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In models with dynamical electroweak symmetry breaking, this breaking is normally communicated to

quarks and leptons by a set of vector bosons with masses generated via sequential breaking of a larger

gauge symmetry. In reasonably ultraviolet-complete theories of this type, the number of stages of breaking

of the larger gauge symmetry is usually equal to the observed number of quark and lepton generations,

Ngen ¼ 3. Here we investigate the general question of how the construction and properties of these models

depend on Ngen, regarded as a variable. We build and analyze models with illustrative values of Ngen

different from 3 (namely Ngen ¼ 1; 2; 4) that exhibit the necessary sequential symmetry breaking down to

a strongly coupled sector that dynamically breaks electroweak symmetry. Our results for variable Ngen

show that one can robustly obtain, for this latter sector, a theory with a gauge coupling that is large but

slowly running, controlled by an approximate infrared fixed point of the renormalization group. Owing to

this, we find that for all of the values of Ngen considered, standard-model fermions of the highest

generation have masses that can be comparable to the electroweak-symmetry-breaking scale. We also

study the interplay of multiple strongly coupled gauge symmetries in these models.
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I. INTRODUCTION

Electroweak symmetry breaking (EWSB) plays a crucial
role for observed particle interactions, but its origin re-
mains an outstanding mystery. There are actually several
aspects to this physics; in addition to a mechanism to
explain how the W and Z bosons acquire masses, there is
also the necessity to explain how the quarks and charged
leptons gain masses, why they come in three generations,
and why their masses exhibit the generational hierarchy
that they do. Explaining the very small neutrino masses is
yet another challenge. In an appealing class of theories
with dynamical electroweak symmetry breaking, this
breaking is produced by means of an asymptotically free,
vectorial, gauge interaction based on an exact gauge sym-
metry, commonly called technicolor (TC), that becomes
strongly coupled on the TeV scale, causing the formation
of bilinear technifermion condensates [1]. In these theo-
ries, the EWSB is communicated to the standard-model
(SM) fermions, which are technisinglets, via exchanges of
massive gauge bosons associated with a higher symmetry,
extended technicolor (ETC) [2]. Some early related works
on gauge symmetry breaking include [3]; some recent
reviews of TC/ETC theories include [4–7].

An important aspect of such theories is the pattern of
sequential extended technicolor symmetry breaking to the
residual technicolor symmetry, since this determines the
hierarchical generational mass spectrum of the standard-
model fermions. Early works tended to model ETC effects
via (nonrenormalizable) four-fermion operators connect-
ing SM fermions and technifermions, with some assumed
values for their coefficients. More complete studies took on
the task of deriving these four-fermion operators by analy-
ses of renormalizable, reasonably ultraviolet-complete,

ETC theories. In particular, detailed studies were carried
out for reasonably ultraviolet-complete ETC models con-
taining an SUð2ÞTC technicolor gauge group, with ETC
symmetry-breaking patterns giving rise to the observed
three generations [8] of standard-model fermions [9] and
to acceptably light neutrinos [4,10–14]. As is evident from
these models, there is a tight connection between the
number of standard-model fermion generations and the
sequential breaking of the ETC symmetry down to the
technicolor subgroup.
The studies of reasonably ultraviolet-complete TC/ETC

models naturally lead one to investigate a more general and
abstract topic, namely the connection between the proper-
ties of the enveloping ETC theory and the number of
standard-model fermion generations, Ngen, when Ngen is

taken as a variable rather than being fixed at its inferred
physical value of 3 [8]. We address this question here,
considering the hypothetical values Ngen ¼ 1, 2, and 4.

The purpose of our analysis is not to try to produce a
quasirealistic ETC model, but instead to investigate how
the value of Ngen influences the construction and properties

of the model. There are several interesting questions that
one can investigate in this context. In several previous
detailed studies of reasonably ultraviolet-complete quasir-
ealistic TC/ETC models [9–14], one relied upon an auxil-
iary strongly coupled gauge symmetry, called hypercolor
(HC), to produce the requisite sequential ETC symmetry
breaking. A natural question to ask is whether, for values of
Ngen different from 3, in particular, for the apparently

