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We study the evolution of an asymptotically free vectorial SUðNÞ gauge theory from the ultraviolet to

the infrared and the resultant phase structure in the general case in which the theory contains fermions

transforming according to several different representations of the gauge group. We discuss the sequential

fermion condensation and dynamical mass generation that occur, and comment on the effect of bare

fermion mass terms.
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I. INTRODUCTION

The phase structure of a non-Abelian gauge theory
depends on its fermion content. Here we consider an
asymptotically free vectorial gauge theory [in (3þ 1) di-
mensions, at zero temperature and chemical potential] with
an SUðNÞ gauge group and fermions corresponding to
several different representations of the gauge group. We
denote the running gauge coupling of the theory as gð�Þ,
with �ð�Þ ¼ gð�Þ2=ð4�Þ, where � is the Euclidean en-
ergy/momentum scale (which will often be suppressed in
the notation). Since the gauge interaction is asymptotically
free, at a sufficiently high energy scale �, �ð�Þ is small
and the theory is perturbatively calculable. We will study a
theory which contains several Dirac fermions transforming
according to different representations of SUðNÞ. We denote
a representation as R, the set of fermion representations in
the theory as fRg � fR1; . . . ; Rkg, the number of Dirac
fermions in each representation Ri as NRi

, and the set of

these numbers as fNRg � fNR1
; . . . ; NRk

g [1]. We will first

consider the case in which all of these fermions are mass-
less or have bare masses in the high-scale Lagrangian that
are small compared with the scale where � grows to a size
of order unity and the theory becomes strongly coupled.
One interesting property of this type of theory is that it can
exhibit fermion condensations at different energy scales,
with fermions with larger quadratic Casimir invariants
condensing and gaining dynamical masses at higher scales.
This theory could arise from a larger one which is a chiral
gauge theory, in which fermion masses would generically
be forbidden. However, if we consider the theory by itself,
then, since it is vectorial, and hence fermion mass terms do
not violate the SUðNÞ gauge symmetry, it is natural to
consider a more complicated situation in which some
fermions have masses that are comparable to or greater
than the scale where the coupling � grows to O(1). We
shall also briefly comment on this latter possibility.

Although our work is an abstract field-theoretic study,
not an effort to construct a phenomenological model, we
note that there has been considerable interest recently in
the analysis of vectorial non-Abelian gauge theories with

fermions in higher-dimensional representations, partly mo-
tivated by technicolor model building [2,3]. We note in
passing that in the early development of the standard
model, the possibility was considered that the color
SUð3Þc sector might contain not just quarks but also other
fermions transforming as higher-dimensional representa-
tions of the color group [4]. Fermions in higher-
dimensional representations have also been used in con-
structions of chiral gauge theories, but here we restrict our
consideration to vectorial gauge theories.

II. GENERAL THEORETICAL FRAMEWORK

A. Beta function

In this section we review the general theoretical frame-
work that we will use in our calculations. The beta function
of the theory is denoted � ¼ dg=dt, where dt ¼ d ln�. In
terms of �, this can be written as

d�

dt
¼ � �2

2�

�
b1 þ b2�

4�
þOð�2Þ

�
; (2.1)

where the coefficient b‘ arises at ‘-loop order in perturba-
tion theory, and the first two coefficients, b1 and b2, are
scheme independent. These are [5]

b1 ¼ 1

3

�
11C2ðGÞ � 4

X
R

NRTðRÞ
�

(2.2)

and [6]

b2 ¼ 1

3

�
34C2ðGÞ2 � 4

X
R

ð5C2ðGÞ þ 3C2ðRÞÞNRTðRÞ
�
:

(2.3)

Here C2ðRÞ is the quadratic Casimir invariant and TðRÞ is
the trace invariant for the representation R [7], with
C2ðGÞ � C2ðadjÞ and C2ðSUðNÞÞ ¼ N. The condition
that the theory be asymptotically free, i.e., that b1 > 0,
yields the upper bound

X
R

NRTðRÞ< 11N

4
: (2.4)
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Since all of the terms on the left-hand side contribute
positively, this implies the upper bound on the number of
fermions in each representation NR < NR;max, where

NR;max ¼ 11N

4TðRÞ : (2.5)

Here and below, we implicitly carry out an analytic con-
tinuation of NR from non-negative integers to non-negative
real numbers; however, it is understood that physically they
are, of course, non-negative integers. If there are few
fermions, then also b2 > 0, so that the two-loop beta
function has a zero only at the origin, � ¼ 0.

A sufficient increase in the numbers of fermions in
various representations leads to a reversal in the sign of
b2 from positive to negative, while still satisfying the
condition of asymptotic freedom, (2.4). For a set of fermion
representations fNRg with this property, the two-loop beta
function has a zero away from the origin at

�IR ¼ � 4�b1
b2

¼ 4�b1
jb2j : (2.6)

For the theory with a single type of fermion representation,
we denote the value of NR where b2 ¼ 0 as NR;IR. This is

NR;IR ¼ 17C2ðGÞ2
2½5C2ðGÞ þ 3C2ðRÞ�TðRÞ : (2.7)

The fact that NR;IR <NR;max is evident because for N ¼
NR;IR, b1 has the positive (i.e., asymptotically free) value

b1 ¼ C2ðGÞ½6C2ðGÞ þ 11C2ðRÞ�
5C2ðGÞ þ 3C2ðRÞ > 0 for NR ¼ NR;IR:

(2.8)

If b2 < 0, so that there is an infrared zero of the beta
function, then as the scale � decreases from large values,
�ð�Þ increases toward this value. The infrared behavior
then depends on whether or not the value of the coupling
�IR is sufficiently large as to cause spontaneous chiral-
symmetry breaking [8]. If the properties of the theory are
such that no fermion condensates form, then this is an exact
infrared fixed point (IRFP) of the (perturbatively calcu-
lated) renormalization group equation for �. If, on the
other hand, some fermions do condense, so that they get
dynamically generated masses and are integrated out of the
low-energy effective theory applicable below the scale(s)
of condensation, then, since the beta function changes, the
original value of �IR is only an approximate IRFP. Since
the coefficients b1 and b2 are the maximal set of coeffi-
cients in the beta function that are scheme independent, it
follows that conclusions obtained from the two-loop beta
function should be at least qualitatively reliable physically.
However, since we will deal with values of �IR of order
unity, i.e., strongly coupled gauge interactions, it is under-
stood that there are inevitably significant theoretical un-
certainties in the results. In this context, we recall that the
two-loop perturbative beta function is an asymptotic ex-

pansion in � and does not include a number of important
effects, including confinement and instantons. Indeed, in-
stanton effects involve factors like expð�c�=�Þ (where c
is a constant), which cannot be seen to any order of
perturbation theory. Moreover, it should be noted that
even if there is no zero of the two-loop beta function
away from the origin, i.e., a perturbative IRFP, the beta
function may exhibit a nonperturbative slowing of the
running associated with the fact that at energy scales below
the confinement scale, the physics is not accurately de-
scribed in terms of the Lagrangian degrees of freedom
(fermions and gluons) [9–11]. We observe that one can
calculate �IR more accurately using the higher-order co-
efficients of the beta function. Finally, although an asymp-
totically free vectorial SUðNÞ gauge theory of the type that
we consider here does not require an ultraviolet comple-
tion, it could, as remarked above, arise as the low-energy
effective field theory resulting from the breaking of a
larger, chiral, gauge symmetry. In this case, one would
also want to assess the effects of residual higher-
dimensional operators from this larger gauge theory (e.g.,
[12]).

