the derivative of the
delta function given by Eq. (10). This again corresponds to
a double pulse first antiparallel and then parallel to v?.

C. Equations in the frequency domain

The expression for the electric field in the frequency
domain used in the ZHS simulation code [Eq. (12) in [2] ]
reads

E ð!;xÞ ¼ e�r

2��0c
2
i!

eikR

R
eið!�k�vÞt1v?

�
eið!�k�vÞ�t � 1

ið!� k � vÞ
�
:

(12)

We recall that this equation has been obtained with the
following convention for the Fourier transform of the
electric field:

~fð!Þ ¼ 2
Z 1

�1
fðtÞeiwtdt; (13)

where the factor 2 corresponds to an unusual convention

[this factor is usually either 1 or ð2�Þ�ð1=2Þ)]. Applying this
Fourier transform definition to Eq. (11) giving the electric
field in the time domain we obtain

Eð!;xÞ ¼ � e�r

2��0c
2

1

R
v?

� ei!½nR=cþð1�n� cos�Þ�t1 � ei!½nR=cþð1�n� cos�Þ�t2

ð1� n� cos�Þ ;

(14)

which can be easily rearranged to give exactly Eq. (12)
noting that k ¼ n!

c . Moreover if we apply the Fourier

transform to Eq. (10) which applies to the limit � ! �C
we get

RAð!;xÞ ¼ e�r

2��0c
2
v?�teið!t1�kr1ÞeikR: (15)

The electric field is obtained taking minus the time deriva-
tive which in Fourier space is just a factor i!, giving again
the same result as Eq. (13) in [2] for the electric field in the
frequency domain at the Čerenkov angle.
These calculations show the consistency of Eq. (11)

obtained in the time domain with Eq. (12) which gives
the field in the frequency domain: They are simply Fourier
transforms of each other as expected.

FIG. 1. Schematic representation of the radiation fields in the
time domain induced by a single particle with positive charge
e > 0 traveling at constant velocity � between times t1 and t2.
Top panel vector potential [see Eq. (8)]. Bottom panel electric
field [see Eq. (11)]. See also text for more details.
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D. Pulses for simple charge distributions

Before performing a Monte Carlo simulation of electro-
magnetic showers, it is interesting to extend the calcula-
tions to simple models for the shower. These models allow
us to obtain relations between the shape of the pulse in the
time domain and the time and spatial distribution of the
charge.

A simple yet interesting model consists of a chargeQðz0Þ
that rises and falls along the shower direction z0 and
spreads laterally in x0 and y0. Assuming cylindrical sym-
metry we can write the current associated to this charge
distribution as [31,35]

J ðx0; t0Þ ¼ vfðz0; r0ÞQðz0Þ�ðz0 � vt0Þ: (16)

Here r0 is a two dimensional vector in the ðx0; y0Þ plane
transverse to z0, and the function fðz0; r0Þ gives the charge
distribution in such a plane as a function of shower depth,
with normalization chosen so that Q indeed gives the
excess charge:

Z
d2rfðz0; rÞ ¼

Z 2�

0
d�0 Z 1

0
fðz0; r0; �0Þ ¼ 1; (17)

with �0 the azimuthal angle in cylindrical coordinates.
The simplest case is that of a line current along the z0

direction without lateral extension in which fðx0; y0Þ is
replaced by the two dimensional delta function
�ðx0Þ�ðy0Þ. This approximation was also discussed in [27]
in the frequency domain, where it was referred to as the
one-dimensional approximation. When such a line current
is substituted into Eq. (4) and integrated in x0, y0, and t0
making the Fraunhofer approximation, a relatively simple
expression is obtained that relates the vector potential in
the time domain to the excess charge Qðz0Þ:

RAðt; �Þ ¼ �

4�
v?