simpler cases Ngen ¼ 1 or Ngen ¼ 2, one might be able to

construct a TC/ETC theory in which all of the ETC sym-
metry breaking could be accomplished by strong self-
breaking of the ETC gauge symmetry, without the aid of
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this auxiliary strongly coupled HC gauge interaction. A
second and related topic for investigation is the evolution
of the ETC and HC interactions from high-energy scales
down to lower ones, through the various sequential break-
ings of the high-scale ETC symmetry. This entails an
examination of the effective field theories that are opera-
tive at the different scales, including their content of dy-
namical fermions and their plausible channels of
condensation. One aspect of this is to check that the
relevant strongly coupled gauge interactions do, indeed,
plausibly produce the requisite bilinear fermion conden-
sates for ETC symmetry breaking and, in the case of the
residual TC theory, the technifermion condensates that
cause dynamical electroweak symmetry breaking, rather
than evolving into the infrared in a chirally symmetric
manner, with unwanted non-Abelian Coulombic behavior.
Yet another interesting question concerns the effect of
changing the value of Ngen on the properties of the residual

technicolor theory, and whether this TC theory can easily
have a large but slowly running gauge coupling associated
with an approximate infrared fixed point. A profound
mystery pertaining to the observed quarks and leptons is
why all of them except for one—the top quark—have
masses that are considerably smaller than the electroweak
symmetry-breaking scale. Thus, a final question concerns
what generic predictions these models with other values of
Ngen make about the standard-model quarks and leptons.

Our illustrative models with variable Ngen � 3 provide a

useful theoretical laboratory in which to investigate these
questions.

Although our main focus here is on the general field-
theoretic question of the role of Ngen in TC/ETC model

building, we note that there is currently continuing interest
in the possibility that there really are four (or more) gen-
erations of SM fermions. Reviews include Refs. [15,16]
and, up to 2009, [17], and some recent papers include [18].
Most of this work has been done within the context of a
Higgs mechanism as the origin of electroweak symmetry
breaking. It has been noted, in particular, that if the fermi-
ons of the fourth generation are sufficiently heavy, i.e., the
corresponding Yukawa couplings are sufficiently large,
then the Higgs interactions become nonperturbative and
can produce fermion condensates. There are triviality
upper limits on Yukawa couplings obtained from fully
nonperturbative dynamical-fermion lattice simulations
[19]. Current experimental lower limits on the masses of
possible sequential fourth-generation quarks and leptons
are given in [16] but depend on various assumptions such
as the ordering of masses of the fourth-generation quarks
and leptons and the values of relevant mixing angles.

Before proceeding, some remarks on the current status
of (extended) technicolor models are in order. These theo-
ries are very ambitious, since they incorporate a dynamical
origin not just for electroweak symmetry breaking, but also
for fermion masses. This contrasts with the standard

model, which obtains electroweak symmetry breaking by
fiat, from the choice of the sign of the coefficient of the
quadratic term in the Higgs potential, and accommodates,
but does not explain, the observed quark and charged
lepton masses by appropriate choices of Yukawa cou-
plings. (Here and below, by the term ‘‘standard model,’’
we implicitly mean an appropriate extension of the original
standard model to account for nonzero neutrino masses.)
Moreover, theories with dynamical EWSB are subject to a
number of constraints from data on flavor-changing
neutral-current processes, splitting of the mt and mb

masses, precision electroweak measurements, limits on
pseudo–Nambu-Goldstone bosons, etc. A fully realistic
theory of this type would answer such long-standing ques-
tions as why mass ratios like me=m� have the values that

they do. Given such ambitious goals, it is perhaps not
surprising that no fully realistic TC/ETC model has yet
been constructed.
However, there have been a number of important advan-

ces in this area. It was shown that technicolor theories can
exhibit a large but slowly running (‘‘walking’’) coupling
[20], as a consequence of an approximate infrared fixed
point in the renormalization group equation for the TC
gauge coupling [21–23]. Recently, there has been impor-
tant progress in elucidating the properties of walking gauge
theories by means of lattice simulations. For the case
considered here, of (techni)fermions in the fundamental
representation, these recent lattice studies include the
works in Ref. [24]. There have also been studies of walking
gauge theories with (techni)fermions in higher-
dimensional representations (a few include [25,26]; see
also the review [7]). The walking behavior enables TC/
ETC theories to generate sufficiently large fermion masses
to match experiment with ETC mass scales that are large
enough to avoid excessive flavor-changing neutral-current
effects. Furthermore, this walking behavior may be able to
reduce technicolor contributions toW and Z propagators to
a level in agreement with experimental limits (e.g.,
[6,7,27–29] and references therein). One of the results
obtained from a detailed study of a reasonably ultraviolet
ETC theory was the demonstration [10,11] that models of
this type, in which the SM fermions transform as vectorial
representations of the ETC gauge group, did not have as
severe problems with flavor-changing neutral-current pro-
cesses as had previously been thought on the basis of less
ultraviolet-complete models. For example, one of the most
severe constraints had been considered to arise from K0 �
�K0 mixing. However, as was pointed out in [11], this would
proceed via the d�s in the K0 producing a virtual V1

2 ETC

gauge boson (where the numbers are the gauged genera-
tional indices), but the s �d in the final-state �K0 can only be
produced by a V2

1 . Hence, the K
0 � �K0 transition can only

proceed via a nondiagonal ETC gauge boson mixing,
V1
2 ! V2

1 . Having an ultraviolet-complete ETC theory,

one could calculate this mixing quantitatively; this was
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done in Refs. [10,11], and it was found to suppress the
K0 � �K0 transition strongly.