B. Results from approximate solution of
Dyson-Schwinger equation for fermion propagator

A solution of the Dyson-Schwinger (DS) equation for
the propagator of a fermion c in the representation R of the
gauge group, with zero bare mass, in the approximation of
one-gluon (also called ladder) exchange, yields a nonzero,
dynamically generated mass if the coupling �ð�Þ exceeds
a critical value �R;cr given by [13–16]

3C2ðRÞ�R;cr

�
¼ 1: (2.9)

In the same ladder approximation, the anomalous dimen-
sion for the fermion (bilinear) mass operator is � ¼ 1 at
� ¼ �cr;R. Some lattice studies have reported initial results

on measurements of � [17,18]. Corrections to the one-
gluon exchange approximation have been analyzed and
found not to be too large [19]. To assess the implications
of these corrections for the boundary of the chirally sym-
metric phase, one also calculates �IR to the corresponding
higher order. Since the dynamically generated mass for this
fermion is the coefficient of the bilinear fermion operator
in an effective Lagrangian, this indicates the formation of a
condensate of the fermions in the representation R, and
associated spontaneous chiral-symmetry breaking (S�SB)
by the gauge interaction, as � increases through the critical
value �R;cr Some early studies with lattice simulations of

chiral-symmetry breaking were carried out for SU(2) and
SU(3) for various fermion representations in [20–22].
There has been considerable recent lattice work, mainly
on the group SU(3) with fermions in the fundamental
representation or rank-2 symmetric (sextet) representation
and on SU(2) with fermions in the adjoint (equivalent to
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rank-2 symmetric) representation. Some of the rapidly
increasing number of papers reporting results from numeri-
cal lattice simulations include Refs. [17,18]. To our knowl-
edge, there have not been lattice studies of chiral-
symmetry breaking in a theory containing dynamical fer-
mions in two or more different representations (simulta-
neously present).

The analysis of the gauge coupling evolution and chiral-
symmetry realization in vectorial asymptotically free
gauge theories has been of particular interest in the context
of technicolor (TC) theories [23], especially in the context
of the most promising such theories, which exhibit a slowly
running (‘‘walking’’) gauge coupling associated with an
approximate infrared fixed point of the renormalization
group [15] (see also [24]). In the actual application to
theories of dynamical electroweak symmetry breaking,
one must embed the technicolor sector in a larger theory,
extended technicolor (ETC) in order to give masses to
quarks and leptons and to account for their generational
structure [25]. A necessary property of TC/ETC theories is
that the ETC symmetry must break in a series of stages to
the TC symmetry, which is an asymptotically free, vecto-
rial theory that becomes strongly coupled on the TeV scale,
producing bilinear technifermion condensates that break
the electroweak gauge symmetry. ETC is constructed as an
asymptotically free chiral gauge symmetry, which be-
comes strongly coupled and hence forms condensates
that self-break the ETC symmetry. In reasonably
ultraviolet-complete ETC models [26] it is also necessary
to include another auxiliary, strongly coupled gauge inter-
action. Accounting for the large mass splitting between the
t and b quarks may require additional mechanisms [27]
(recent reviews of TC/ETC include [3,28,29]). In this paper
we do not try to construct quasirealistic models of dynami-
cal electroweak symmetry breaking but instead focus on
the SUðNÞ vectorial gauge theory with fermions in differ-
ent representations as an interesting problem in abstract
nonperturbative field theory.

It should be mentioned that, in principle, an asymptoti-
cally free, vectorial gauge theory with a certain set of
massless fermions might confine without producing any
spontaneous chiral-symmetry breaking. The spectrum
would thus include a set of massless gauge-singlet com-
posite fermions. A necessary (but not sufficient) condition
for this to occur is that there should be a matching of the
global chiral anomalies between the fermion fields in the
Lagrangian and the gauge-singlet massless composite fer-
mions [30]. In our present study we will focus on the
situation in which, as suggested by the analysis of the
Dyson-Schwinger equation for the fermion propagator(s),
there is spontaneous chiral-symmetry breaking. In this
context, we recall a simple heuristic physical argument
that confinement produces S�SB, namely, that as a mass-
less fermion heading outward from the interior of a gauge-
singlet state is ‘‘reflected’’ back at the boundary, its chi-

rality flips, and this is equivalent to the presence of a mass
term in the effective Lagrangian [31]. However, although
our analysis is restricted to nonsupersymmetric gauge
theories, we note for completeness that supersymmetric
SUðNÞ gauge theories can, for a certain range in the
number of chiral superfields, exhibit confinement without
S�SB [32].

C.�DSMethod for determining chiral phase boundary

Here we recall a method to estimate the critical value,
NR;cr of the number of fermions in a single representation R
beyond which the theory goes from a phase with sponta-
neous chiral-symmetry breaking to a phase without such
breaking [16]. The method combines an analysis of the
beta function and coupling constant evolution into the
infrared with an expression for the critical coupling from
an approximation solution of the DS equation, and hence
we call it the �DS method.
Let us first consider the theory with NR fermions trans-

forming according to a single representation R. If NR is
sufficiently small that b2 > 0, then as the reference scale�
decreases from large values, �ð�Þ increases until it ex-
ceeds the critical value�R;cr at which there is the formation

of a bilinear condensate of the fermions

h �c c i � XdimðRjÞ

j¼1

h �c jc ji ¼
XdimðRjÞ

j¼1

h �c j;Lc j;Ri þ H:c: (2.10)

[For the gauge group SU(2), the condensate can be written
in terms of a product of same-chirality fermions, as dis-
cussed below.] If NR is sufficiently large that b2 < 0, then
the two-loop beta function has an infrared zero at �IR. The
value of �IR is a monotonically decreasing function of NR,
with partial derivative

@�IR

@NR
¼ � 12�TðRÞC2ðGÞ½7C2ðGÞ þ 11C2ðRÞ�

½17C2ðGÞ2 � 2NRf5C2ðGÞ þ 3C2ðRÞg�2
:

(2.11)

If the theory has only one type of fermion representation R,
then as NR increases through a critical value NR;cr, and the

value of �IR decreases through the critical value �R;cr, the

condensate vanishes and the theory goes over to one with-
out any spontaneous breaking of chiral symmetry. Setting