Z 1

�1
dz0Qðz0Þ

� �

�
z0ð1� n� cos�Þ � v

�
t� nR

c

��
: (18)

The delta function relates the depth in the shower develop-
ment z0 to the observation time t through a linear function:

z0 ¼ 	ðtÞ ¼ �
ct� nR

1� n� cos�
: (19)

As the observation angle approaches the Čerenkov angle,
the time interval corresponding to the depth spanned by the
shower, i.e. the pulse width, becomes smaller. We thus
recover a familiar result already discussed in [2] although
in the frequency domain.

Performing the integration in Eq. (18) yields,

RAðt; �Þ ¼ �c�

4�

v?
j1� n� cos�jQð	ðtÞÞ; (20)

where the delta function in Eq. (18) introduces a factor
j1� n� cos�j�1.

The electric field is obtained by taking minus the de-
rivative of the vector potential with respect to time:

REðt; �Þ ¼ ��c�

4�

v?
ð1� n� cos�Þj1� n� cos�j

� dQð	Þ
d	

��������	¼�ððct�nRÞ=ð1�n� cos�ÞÞ
: (21)

The factor ð1� n� cos�Þ�1 arises from applying the chain
rule to the derivative ofQ½	ðtÞ�. As a result the pulse in the
time domain can be regarded as the derivative of the
development of the charge excess along the shower, scaled
with the Čherenkov factors ð1� n� cos�Þ�1 and j1�
n� cos�j�1, and converted from depth into time through
Eq. (19), i.e., the pulse is first positive and then negative
with respect to v? since in a real showerQðz0Þ corresponds
to an excess of negative charge.
A number of interesting results can be directly read off

Eq. (21). If the development curve for the excess charge
Qðz0Þ is not symmetric, as happens in real showers, the
asymmetry in its derivative is directly reflected into an
asymmetry between the negative and positive parts of the
pulse. Also it is interesting to note that when the angle of
observation is below the Čerenkov angle, the pulse shape is
inverted in time because the early part of the pulse corre-
sponds to the end of the shower while the beginning of the
shower corresponds to the end part of the pulse, as ex-
plained above. Still, the polarity of the first and second
pulses remains the same because, although the slopes
before and after the shower maximum change sign, there
is an extra sign change induced by the factor ð1�
n� cos�Þ�1. This is in complete analogy to what was
discussed for a single track.
In the case of observation in the Čerenkov direction, the

z0 dependence of the delta function in Eq. (18) disappears
and the delta function can be factored away from the
integral to give a pulse of amplitude directly proportional
to the integrated excess track length of the shower. The
delta function term is due to all parts of the line current
being observed simultaneously at the Čerenkov angle.
These are two familiar results already emphasized in [2].
The simulation has shown that the model with the ab-

sence of a lateral distribution breaks down at j�� �Cj &
2:5�. This result is consistent with that found in [27] where
the one-dimensional model was studied in the frequency
domain.
It is instructive to extend the line current model to a

more realistic three dimensional current fðz0; rÞ with cy-
lindrical symmetry and current given in Eq. (16). In that
case the expression for the vector potential with two delta
functions can be integrated in t0 and �0 and the resulting
expression involves a double integral over cylindrical co-
ordinate r0 and the shower depth z0:
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RAðt; �Þ ¼ v?
�

2�

Z 1

0
r0dr0

Z 1

�1
dz0fðz0; r0ÞQðz0Þ �ðn�r0 sin�� jz0ð1� n� cos�Þ � ðvt� n�RÞjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½n�r0 sin��2 � ½z0ð1� n� cos�Þ � ðvt� n�RÞ�2p : (22)

This expression, despite being more cumbersome than
Eq. (18), if solved analytically for realistic lateral distribu-
tion functions, could give insight into useful parametriza-
tions of the pulse in the time domain. In any case it can be
used for numerical simulations.