The central role that the number of standard-model
fermion generations, Ngen, plays in the structure of TC/

ETC theories may be contrasted with the rather different
role that it plays in the standard model, supersymmetric
extensions thereof, and (supersymmetric) grand unified
theories. In these three types of theories, at least when
viewed as pointlike field theories without being derived
from a string theory, one puts in the value of Ngen as copies

of the fermion representations. The number Ngen ¼ 3, as

such, does not play a direct role in the symmetry breaking
of the grand unified symmetry or in the determination of
the fermion masses. Besides the (extended) technicolor
approach, only very few other approaches have attempted
to predictNgen from intrinsic properties of the model rather

than inserting it by hand. One effort in this direction was
based on composite models of SM fermions [30]. A par-
ticularly elegant approach is provided by string theory, in
which Ngen is determined by the topology of the compac-

tification manifold or orbifold M (and resultant number of
zero modes of the Dirac operator), as given by j�ðMÞj=2,
where � is the Euler characteristic of M [31]. Here we
focus on the more bottom-up approach provided by ex-
tended technicolor.

II. GENERALTHEORETICAL FRAMEWORK AND
CALCULATIONAL METHODS

A. Gauge group

We consider a [(3þ 1)-dimensional] gauge theory with
the gauge group

G ¼ SUðNETCÞETC � SUðNHCÞHC �GSM; (2.1)

where

GSM ¼ SUð3Þc � SUð2ÞL � Uð1ÞY (2.2)

is the standard-model gauge group and SUðNETCÞETC is the
extended technicolor gauge group, which dynamically
breaks to the technicolor group SUðNTCÞTC in a series of
stages at successively lower and lower energy scales. In
order to communicate the electroweak symmetry breaking
to the standard-model fermions, the ETC group gauges the
generational indices and combines them with the techni-
color indices, so that

NETC ¼ Ngen þ NTC: (2.3)

As in Refs. [10,11], we take NTC ¼ 2 because this mini-
mizes technicolor corrections to W and Z propagators. As
we will demonstrate, it also allows us to obtain walking
behavior for the residual technicolor sector for each of the
values of Ngen that we study, generalizing the previous

success in obtaining walking behavior for Ngen ¼ 3. The

extended technicolor sector is arranged to be an asymptoti-
cally free chiral gauge theory. In earlier ETC models

[4,9,10] with Ngen ¼ 3, in order to obtain the desired

sequential breaking of the ETC gauge symmetry, one in-
cluded another strongly coupled gauge interaction, called
hypercolor (HC). The hypercolor gauge group was taken to
be SUð2ÞHC. There were several reasons for this choice,
including minimality and the fact that SU(2) has only
(pseudo)real representations, so that there are no gauge
anomalies; this gives one added flexibility in choosing the
representations of hypercolored fermions. As noted above,
one of the questions that we will examine here is whether
for the lower values of Ngen ¼ 1 or 2, it might be possible

to simplify the model by eliminating the hypercolor inter-
action, so that all of the ETC symmetry breaking is pro-
duced by ETC itself, as self-breaking. To anticipate our
results, and as indicated in Eq. (2.1), the models that we
have constructed with the requisite ETC breaking patterns
still rely on hypercolor. We take the gauge symmetry (2.1)
as our starting point but mention that there have also been
studies of ideas for deriving Ngen from a higher unification

of gauge symmetries in a TC/ETC context [32].