�IR ¼ �R;cr (2.12)

yields a solution for the critical number NR;cr for this case

where the theory has fermions in only one representation,
R. Stated in other terms, if NR < NR;cr, then as the theory

evolves into the infrared, �ð�Þ eventually increases above
the critical value �R;cr, the fermions condense and gain

dynamical masses of order the condensation scale, and the
evolution further into the infrared of the low-energy effec-
tive theory applicable below this scale is governed by a
different beta function. Thus, as noted above, in this case,
�IR is only an approximate infrared fixed point. Here, with
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fermions in a single representation, below the condensation
scale, the beta function would be that of the pure gauge
theory with no fermions, and hence would not have a
perturbative infrared fixed point. The only light degrees
of freedom in this theory would be the Nambu-Goldstone
bosons (NGB’s) resulting from the breaking of the global
chiral symmetry by the fermion condensates, and these,
being derivatively coupled, become noninteracting as the
energy scale goes to zero. If, on the other hand,NR > NR;cr,

then �IR <�R;cr, so that no condensates form, there is thus

no spontaneous chiral-symmetry breaking, and �IR is an
exact infrared fixed point. AsNR increases toNR;max so that

b1 decreases to zero, the value of b2 approaches a nonzero
value, so that �IR ! 0. The value of b2 at NR ¼ NR;max is

Nð7N þ 11C2ðRÞÞ.
We next consider the general case of massless fermions

transforming according to several different types of repre-
sentations, denoted, as above, by the set of numbers fNRg.
As the reference scale� decreases from large values where
the coupling �ð�Þ is small, this coupling increases. There
are then two possibilities: (i) b2 > 0, so that the two-loop
beta function does not have an infrared zero, and the
coupling �ð�Þ increases until it exceeds the critical value
for fermion condensation; (ii) b2 < 0, so that the two-loop
beta function does have an infrared zero, and �ð�Þ in-
creases toward this value. Under category (ii) there are two
subcategories, just as there were for the case of a single
type of fermion representation: (iia) the numbers fNRg are
sufficiently small that �IR is greater than the critical value
for some condensate to form, and (iib) the numbers fNRg
are sufficiently large so that �IR is less than the critical
value for any condensate to form. In cases (iia) and (iib),
�IR is an approximate and exact infrared fixed point,
respectively.

Let us assume that the set fNRg is such that either case (i)
or case (iia) holds. Then as the scale � decreases from
large values, the coupling �ð�Þ increases sufficiently so
that there is condensation in the most attractive channel.
For a channel in which fermions of representations R1 and
R2 form a condensate transforming as Rcond,

R1 � R2 ! Rcond; (2.13)

a measure of the attractiveness is

�C2 ¼ C2ðR1Þ þ C2ðR2Þ � C2ðRcondÞ: (2.14)

The maximization of �C2 implies that in a vectorial gauge
theory, the most attractive channels are always of the form

R� �R ! 1 (2.15)

for various R, which preserve the gauge invariance.
Furthermore, for channels of the form (2.15), �C2 ¼
2C2ðRÞ, so that the criterion for the critical coupling is,
in the one-gluon exchange approximation to the DS equa-
tion,

3��C2

2�
¼ 3�C2

�
¼ 1; (2.16)

as in Eq. (2.9). It follows that as the theory evolves from
high scales � to lower scales, as �ð�Þ increases, if it
exceeds a critical value for condensation, the one-gluon
exchange approximation predicts that this will occur first
in the channel (2.15) with the largest value of C2ðRÞ. Let us
denote the scale where this occurs as �1. That is, with this
one-gluon approximation to the Dyson-Schwinger equa-
tion, the fermion with the largest value of C2ðRÞ has the
smallest value of �R;cr and hence forms a condensate at this

highest condensation scale. Associated with this conden-
sation, the fermions transforming according to this repre-
sentation gain a dynamical mass of order �1. In the low-
energy effective field theory that is applicable at scales
below �1, these fermions are then integrated out, and the
theory evolves in a manner determined by a new beta
function, calculated without these fermions.
For sets of numbers fNRg for which case (iia) holds, we

again find that the partial derivative of �IR with respect to
one of the numbers NR, denoted NRi

, with the others, NRj

with j � i, held fixed, is negative:

@�IR

@NRi

< 0: (2.17)

Hence, the same logic applies as before. We can start with a
set of fermions fNRgwhich is such that b2 < 0, so that there
is an infrared zero of the two-loop beta function, and the
numbers NR are sufficiently small that �IR is large, and the
theory forms chiral-symmetry breaking condensates. We
can then increase one of the numbers, NRi

, with the others

held fixed. As we do this, �IR decreases, and eventually
decreases through the critical value given in Eq. (2.9) for
condensation in the channel Ri � �Ri ! 1, at which point
this condensate vanishes. The condition in Eq. (2.12) then
defines a critical value NRi;crit. However, in contrast to the

simpler case of the theory with fermions in only a single
representation, now the critical value NRi;cr for a given Ri

depends on the values of the numbers, NRj
, j � i, of

fermions transforming according to other representations
of the gauge group. Another tool that has been applied to
analyze chiral-symmetry breaking is a conjectured in-
equality concerning thermal degrees of freedom [33,34].

D. Global chiral symmetry

For a vectorial SUðNÞ theory with N � 2 with massless
fermions in a set of representations fRg � fR1; R2; . . .Rkg,
such that the numbers of (Dirac) fermions are fNRg �
fNR1

; NR2
; . . . ; NRk

g, the formal (classical) global chiral

symmetry is
Q

k
i¼1 UðNRi

ÞL � UðNRi
ÞR. For each Ri, the

group UðNRi
ÞL � UðNRi

ÞR can be rewritten as

SU ðNRi
ÞL � SUðNRi

ÞR � Uð1ÞRi;V � Uð1ÞRi;A: (2.18)
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The vectorial global symmetry Uð1ÞRi;V represents the

conservation of fermion number for the fermions in the
representation Ri. Each of the k axial global symmetries
Uð1ÞRi;A is broken by SUðNÞ instantons [35], with diver-

gences of the corresponding axial-vector currents @�J
A;�
Ri

/
½�=ð4�Þ�TðRiÞFa

��
~Fa;��. From these k broken symmetries

Uð1ÞRi;A, i ¼ 1; . . . ; k, one can construct k� 1 linear com-

binations that are conserved in the presence of instantons,
which we denote Uð1Þs;A, s ¼ 1; . . . ; k� 1 with currents

J A�
s . Let us define

Ĵ A;�
Ri

� JA;�Ri

TðRiÞ : (2.19)

One of the conserved currents is (up to a normalization
factor)

J A�
1 / ĴA;�R1

� ĴA;�R2
: (2.20)

The others are constructed by Gram-Schmidt orthonorm-
alization. For example, for k ¼ 3, the other one is

J A�
2 / 1

2½ĴA;�R1
þ ĴA;�R2

� 2ĴA;�R3
�: (2.21)