In the Čerenkov limit Eq. (22) becomes

RAðt; �Þ ¼ �

2�

v?
n� sin�C

Z 1

�1
dz0Qðz0Þ

�
Z 1

ððjvt�n�RjÞ=ðn� sin�CÞÞ
r0dr0fðz0; r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 � ½vt�n�R

n� sin�C
�2

q :

(23)

This equation shows that the nonzero width of the electro-
magnetic pulse at the Čerenkov angle is the result of the
lateral distribution of the shower. Although the integral is
rather complicated to evaluate for realistic lateral shower
profiles, it can be shown that for distributions of the form
fðr0Þ ¼ ðr0Þ�n for integers n > 2 the electric field E /
v?sgnðt� nR=cÞjvt� n�Rj�n, which is a fast bi-polar
pulse of nonzero width.

This model still has some limitations. Note that Eq. (23)
predicts a pulse that is symmetric in time while simulations
have shown that the pulse at the Cerenkov angle is asym-
metric. This is due in part to the radial distribution of
velocities of the shower which is not included in the model.
The development of a current density vector model that can
accurately produce the features of Čerenkov radiation is a
work in progress.

E. Implementation in the ZHS Monte Carlo

The ZHS Monte Carlo [2] allows the simulation of elec-
tromagnetic showers and their associated coherent radio
emission up to EeV energies [29]. Originally developed in
ice [6], it has been extended so that electromagnetic show-
ers in other dielectric homogeneous media can be simu-
lated [28,29]. The code accounts for bremsstrahlung, pair
production, and the four interactions responsible for the
development of the excess charge, namely, Møller,
Bhabha, Compton scattering and electron-positron annihi-
lation. In addition multiple elastic scattering (according to
Molière’s theory) and continuous ionization losses are also
implemented. The electron/positron tracks between each
interaction are split into subtracks so that no subtrack
exceeds a maximum depth fixed at 0.1 radiation lengths.
For low energy particles these subdivisions are actually
reduced to ensure that no subtrack is comparable to the
particle range, and they become the step used to evaluate
ionization losses and multiple elastic scattering.
Convergence of results as the step is reduced has been
carefully checked [38].

In order to account for interference effects between the
radiation emitted due to the particles responsible for the
excess negative charge, the ZHS code was designed to
follow all electrons and positrons down to a 100 keV
kinetic energy threshold, as well as to carefully account
for time, by considering deviations with respect to a plane
front moving at the speed of light injected in phase with the
primary particle. In addition to the delays associated to the
propagation geometry, those due to particles travelling at
velocities smaller than the velocity of light are accounted
for assuming the energy loss is uniform across the step. An
approximate account is also made of the time delay asso-
ciated to the multiple elastic scattering processes along the
step.
As a result the tracks of all charged particles in a shower

are divided into multiple subtracks which are assumed to
be straight and to have constant velocity. The positions of
the end points of these subtracks as well as the correspond-
ing times are readily available by design, and they can be
used to compute the frequency components of the electric
field making extensive use of Eq. (12), taking into account
the relative phase shift between different tracks because of
their different starting point positions and time delays.
In this work we have extended the Monte Carlo to also

calculate the pulse in the time domain. A routine has been
developed to account for contributions of each of these
particle subtracks to the vector potential, making extensive
use of Eq. (8). Each subtrack contributes a unit ‘‘rectangle’’
to the vector potential, which varies in height, ‘‘duration,’’
and sign—see Fig. 1, depending on the velocity, the rela-
tive orientation of the track with respect to the direction of
observation, and the charge of the particle. When the
observation direction is very close to the Čerenkov angle
the delta function in Eq. (10) is replaced by a rectangle
corresponding to a nascent delta function [39]. If the
sampling time bin width is set to �T then a natural choice
of nascent delta function is given by


�TðtÞ ¼
�

1
�T ; � �T

2 < t � �T
2

0; otherwise
: (24)

In this case the base of the rectangle is fixed by the intrinsic
‘‘time resolution’’ �T of the simulation and the pulse
height depends on �T. In practice, the time domain radio
signal can be reconstructed with an antenna receiver sys-
tem and digital sampling electronics. The time resolution
of a single waveform is determined by the digital sampling
bin width and the high frequency cutoff of the receiver
system.
Once the vector potential induced by each subtrack is

defined, the contribution of all charged subtracks in the
shower is obtained and the vector potential is derived with
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respect to time to obtain the electric field in the time
domain.