B. Fermion content

The fermion content of each of the models includes Ngen

generations of standard-model quarks and leptons, ar-
ranged together with technifermions with the same SM
quantum numbers in the following ETC multiplets:

QL: ðNETC; 1; 3; 2Þ1=3;L;
uR: ðNETC; 1; 3; 1Þ4=3;R;
dR: ðNETC; 1; 3; 1Þ�2=3;R;

(2.4)

and

LL: ðNETC; 1; 1; 2Þ�1;L;

eR: ðNETC; 1; 1; 1Þ�2;R:
(2.5)

Here the numbers in parentheses refer to the dimensions
of the representations under SUðNETCÞETC � SUð2ÞHC �
SUð3Þc � SUð2ÞL and the subscript gives the weak hyper-
charge, Y. We will also use the notation U, D, E, and n for
the technifermions with the indicated SM quantum num-
bers. Thus, for example, for the case Ngen ¼ 3,

eR � ðe1; e2; e3; e4; e5ÞR � ðe;�; �; E4; E5ÞR: (2.6)

Note that the set (2.5) does not contain right-handed,
electroweak-singlet neutrinos; these will arise as residual
components of SM-singlet fermions that transform accord-
ing to larger representations of the ETC gauge group.
Refs. [11,13] also investigated a different set of fermion
representations with QL: ð5; 1; 3; 2Þ1=3;L, uR: ð5; 1;
3; 1Þ4=3;R, dR: ð�5; 1; 3; 1Þ�2=3;R, LL: ð�5; 1; 1; 1Þ�1;L, and

eR: ð5; 1; 1; 1Þ�2;R, and containing a corresponding set of

SM-singlets that rendered the theory anomaly-free.
However, while that set of fermions produces a natural
splitting in mt and mb (and mc and ms) without excessive
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violation of custodial symmetry, it leads to flavor-changing
neutral-current effects [11,13,14] that are too large. Other
TC/ETC strategies for getting large splitting between mt

and mb include the use of more than one ETC group (e.g.,
[33] and references therein) and the use of new gauge
interaction(s) such as topcolor [34]. We do not pursue these
here, although it could be of interest in future work to study
such models with variable Ngen.

Masses for quarks and leptons arise from diagrams in
which these fermions emit virtual ETC gauge bosons,
making transitions to virtual technifermions, and then re-
absorb the ETC gauge bosons. Since the contributions of
the corresponding Feynman integrals to these masses de-
pend on the ETC gauge boson masses via their propaga-
tors, exchanges of the heaviest ETC gauge bosons, with
masses of order the highest scale of ETC symmetry break-
ing, produce the smallest fermion masses, namely those of
the first generation. For this reason, this highest ETC
breaking scale is denoted�1. In quasirealistic ETC models
with Ngen ¼ 3, exchanges of ETC gauge bosons with

masses of order the next lower ETC symmetry breaking
scale play a dominant role in determining the masses of
second-generation SM fermions, motivating the notation
�2 for this scale, and similarly for the lowest ETC scale,
�3, and the third generation. These exchanges give rise to
the diagonal elements of the respective 3� 3 mass matri-
ces of the quarks of charge 2=3 and �1=3 and the charged
leptons. Incorporating ETC gauge boson mixing is re-
quired to produce off-diagonal elements of these mass
matrices, as studied in [11,13]. The observed quark mixing
matrix arises from the differences in the mixings in the
charge 2=3 and �1=3 quark sectors. Accounting for the
very light neutrino masses requires an additional mecha-
nism in which ETC gauge boson mixing yields Dirac
neutrino mass terms connecting left- and right-handed
neutrinos, and Majorana masses for right-handed
(electroweak-singlet) neutrinos, leading to a low-scale see-
saw [10,12,13]. In quasirealistic Ngen ¼ 3 ETC models

that are reasonably ultraviolet-complete (at least up to
104 TeV), such as those studied in Ref. [10,11], one typi-
cally has �1 � 103, TeV, �2 � 102 TeV, and �3 �
fewTeV. These values are sufficient to produce the requi-
site fermion masses and also to satisfy constraints from
flavor-changing neutral-current processes.

C. Sequential ETC symmetry breaking

Generalizing the process of sequential ETC gauge sym-
metry breaking to the case of present interest, in which
Ngen is a variable rather than being fixed at the physical

value of 3, we require that the model have the property that
the ETC symmetry breaking occurs in Ngen sequential

stages,

SU ðNETCÞETC ! SUðNETC � 1ÞETC at�1; (2.7)

then, for Ngen � 2,

SU ðNETC � 1ÞETC ! SUðNETC � 2ÞETC at�2; (2.8)

and so forth, down to

SU ð3ÞETC ! SUð2ÞTC at�Ngen
; (2.9)

with

�1 >�2 > . . .>�Ngen
: (2.10)