Thus the actual (continuous) nonanomalous global sym-
metry of the theory, before any fermion condensates form,
is

Gglobal ¼
�Yk
i¼1

SUðNRi
ÞL � SUðNRi

ÞR � Uð1ÞRi;V

�

�
�Yk�1

s¼1

Uð1ÞA;s
�
: (2.22)

The resultant realization of this global symmetry de-
pends on the gauge coupling evolution and whether the
coupling � increases above the critical value for conden-
sation of the fermions in the Ri representation. As an
example, let us assume that all of the fermions condense,
at the respective different scales�NRi

, i ¼ 1; . . . ; k. For our

discussion here we shall label the representation with the
largest value of C2ðRiÞ as R1; from the one-gluon exchange
approximation, it then follows that the R1 fermions con-
dense at the highest scale, �1. In accordance with the most
attractive channel arguments recalled above, the fermion
condensate of the form h �c R1

c R1
i preserves the global

Uð1ÞR1;V and breaks the non-Abelian global symmetry

from SUðNR1
ÞL � SUðNR1

ÞR to its diagonal, vectorial sub-

group, SUðNR1
ÞV . This condensate also breaks each of the

k� 1 Uð1Þs;A axial symmetries. In the low-energy effec-

tive field theory applicable at scales �<�1, with the
fermions in the R1 representation having gained dynamical
masses of order�1 and having been integrated out, one can
construct k� 2 appropriate linear combinations of the
former k� 1 Uð1Þs;A axial symmetries that exclude the

R1 fermions and are preserved in the presence of instan-
tons. We denote these as Uð1Þ0s;A. The continuous global

symmetry group of this low-energy effective theory below
�R1

is then

G0
global ¼

�Yk
i¼2

SUðNRi
ÞL � SUðNRi

ÞR
�
�

�Yk
i¼1

Uð1ÞRi;V

�

�
�Yk�2

s¼1

Uð1Þ0A;s
�
: (2.23)

The number of broken generators of continuous global Lie
algebras at the first scale is N2

R1
� 1 from the breaking of

the non-Abelian group, plus one for the breaking of one
linear combination of the k� 1 nonanomalous axial U(1)
symmetries, for a total of NNGB;�R1

¼ N2
R1

Nambu-

Goldstone bosons resulting from this first level of fermion
condensation. One repeats this process at each of the
various condensation scales. The NGB’s produced at
each level couple derivatively, and hence become progres-
sively more weakly interacting as powers of �=fRi

, where

fRi
is the generalization of the pion decay constant appli-

cable to the condensation of the Ri fermions.
In the case N ¼ 2, because SU(2) has only (pseudo)real

representations, the analysis of the global symmetry is
different than in the case of SUðNÞ with N � 2. If, for
example, one has an SU(2) theory with Nf (Dirac) fermi-

ons in the fundamental representation, then one can reex-
press these fermions as a set of 2Nf chiral (say, left-

handed) fermions, and the covariant derivative term has
the form �c L� �Dc L, where c is a 2Nf-dimensional

vector of left-handed fermions. It follows that the formal
(classical) global symmetry in this case is Uð2NfÞL, or
equivalently, SUð2NfÞL � Uð1ÞL. The Uð1ÞL is broken by

the SU(2) instantons [35], so that the nonanomalous global
symmetry is SUð2NfÞL. The condensates are of the form

h	abc aT
p;LCc

b
p0;Li, where 	ab is the antisymmetric tensor

density for SU(2) and 1 � p, p0 � 2Nf. If the fermions are

in the rank-2 symmetric (equivalently, the adjoint) repre-
sentation, of the form c ab

p;L with 1 � p � 2Nf, then the

condensates are of the form h	ar	bsc abT
p;L Cc

rs
p0;Li, and so

forth for higher-dimensional representations. These con-
densates break the SUð2NfÞL down to its symplectic sub-

group, Spð2NfÞL. In this case there are thus

NNGB ¼ 2N2
f � Nf � 1 Nambu-Goldstone bosons.

III. SUðNÞ GAUGE THEORY WITH FERMIONS IN
A SINGLE REPRESENTATION

In this section we review some results on an SUðNÞ
gauge theory with fermions in a single representation,
which will serve as a useful background for our analysis
of the theory with fermions in multiple different
representations.
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A. Fundamental representation

For the SUðNÞ theory with NF Dirac fermions in the
fundamental representation F ( ¼ h in Young tableau
notation), the condition for asymptotic freedom yields
the upper bound NF < NF;max, where

NF;max ¼ 11N

2
: (3.1)

The coefficient b2 changes sign from positive to negative
as NF increases through the value

NF;IR ¼ 34N3

13N2 � 3
; (3.2)

which is always less than NF;max. For NF;IR <NF <
NF;max, the beta function has a zero away from the origin at

�IR ¼ 4�ð11N � 2NFÞ
�34N2 þ NFð13N � 3N�1Þ : (3.3)

The estimate for the critical value for condensation [from
Eq. (2.9)] is

�F;cr ¼ 2�N

3ðN2 � 1Þ : (3.4)

Setting �IR ¼ �F;cr and solving for NF, one obtains the

critical value of NF [16]

NF;cr ¼ 2Nð50N2 � 33Þ
5ð5N2 � 3Þ : (3.5)

As N ! 1, this has the series expansion

NF;cr ¼ N

�
1� 3

50N2
� 9

250N4
�O

�
1

N6

��
: (3.6)

For N ¼ 2, NF;cr ’ 8 and for N ¼ 3, NF;cr ’ 12. Recent
lattice measurements for the N ¼ 3 case are in broad
agreement, to within the uncertainties, with this prediction
[17].

The DS equation analysis is semiperturbative in the
sense that it contains polynomial dependence on �, and
it neglects nonperturbative effects associated with confine-
ment and instantons. The DS equation is an integral equa-
tion, and the standard analysis of this equation involves an
integration over Euclidean loop momentum k from k ¼ 0
to k ¼ 1. If the theory confines, then the lower bound for
the Euclidean loop momentum should actually not be k ¼
0, but instead k ¼ kmin: � r�1

c where rc is the spatial
confinement scale [9]. The use of k ¼ 0 thus overestimates
the tendency toward S�SB. Instantons enhance S�SB, and
the neglect of instanton effects amounts to an underesti-
mate of the tendency toward S�SB; since these two ne-
glected aspects of the physics—confinement and
instantons—produce errors that are of opposite sign as
regards the tendency for S�SB, it is plausible that these
errors tend to cancel out, so this may help to explain why
the usual DS analysis may be reasonably accurate [9], at

least in the case N ¼ 3 where recent lattice results are
broadly consistent with it.