In the next section we show several examples of the
results of this procedure.

III. RESULTS

In Fig. 2 we show the electric field as a function of the
arrival time of the signal obtained with the ZHS code in a
single 1 PeV electron-induced shower in ice for different
observation angles. The zero in the shown arrival time is
measured with respect to the arrival time of a pulse emitted
as the primary particle initiating the shower is injected in
the medium.

The electric field is parallel to the projection of the
velocity onto a plane perpendicular to the direction of the
observation at early times and antiparallel later on. This is
expected after the discussion in Sec. II B of the electric
field emitted by a single positively charged particle, with
the important difference that in a shower the electric field is
produced by an excess of negative charge and the polarity
of the field is reversed with respect to that shown in Fig. 1.
Also as in the case of a single track there is no change in the
polarity of the pulse when observing inside (� < �c) or
outside (� > �c) the Čerenkov cone (�c). The pulse always
starts being positive (parallel to v?) and ends being nega-
tive (antiparallel to v?) regardless of the observation angle.
This feature can be used as a discriminator against back-
ground events for neutrino searches. It can be also clearly
seen that the pulse is broader in time away from the
Čerenkov cone than close to it with an apparent duration
proportional to �zj1� n� cos�j=c with �z being the
spread along the shower axis of the excess charge [see
Eq. (19)]. For observation at the Čerenkov angle the ap-
parent duration of the pulse is not zero, despite the fact that
the Čerenkov factor j1� n� cos�cj ! 0, because the
shower spreads out also in the lateral dimensions (x and
y directions). Also due to our definition of t ¼ 0 and to the
presence of the Čerenkov factor in the � functions in
Eq. (11), the pulse occurs at t > 0 outside the Čerenkov
cone and at t < 0 inside it.
According to the simple model developed in Sec. II D

the field away from the Čerenkov angle is proportional to
the derivative of the excess charge distribution QðzÞ with
respect to t—Eq. (21)—or equivalently the derivative with
respect to z since there is a linear relation between t and
z—Eq. (19). The ZHS code also gives the longitudinal
profile of the excess charge and we have applied Eq. (21)
to the simulated QðzÞ, and compared to the electric field
obtained directly in the Monte Carlo. This is also shown in
Fig. 2. The agreement between the electric field obtained
directly in the Monte Carlo simulation (dashed histograms)
and what is predicted by Eq. (21) (solid histograms) is
remarkable. The electric field follows the variation of the
excess charge in z or equivalently in t. This explains why
for a fixed observation angle the pulse changes sign from
early to late times [for a typical shower QðzÞ grows rela-
tively fast, reaches a maximum, and then decreases more
slowly with depth], and why it is asymmetric with respect
to the time axis [QðzÞ is not a symmetric function around
its maximum]. Also when the direction of observation is
inside the Čerenkov cone, the observer sees the derivative
of the beginning of the excess charge distribution first and
the corresponding derivative of the end of QðzÞ at later
times, while the opposite is true for observations outside
the Čerenkov cone. As a consequence the pulse at � < �c
looks like an antisymmetric copy with respect to t ¼ 0 of
the pulse at � > �c, as can be clearly seen in Fig. 2. An
accurate reconstruction of the time domain electric field
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FIG. 2 (color online). Electric field as a function of time as
obtained in ZHS simulations of a single 1 PeV electron-induced
shower in ice for different observation angles. Top panel:
Observation at the Čerenkov angle, bottom panel: observation
at �C � 5� (long green dashes) and at �C þ 5� (short blue
dashes). In the bottom panel the red solid histograms represent
the electric field obtained applying Eq. (21) to the simulated
excess negative charge QðzÞ.
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could, in principle, determine on which side of the
Cerenkov cone the event was observed. On the other
hand the shape of the pulse can be conversely used to infer
the depth development of the shower.