B. Rank-2 symmetric and antisymmetric
representations

In this section we consider the two separate cases of the
SUðNÞ theory with (i)NS fermions in the symmetric rank-2
representation, and (ii) NA fermions in the anti-

symmetric rank-2 representation, . Since a number

of formulas are similar for these two cases, we include
them together in this section. In the case of , our

analysis applies for any N � 2, while for , we take

N � 4, since for N ¼ 2, is the singlet and for N ¼ 3,

is not a distinct representation, but is instead equivalent to
�h. For the SUðNÞ theory with Ns Dirac fermions in the
symmetric rank-2 representation , the condition for

asymptotic freedom yields the upper bounds NS <
NS;max, where

NS;max ¼ 11N

2ðN þ 2Þ ; (3.7)

and NA < NA;max, where

NA;max ¼ 11N

2ðN � 2Þ : (3.8)

The coefficient b2 changes sign from positive to negative
as NS and NA increase through the respective values

NS;IR ¼ 17N3

ðN þ 2Þð8N2 þ 3N � 6Þ (3.9)

and

NA;IR ¼ 17N3

ðN � 2Þð8N2 � 3N � 6Þ ; (3.10)

which are always less than the respective values NS;max and

NA;max.

For the theory with just NS fermions in the S represen-
tation, and NS;IR <NS < NS;max, the beta function (2.1) has

a zero away from the origin at

�IR;S ¼ 2�ð11N � 2NSðN þ 2ÞÞ
�17N2 þ NSð8N2 þ 19N � 12N�1Þ : (3.11)

The estimate for the critical value for condensation [from
Eq. (2.9)] is

�S;cr ¼ �N

3ðN þ 2ÞðN � 1Þ : (3.12)

Setting �IR;S ¼ �S;cr and solving for NS, we obtain the

critical value of NS,
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NS;cr ¼ Nð83N2 þ 66N � 132Þ
5ðN þ 2Þð4N2 þ 3N � 6Þ : (3.13)

For N ! 1, this has the series expansion

NS;cr ¼ 83

20
� 649

80N
þ 5027

320N2
þO

�
1

N3

�
: (3.14)

ForN ¼ 2,NS;cr ’ 2:1, while forN ¼ 3,NS;cr ’ 2:5. Some

Lattice measurements for the N ¼ 3 case are reported in
[18]. As N increases from 2 to 1, NS;cr increases mono-

tonically from 83=40 ’ 2:08 to 83=20 ¼ 4:15. [As before,
although we quote the exact fractions and give the floating-
point numbers to three significant figures, we emphasize
that because of the strong-coupling nature of the physics
and the approximations involved, these numbers have esti-
mated theoretical uncertainties of O(1). This applies to all
such estimates of NR;cr values in this paper.]

For the theory with just NA fermions in the A represen-
tation, and NA;IR <NA < NA;max, the beta function (2.1)

has a zero away from the origin at

�IR;A ¼ 2�ð11N � 2NAðN � 2ÞÞ
�17N2 þ NAð8N2 � 19N þ 12N�1Þ : (3.15)

The estimate for the critical value for condensation [from
Eq. (2.9)] is

�A;cr ¼ �N

3ðN � 2ÞðN þ 1Þ : (3.16)

Setting �IR;A ¼ �A;cr and solving for NA, we obtain the

critical value

NA;cr ¼ Nð83N2 � 66N � 132Þ
5ðN � 2Þð4N2 � 3N � 6Þ : (3.17)

For N ! 1, this has the series expansion

NA;cr ¼ 83

20
þ 649

80N
þ 5027

320N2
þO

�
1

N3

�
: (3.18)

As N increases from 3 to1, NA;cr decreases monotonically

from 417=35 ’ 11:9 to 83=20 ’ 4:15.

C. Adjoint representation

For the case of NAdj Dirac fermions, or equivalently,

2NAdj;Maj Majorana fermions, in the adjoint representation

Adj, the condition for asymptotic freedom is NAdj <

NAdj;max, where

NAdj;max ¼ 11

4
; (3.19)

i.e., NAdj � 2. Majorana fermions in the adjoint represen-

tation of the gauge group appear naturally in supersym-
metric theories. In the present nonsupersymmetric context,
we shall restrict ourselves to adjoint fermions of Dirac
type. The coefficient b2 changes sign from positive to
negative as NAdj increases through the value

NAdj;IR ¼ 17

16
: (3.20)

For NAdj;IR <NAdj <NAdj;max, the beta function has a zero

away from the origin at

�IR ¼ 2�ð11� 4NAdjÞ
Nð�17N þ 16NAdjÞ : (3.21)

Setting

�Adj;cr ¼ �

3N
(3.22)

equal to �Adj;cr, one solves for

NAdj;cr ¼ 83

40
¼ 2:075: (3.23)

IV. SU(2) GAUGE GROUP

For the simplest non-Abelian Yang-Mills gauge group,
SU(2), we can give a rather compact general treatment that
includes all possible representations. We recall that this
group has only (pseudo-)real representations R, which are
labeled by a single Dynkin index, the non-negative integer
p1 ¼ 2I, where Iwill be labeled as the ‘‘isospin’’ (not to be
confused with the actual gauged weak isospin). I ¼ 1=2 is
the fundamental representation, h; I ¼ 1 is the adjoint or
equivalently, rank-2 symmetric representation, ; I ¼
3=2 is the rank-3 symmetric representation, and so forth.
The following SU(2) relations will be useful:

C2ðIÞ ¼ IðI þ 1Þ (4.1)

and

TðIÞ ¼ ð2I þ 1ÞIðIþ 1Þ
3

: (4.2)

The asymptotic freedom condition (2.4) reads

X
I

NITðIÞ< 11

2
; (4.3)

where the sum over I is formally over all positive integral
and half-integral values, but actually truncates, because of
the fact that C2ðIÞ> 11=2 for I � 2. Hence, (4.3) reduces
to the Diophantine inequality

1

2
N1=2 þ 2N1 þ 5N3=2 <

11

2
: (4.4)

The nontrivial solutions to this include cases with only one
type of fermion representation present. In these cases, the
allowed numbers of fermions of each type are

N1=2 � 10; (4.5)

N1 �
�
11

4

�
‘
¼ 2; (4.6)

and

INFRARED EVOLUTION AND PHASE STRUCTURE OF A . . . PHYSICAL REVIEW D 81, 116003 (2010)

116003-7



N3=2 �
�
11

10

�
‘
¼ 1; (4.7)

where here ½��‘ denotes the greatest integer less than or
equal to � and it is understood in each case that the NI’s for
other I’s are zero. We also find the following solutions of
the asymptotic freedom condition with two different fer-
mion representations present (and N3=2 ¼ 0):

1 � N1=2 � 6; N1 ¼ 1; (4.8)

and

1 � N1=2 � 2; N1 ¼ 2: (4.9)

Substituting the general result for C2ðIÞ in Eq. (4.1) in
Eq. (2.9), we have, in this approximation,

�I;cr ¼ �

3IðI þ 1Þ : (4.10)

The predictions for the case of N1=2 massless Dirac

fermions in the fundamental representation are well known
[16]. The two-loop coefficient b2 reverses sign from posi-
tive to negative as N1=2 increases through the value

272=49 ’ 5:55 and decreases through negative values as
N1=2 increases. The zero of the two-loop beta function

occurs at

�IR ¼ 4�ð11� N1=2Þ
49N1=2 � 272

SUð2Þ; I ¼ 1=2: (4.11)

Equating �IR ¼ �1=2;cr ¼ 4�=9 or substituting Nc ¼ 2
into Eq. (3.5), one obtains the critical value for the case
with only fermions in the I ¼ 1=2 representation,N1=2;cr ¼
668=85 ’ 7:9.

There are two other cases where the theory involves only
fermions of a single type of representation, namely, those
with I ¼ 1 and I ¼ 3=2. For the symmetric rank-2 tensor,
or equivalently adjoint, representation, I ¼ 1, substituting
Nc ¼ 2 into Eq. (3.9) or using (3.20) shows that b2 reverses
sign from positive to negative as N1 increases through the
value 17=16. Similarly, substituting Nc ¼ 2 into Eq. (3.11)
or using (3.21), one derives that

�IR;I¼1 ¼ �ð11� 4N1Þ
16N1 � 17

: (4.12)

Setting this equal to �cr;I¼1 ¼ �
6 ’ 0:52 or using Eq. (3.23)

directly, one has Ncr;I¼1 ¼ 83=40 ¼ 2:075.
Finally, among the cases with a single fermion repre-

sentation present, there is the case of fermions with I ¼
3=2. For this case, b2 reverses sign from positive to nega-
tive as N3=2 increases through the value N3=2 ¼ 8=25 ¼
0:32. The two-loop beta function has a zero away from the
origin at

�IR;I¼3=2 ¼
8�ð11� 10N3=2Þ
17ð25N3=2 � 8Þ : (4.13)

Setting this equal to �cr;I¼3=2 ¼ 4�=45 ’ 0:28, we get the
critical value

Ncr;I¼3=2 ¼ 1126

1325
’ 0:85: (4.14)

Since �IR decreases with increasing N3=2 and since the

minimal nonzero value Nf;cr;I¼3=2 is 1, this predicts that

with one such Dirac fermion with I ¼ 3=2, the infrared
fixed point is below the value for condensation and hence is
an exact IR fixed point. That is, the gauge coupling will
evolve to this point without any condensate involving the
I ¼ 3=2 forming, so that it does not gain any dynamical
mass and remains massless. Thus, in the infrared limit of
this theory the fermion is massless. We summarize our
results for SU(2) in Table I.

TABLE I. Some numerical results for the SU(2) theory. IRFP
denotes an (exact or approximate) infrared fixed point of the
renormalization group equation for �. ‘‘nIRFP’’ means that the
two-loop beta function does not have such an IRFP, i.e., a zero
away from the origin. In the columns marked cI for I ¼ 1=2; 1
we indicate with a y (yes) or n (no) whether the �DS method
with the one-gluon (ladder) approximation to the DS equation
predicts that there is condensation of the isospin I fermions. The
notation m means ‘‘maybe,’’ reflecting the substantial theoretical
uncertainties in the �DS predictions due to the strong-coupling
nature of the physics. If the theory with all of its massless
fermions has a IRFP, this is marked as �IR;h, where h stands

for ‘‘highest scale.’’ If the low-energy effective field theory
applicable for energies below the highest condensation scale
has an IRFP, this is denoted �RI;‘, where ‘ stands for ‘‘lower

scale.’’ In cases where no condensation occurs for any of the
isospin I fermions, �IR;h ¼ �IR;‘.

N1=2 N1 �IR;h �IR;‘ c1=2 c1

1 0 nIRFP � � � y � � �
2 0 nIRFP � � � y � � �
3 0 nIRFP � � � y � � �
4 0 nIRFP � � � y � � �
5 0 mIRFP � � � y � � �
6 0 11.4 � � � y � � �
7 0 2.83 � � � y � � �
8 0 1.26 � � � m � � �
9 0 0.59 � � � n � � �
10 0 0.23 � � � n � � �
0 1 nIRFP � � � � � � � � �
1 1 nIRFP nIRFP y y

2 1 11.42 nIRFP y y

3 1 2.83 nIRFP y y

4 1 1.26 nIRFP y y

5 1 0.59 mIRFP y y

6 1 0.23 0.23 n n

0 2 1.26 � � � � � � y

1 2 0.59 nIRFP y m

2 2 0.23 0.23 n n
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SU(2) theory with fermions in several representations

We next consider the SU(2) theory with fermions in
several different representations. As discussed above, the
requirement of asymptotic freedom limits the possible
numbers of fermions, delineated by the numbers N1=2,

N1, and N3=2. For the case of N3=2 ¼ 0, we have

b2 ¼ 1

3

�
136� N1=2

2
� 128N1

�
: (4.15)

For N1 ¼ 1 and N1=2 ¼ 0; 1, it follows that b2 > 0, so that

the beta function has no infrared zero away from the origin.
This means that as the scale � decreases, � increases until
it exceeds the value �cr;I¼1, and the I ¼ 1 fermions con-

dense. They are then integrated out, and the theory evolves
further into the infrared as governed by the beta function
with only the I ¼ 1=2 fermions present. The coupling thus
increases further until it exceeds the value �cr;I¼1=2, at

which point these I ¼ 1=2 fermions condense.
For N1 ¼ 1 and 2 � N1=2 � 6, b2 < 0 and so the beta

function has an infrared zero away from the origin, at

�IR ¼ �ð1328� 145N1=2 � 640N1Þ
6ð49N1=2 þ 256N1Þ : (4.16)

If this is less than the critical value (2.9), then no fermion
condensates form. Setting this �IR equal to the smaller of
the two critical values, �cr;I¼1, one derives the condition

for condensation of the I ¼ 1 fermions. This is

N1=2 þ 128

29
N1 <

1328

145
’ 9:16: (4.17)

In addition to the cases with N1 ¼ 0 dealt with above, this
condition is satisfied for N1 ¼ 1 and 2 � N1=2 � 5
(check). For N1 ¼ 1 and N1=2 ¼ 6, the two-loop beta

function has �IR ¼ 0:23, below the value for condensation
of both the I ¼ 1 and I ¼ 1=2 fermions. Hence, in this
case, this is an exact infrared fixed point, and the theory
evolves into the infrared without any spontaneous chiral-
symmetry breaking.

For N1 ¼ 2, the condition of asymptotic freedom,
2N1=2 þ 8N1 < 22, is N1=2 < 3. Aside from the case

N1=2 ¼ 0 dealt with above, for the cases N1=2 ¼ 1 and

N1=2 ¼ 2, the two-loop beta function has an infrared zero

at the respective values � ¼ 32�=289 ’ 0:35 and � ¼
8�=169 ’ 0:15, both of which are smaller than the esti-
mate �cr;I¼1 ¼ �=6, so that the �DS analysis predicts that

no condensate occurs and the theory evolves into the
infrared in a phase without any spontaneous chiral-
symmetry breaking.