Equation (21) stresses the fact that the features of the
excess charge distribution are ‘‘mapped’’ in the time struc-
ture of the pulse. In particular it is well known that elec-
tromagnetic showers with energies above the energy scale
at which the LPM effect [40] starts to be effective (� PeV
in ice [41]), are ‘‘stretched’’ in the longitudinal dimension
and often show peaks in their profile [25,42–44]. These two
features should translate into the duration in time also of
the pulse and into its time structure that should also exhibit
multiple peaks. This is shown in Fig. 3 in which due to the
LPM effect the longitudinal profile of a 100 PeV electron-
induced shower exhibits two peaks which appear as 2

positive and 2 negative peaks in the time structure of the
pulse. For comparison a 1 PeVelectron-induced shower not
affected by the LPM effect and its corresponding electric
field are also shown. The linear relation between the time
domain structure of an electric field and the shower profile
suggests that the longitudinal profile of the shower could
be reconstructed from an observation off the Čerenkov
angle.
The extended ZHS code is able to calculate both the

electric field as a function of time and its Fourier transform
from first principles. Moreover, the two calculations can be
made simultaneously for the same shower. Both calcula-
tions can be easily compared by performing the Fourier
transform of the pulse calculated in the time domain,
following the convention in Eq. (13). This provides a
further check of the two methods, as well as a test of
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accuracy in the numerical procedures involved in the cal-
culation of the radio emission in both domains. Two ex-
amples are shown in Figs. 4 and 5, where the electric field
as a function of frequency as obtained in ZHS simulations of
single 1 PeV and 100 PeV (respectively) electron-induced
showers, are plotted along with the (fast) Fourier transform
(FFT) of the electric field in the time domain, obtained in
simultaneous ZHS simulations of the same showers. The
agreement between both spectra is very good for frequen-
cies below !�T � 2�=�T with �T an arbitrary time reso-
lution needed for the ZHS simulations in the time domain.
We do not expect to be able to reproduce the frequency
spectrum at frequencies above !�T—proportional to the
Nyquist frequency of the system. To illustrate this point in
Figs. 4 and 5 we also show the Fourier transformed spec-
trum of several time domain calculations performed with
different time resolutions �T ¼ 0:1 and 0.5 ns. One can
see that the agreement between the frequency spectrum
obtained in ZHS and the Fourier transformed time domain
electric field improves as �T decreases as expected.

Calculations in the frequency domain are more advisable
near the Čerenkov angle.

IV. SUMMARY, DISCUSSION AND OUTLOOK

In this work we have developed an algorithm to obtain
the Čerenkov radio pulse produced by a single charged
particle track in a dielectric medium. We have imple-
mented this algorithm in the ZHS Monte Carlo with which
we can predict the Čerenkov coherent radio emission of
electromagnetic showers in dense dielectric media in both
the time and frequency domains.
An observer in the Fraunhofer region, far from the axis

of the electromagnetic shower at an angle �, sees a bi-polar
pulse due to the excess of negative charge in the shower.
The apparent time duration of the pulse is proportional to
�zð1� n cos�Þ=c with �z the spread of the shower in the
longitudinal direction. At the Čerenkov angle ð1�
n cos�CÞ ! 0 and the duration of the pulse is mainly
determined by the lateral extent of the shower. At angles
� > �C, the observer sees first the electric field produced
by the early stages of the shower, and the field due to the
end of the shower later on, while the time sequence re-
verses for observation at � < �C. Regardless of the obser-
vation angle, the bulk of the electric field due to the excess
negative charge is directed along v?—the projection of the
particle velocity onto a plane perpendicular to the shower
axis—at early times and in the opposite direction later on.
The shape of the pulse maps the variation with depth of the
excess charge in the shower. This information can be of
great practical importance for interpreting actual data.
A consistency check performed by Fourier transforming

the pulse in time and comparing it to the frequency spec-
trum obtained directly in the simulations yields, as ex-
pected, fully consistent results. Our results, besides
testing algorithms used for reference calculations in the
frequency domain, shed new light into the properties of the
radio pulse in the time domain.
In the derivation of our time domain algorithm we have

applied the Fraunhofer approximation (see [35] for a com-
prehensive discussion). For a Fourier component of the
radiation of wave number k, the Fraunhofer approximation
is valid when the terms of order L2=R have negligible
contributions to the phase factors in the Fourier expansion,
with R the distance to the observer, and L the typical
dimensions of the emitting source, that is when
kL2sin2�=R < 1, which translates at the Cherenkov angle
to R> 10 mðL=1 mÞ2ð�=1 GHzÞ.
For the case of electromagnetic showers at EeVenergies,