V. SU(3) GAUGE GROUP

It is also of interest to investigate properties of a (vecto-
rial, asymptotically free) SU(3) gauge theory with multiple
fermion representations. We recall that the representations
of SU(3) are labeled by a set of two Dynkin indices

ðp1; p2Þ, where pi are non-negative integers. We use the
following results from group theory. The dimension of the
representation is

dimðp1; p2Þ � dðp1; p2Þ

¼ ð1þ p1Þð1þ p2Þ
�
1þ p1 þ p2

2

�
: (5.1)

The quadratic Casimir invariant is

C2ðp1; p2Þ ¼ 1
3½p2

1 þ p2
2 þ p1p2 þ 3ðp1 þ p2Þ� (5.2)

and the trace invariant is

Tðp1; p2Þ ¼ dimðp1; p2ÞC2ðp1; p2Þ
8

: (5.3)

The asymptotic freedom condition (2.4) reads

X
R

NRTðRÞ< 33

4
; (5.4)

where, again, the sum over representations truncates be-
cause for sufficiently large values of p1 and/or p2,
Tðp1; p2Þ> 33=4. We find that it is satisfied by the follow-
ing nonsinglet representations labeled by their dimension
and values of ðp1; p2Þ:

Rðp1;p2Þ ¼ 3ð1;0Þ6ð2;0Þ; 8ð1;1Þ; 10ð3;0Þ: (5.5)

The asymptotic freedom condition (5.4) thus can be written
explicitly as the Diophantine inequality

1

2
N3 þ 5

2
N6 þ 3N8 þ 15

2
N10 <

33

4
: (5.6)

In the case where the theory has fermions in only one of
these representations R ¼ ðp1; p2Þ, the upper bounds on
the corresponding number NR are, in addition to N3 �
½33=2�‘ ¼ 16,

N6 �
�
33

10

�
‘
¼ 3; (5.7)

N8 �
�
11

4

�
‘
¼ 2; (5.8)

and

N10 �
�
11

10

�
‘
¼ 1: (5.9)

In each of these inequalities, it is understood that the NR’s
for other representations are zero.
For the case of multiple fermion representations, we find

that the asymptotic freedom condition is satisfied for the
following combinations of two fermion representations
(where NR’s that do not appear are zero):

1 � N3 � 11; N6 ¼ 1; (5.10)

1 � N3 � 6; N6 ¼ 2; (5.11)
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N3 ¼ 1; N6 ¼ 3; (5.12)

1 � N3 � 10; N8 ¼ 1; (5.13)

1 � N3 � 4; N8 ¼ 2; (5.14)

1 � N6 � 2; N8 ¼ 1; (5.15)

and

N3 ¼ 1; N10 ¼ 1: (5.16)

We also find the asymptotic freedom condition allows the
following combination of three fermion representations:

1 � N3 � 5; N6 ¼ 1; N8 ¼ 1: (5.17)

It is straightforward to calculate the values of b2 for each of
the various sets fNRg involving one or several different
fermion representations. As before, if b2 > 0, then � def-
initely increases past �R;cr for at least one of the fermion

representations R, and one analyzes the sequential conden-
sations accordingly. If b2 < 0, then one determines
whether the behavior is of type (iia) or (iib) in the classi-
fication discussed above, i.e. whether �IR is greater than
�R;cr for some R or �IR is less than the minimum �R;cr. All

of these types of behavior are exhibited by various sets fRg
among those allowed by asymptotic freedom.

VI. RELATIVE SCALES OF CONDENSATION

In an SUðNÞ gauge theory with NR fermions in a single
representation R and with a small, perturbatively calcu-
lable value of �ð�UVÞ at some high scale, �UV, provided
that NR is sufficiently small that there exists a scale � ¼
�R at which �ð�Þ increases beyond the critical value �R;cr

for condensation, then one can estimate this scale by
integrating the renormalization group equation, with the
leading-order result

�R ’ �UV exp

�
� 2�

b1ðRÞ ð�ð�UVÞ�1 � ��1
R;crÞ

�
; (6.1)

where we have indicated explicitly the dependence of the
beta function coefficient b1 ¼ ð1=3Þð11Nc � 4NRTðRÞÞ on
R. One can, of course, calculate �R to greater accuracy by
including higher-order terms in the beta function, as well
as estimates of important physics effects not included in
the perturbative beta function, such as instantons, but this
leading-order result will be sufficient for our discussion
here. From Eq. (6.1), it follows that if one compares an
SUðNÞ theory with fermions in the single representation Ri

with a different SUðNÞ theory with fermions in the single
representation Rj, the ratio of the condensation scales,

�Ri
=�Rj

, depends on all of the parameters �UV, NRi
, and

NRj
, as well as the ladder estimates for the respective

critical couplings, �Ri;cr and �Rj;cr. For fixed values of

�UV, �UVð�Þ, and NRi
, one may ask how �Ri

=�UV de-

pends on Ri. There are two countervailing effects that are
relevant here: (i) as the dimension dimðRiÞ of a represen-
tation Ri increases, the value of C2ðRiÞ also tends to
increase (although the dependence is necessarily mono-
tonic [36]), and hence the critical value of the coupling,
�Ri;cr, decreases; if this increase were the only effect, then

�Ri
=�UV would increase with increasing size of Ri.

However, there is an effect that goes in the opposite direc-
tion, namely, (ii) as the dimension dimðRiÞ of the repre-
sentation Ri increases, the value of TðRiÞ also increases,
thereby reducing b1ðRiÞ, and slowing down the increase of
� as� descends from�UV. Indeed, a sufficient increase in
the size of the representation Ri, for a fixed NRi

, can even

change the infrared behavior of the theory to preclude any
spontaneous chiral-symmetry breaking and condensate
formation. Thus, for a general Ri, one cannot draw a very
robust conclusion about how, for fixed values of �UV,
�ð�UVÞ, and NRi

, the condensation scale �Ri
depends on

the size of Ri.
In situations in which the theory has fermions in two or

more different representations and these form condensates
at different mass scales, it is of interest to calculate the
ratio(s) of these scales. In carrying out this analysis, one
acknowledges that, owing to the fact that the theory is
strongly coupled at these scales, it is only possible to obtain
rough estimates of such a ratio of condensation scales. Let
us consider the SUðNÞ theory with the specific set of Dirac
fermions fNRg ¼ fNR1

; NR2
g, say, where the Ri, i ¼ 1; 2,

are two different (nonsinglet) representations of SUðNÞ.
Without loss of generality, we label the representations
such that C2ðR1Þ>C2ðR2Þ. As always, we require that
this set fNRg have the property that the theory is asymptoti-
cally free, and here we also require that the set is such that
condensates of both types of fermions occur, since other-
wise there is no ratio to estimate. Again, we assume that at
the high reference scale �UV the coupling �ð�UVÞ is small
and the theory is perturbatively calculable. As � decreases
from �UV, the first condensation occurs when �ð�Þ ¼
�R1;cr, where �R1;cr was given in Eq. (2.9), from the solu-

tion of the Dyson-Schwinger equation in the approxima-
tion of one-gauge-boson exchange. Solving the
renormalization group equation to leading order, we
have, for the scale at which this condensation occurs, the
result

�1 ’ �UV exp

�
� 2�

b1
ð�ð�UVÞ�1 � ��1

R1;cr
Þ
�

’ �UV exp

�
� 2�

b1

�
�ð�UVÞ�1 � 3C2ðR1Þ

�

��
; (6.2)

where b1 is given by the appropriate special case of
Eq. (2.2) with the full set fNR1

; NR2
g of fermions. The

NR1
fermions in the condensates gain dynamical masses

of order �1 and are integrated out of the low-energy
effective field theory applicable for �<�1. The coupling
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�ð�Þ continues to grow, as governed by the beta function
of this low-energy effective theory, which differs from that
of the high-scale theory by the removal of theNR1

fermions

in the representation R1. Insofar as the coupling � is not
too large to prevent one from using the perturbative beta
function to track its evolution reliably for �<�1, one has

�ð�Þ�1 ¼ ��1ð�1Þ þ b1ðR2Þ
2�

ln

�
�1

�

�
; (6.3)

where b1ðR1Þ is the value of b1 from Eq. (2.2) for the low-
energy effective field theory with only NR2

fermions in R2

present. Then, given our assumptions about the set
fNR1

; NR2
g, at a lower scale �2, condensation occurs for

the fermions in the representation R2, when �ð�Þ ¼ �R2;cr.

Solving for the ratio of these two condensations scales in
this rough approximation, we obtain

�2

�1

’ exp

�
� 6

b1ðR2Þ ðC2ðR1Þ � C2ðR1ÞÞ
�
; (6.4)

where b1ðR2Þ ¼ ð1=3Þð11N � 4NR2
TðR2ÞÞ. As an ex-

ample, consider the SU(2) theory with R1 and R2 being
the I ¼ 1 and I ¼ 1=2 representations, respectively, and
numbers NR1

� N1 and NR2
� N1=21 for which there are

two condensations, as indicated in Table I. Then

�1=2

�1

’ exp

�
� 45

4ð11� N1=2Þ
�
: (6.5)

As N1=2 increases from 2 to 4, this ratio�1=2=�1 decreases

from about 0.3 to 0.2. These are comparable to the sort of
ratios of condensation scales that would characterize the
sequential breaking of reasonably ultraviolet-complete
extended-technicolor theories (e.g., [37,38]).

VII. EFFECTS OF NONZERO INTRINSIC MASSES
FOR FERMIONS

In the discussion up to this point we have assumed that
the fermions have zero intrinsic masses in the Lagrangian
describing the high-scale physics, and the only masses that
they acquire arise dynamically if they are involved in
condensates that form as the gauge interaction becomes
sufficiently strongly coupled in the infrared. This is a well-
motivated assumption if the vectorial gauge theory arises
as a low-energy effective field theory from an ultraviolet
completion which is a chiral gauge theory. This is natural if
the latter theory becomes strongly coupled, since it can
then form fermion condensates that self-break it down to
the vectorial subgroup symmetry. However, one may also
choose to focus on the vectorial gauge theory as an
ultraviolet-complete theory in itself. In a vectorial gauge
theory, an intrinsic (bare) mass term for a fermion c ,
Lm ¼ �m �c c , is allowed by the gauge invariance. [For
an SU(2) theory, with fermions written as left-handed
chiral fields, the gauge-invariant mass term can be ex-
pressed in a Majorana form, e.g., for the fundamental

representation, m0	ijc iT
L Cc j

L.] Hence, one may consider

a more general situation in which the fermions may have
such intrinsic masses in the high-scale Lagrangian.
Quantum chromodynamics (QCD) provides an example
of this, in which the quarks have hard (also called
current-quark) masses [39] that span a large range, from
mu of a few MeV to mt ’ 172 GeV. In particular, this
range extends both far below and far above, the scale
�QCD ’ 300 MeV where the QCD coupling �sð�Þ be-

comes O(1) and the theory confines and spontaneously
breaks chiral symmetry.
The main effect of intrinsic fermion masses here is the

same as in QCD; as the reference scale � decreases below
the value of such a mass of some fermion mf, the beta

function changes from one that includes this to one that
excludes this in the set of light, active fermions. For a
theory with a set fNRg such that b2 < 0 at a high scale,
and hence evolution toward an approximate or exact infra-
red fixed point, the reduction of one or more numbers NR

can reverse the sign of b2, making it positive and removing
this infrared fixed point. Indeed, in principle, a theory
could have sufficiently large numbers of fermions in vari-
ous representations fNRg that it is not asymptotically free at
a high energy scale above the fermion masses, but as this
scale decreases below some of these masses, the modified
beta function describing the gauge coupling evolution in
the resulting low-energy effective field theory is asymptoti-
cally free.

VIII. CONCLUSIONS

In this paper we have studied the evolution of an asymp-
totically free vectorial SUðNÞ gauge theory from high
scales to the infrared and the resultant phase structure in
the general case in which the theory contains fermions
transforming according to several different representations
of the gauge group. Using information from the beta func-
tion and results from an approximate analysis of the
Dyson-Schwinger equation for the fermion(s), we have
investigated examples that illustrate a wide range of pos-
sible behavior. In one type of model, the theory contains
sufficiently few fermions that the coupling � increases as
the reference scale decreases, but the 2-loop beta function
does not have an infrared zero away from the origin. In this
case, as � increases and exceeds a critical value for the
formation of a condensate of fermions with the largest
C2ðRÞ, this forms, the fermions gain dynamical masses,
and these fermions are then integrated out of the low-
energy effective field theory applicable below this highest
condensation scale. In the low-energy theory, the coupling
� continues to evolve, but according to a different beta
function, and there is then condensation of the fermions
with the next largest value of C2ðRÞ, and so forth. In
another type of model, the theory contains enough fermi-
ons in various representations that the beta function does
have an infrared zero. In this case, there are two main
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categories of behavior. In one type, the value of �IR is
larger than the critical value for condensation of the fer-
mions with the largest C2ðRÞ, so this condensation occurs
and is followed by sequential condensation(s) at lower
scales. In a second type, the value of �IR is sufficiently
small that there are no condensates formed, there is no
spontaneous chiral-symmetry breaking, and �IR is an exact
infrared fixed point of the renormalization group. We have
given explicit examples of each of these types of behavior

in the case of an SU(2) gauge theory. We have also briefly
discussed the effects of nonzero intrinsic fermion masses.
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