L reaches distances of �100 m or even larger [25].
Hadronic showers are not so extended in the longitudinal
dimension and L� 10 m at EeV energies [26]. In experi-
ments consisting of arrays of antennas buried in ice, the
typical distance from a detectable shower to the antennas
cannot be much larger than the attenuation length of ice, of
the order of half a km at 1 GHz [14], and hence for
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FIG. 5 (color online). Same as Fig. 4 for a single 100 PeV
electron-induced shower.
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electromagnetic showers a calculation accounting for
Fresnel terms should be more appropriate above
100 MHz–1 GHz frequencies. The time domain pulse
obtained here cannot be expected to reproduce accurately
the time structure at scales below 1–10 ns. For experiments
using the Moon as the target for neutrino interactions in
which R� 3� 105 km, the Fraunhofer approximation is
expected to be valid for electromagnetic and hadronic
showers and MHz-GHz observation frequencies, as long
as the diffraction effects associated to the roughness of the
surface of the Moon can be neglected, i.e., for wavelengths
of observation larger than the root mean square of the
distribution of heights of the lunar surface (see, for in-
stance, [21,22] for a discussion). Finally, the same applies
to experiments such as ANITA in which the GHz antennas
are carried by a balloon at an altitude of �35 km, so that
the typical distance to a detectable event is R> 100 km
[18].

The Fraunhofer approximation is thus not adequate for
some experimental arrangements and must be extended to
include Fresnel effects as well as other details of the
specific experimental setup. These require dedicated ef-
forts which depend on specific details such as the typical
distance from the shower to the radio antennas or the
roughness of the refractive surfaces involved, which are
beyond the scope of this article. It is important to note that
even in experiments in which the Fraunhofer condition
does not apply, the Fresnel electric field measured at the

antennas has been converted to the electric field at infinity,
and hence can be compared to results obtained within the
Fraunhofer approximation (see Sec. IV.A in [10]). In the
future we also plan to implement the algorithm for time
domain calculations of electric field pulses in Monte Carlo
simulations of hadronic and neutrino-induced showers, of
great importance for neutrino detectors using the radio
Čerenkov technique. We will also explore how actual ex-
periments can exploit the richness of information con-
tained in the shape in time of the radio pulse to infer the
properties of shower development. This could be of great
help in the reconstruction of the parameters of the neutrino-
induced showers and to discriminate against background
events.
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[38] J. Alvarez-Muñiz, R. A. Vázquez, and E. Zas, Phys. Rev. D

62, 063001 (2000).
[39] J. J. Kelly, Graduate Mathematical Physics (Wiley-VCH,

Wienheim, 2006).
[40] L. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR

92, 535 (1953); 92, 735 (1935); A. B. Migdal, Phys. Rev.
103, 1811 (1956); Zh. Eksp. Teor. Fiz. 32, 633 (1957)
[Sov. Phys. JETP 5, 527 (1957)].

[41] T. Stanev, C. Vankov, R. E. Streitmatter, R.W. Ellsworth,
and T. Bowen, Phys. Rev. D 25, 1291 (1982).

[42] J. P. Ralston and D.W. McKay, Proc. of High Energy
Gamma-Ray Astronomy Conference, edited by James
Matthews, AIP Conf. Proc. No. 220 (American Institute
of Physics, Ann Arbor, 1990), p. 295.

[43] E. Konishi, A. Adachi, N. Takahashi, and A. Misaki, J.
Phys. G 17, 719 (1991).

[44] S. R. Klein, arXiv:astro-ph/0412546.
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