For a given value of Ngen, it is thus necessary to choose the

fermion content so that the ETC theory undergoes this
requisite sequential gauge symmetry breaking. If one is
trying to construct a quasirealistic TC/ETC model, then
one has to do more than just obtaining the sequential ETC
symmetry breaking at the scales in Eq. (2.10); one also has
to ensure that the actual values of �j with j ¼ 1; 2; 3 yield

acceptable SM fermion masses and mixings that are in
reasonable agreement with experimental values. How-
ever, because of the strongly coupled nature of the physics,
it is difficult to calculate the scales �i precisely. To avoid
electroweak symmetry breaking at too high a scale, the
fermions that are responsible for this ETC symmetry
breaking are taken to SM-singlets. Because the full theory
is chiral, there are no fermion mass terms in the
Lagrangian. The chiral fermions transform according to a
set of representations fRig of the ETC and HC groups. We
denote the running gauge couplings of these groups at the
reference energy scale E ¼ � as gETC � gETCð�Þ and
gHC � gHCð�Þ, and we define �ETC ¼ g2ETC=ð4�Þ and

�HC ¼ g2HC=ð4�Þ. (The implicit �-dependence of these

couplings will generally be suppressed in the notation.)
The fermion content of the ETC and HC theories is chosen
to incorporate the property that these two interactions are
both asymptotically free. Hence, as the reference energy
scale � decreases from high values, �ETC and �HC in-
crease. As the scale � decreases through � ¼ �1, the HC
and ETC interactions produce bilinear fermion conden-
sates. Because of the chiral nature of the ETC fermion
representations, these condensates generically break the
ETC gauge symmetry. The fermions involved in the con-
densates gain dynamical masses of order �1 and the gauge
bosons corresponding to broken generators gain masses of
order gETC�1.
Following the principles of effective field theory, one

analyzes the evolution of the theory to lower energy scales
by integrating out these fields that gain masses at the scale
�1. One then proceeds to study the evolution of the low-
energy effective field theory at energy scales �<�1. For
Ngen ¼ 1, this is the only stage of ETC symmetry breaking,

while for Ngen � 2, one analyzes the evolution of each of

the Ngen effective field theories resulting from the corre-

sponding stages of symmetry breaking and resultant ac-
quisition of masses by the fermions involved in the
condensates and by the gauge bosons corresponding to
broken generators at each stage. The overarching ETC
theory considered here is designed so that at each level
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of symmetry breaking, the descendent ETC and HC inter-
actions remain asymptotically free, and hence the respec-
tive ETC and HC gauge couplings continue to grow,
triggering the formation of the next set of condensates
and the next stage of symmetry breaking [35].

D. Resultant technicolor theory

The result of the Ngen stages of ETC symmetry breaking

is a theory invariant under the gauge group

SU ð2ÞTC � SUð2ÞHC �GSM: (2.11)

Since the only HC-nonsinglet fermions are SM-singlets,
their condensates are automatically invariant under GSM.
In contrast, the model is designed so that the technifermion
condensates transform as operators with weak isospin T ¼
1=2 and weak hypercharge jYj ¼ 1, so these break the
electroweak group SUð2ÞL � Uð1ÞY to electromagnetic
Uð1Þem. On the basis of vacuum alignment arguments,
one infers that the technifermion condensates include

h �Fi;LF
i
Ri þ H:c:; (2.12)

where here F refers to U, D, and E and the sum over i is
over SUð2ÞTC gauge indices. For technineutrinos, the left-
and right-handed components in the models of
Refs. [10,11] and also in most of our present models trans-
form according to conjugate representations of SUð2ÞTC,
and hence the condensates for these are h�ij �ni;Lnj;Ri þ
H:c:, leading to the effective mass terms

��TC

X
i

�ij �ni;Lnj;R þ H:c: (2.13)

(In the specific models below, the nj;R will arise from

various ETC representations with different labels, such as
c j;R; we use the nj;R notation here to indicate the techni-

neutrino components.)
The W and Z bosons gain masses given by

m2
W ¼ g2F2

TCND

4
(2.14)

and

m2
Z ¼ ðg2 þ g02ÞF2

TCND

4
; (2.15)

where g and g0 are the SUð2ÞL and Uð1ÞY gauge couplings
and ND denotes the number of SUð2ÞTC technidoublets,

ND ¼ Nc þ 1 ¼ 4; (2.16)

and FTC is the TC analogue of f�. To fit experiment,
FTC ¼ 250 GeV.

E. Gauge coupling evolution and criteria for fermion
condensation

The evolution of the various gauge couplings is deter-
mined by the respective beta functions. For a given gauge

group G with gauge coupling gG, the beta function is � ¼
dgG=dt, where dt ¼ d ln�. For our analysis, the beta
functions for the ETC and HC groups will be of particular
interest, since these are the ones that are relevant for the
sequential breaking of the ETC symmetry down to techni-
color. We have

�ðgGÞ ¼ �gG
X1
‘¼1

bG;‘;

�
g2G
16�2

�
‘
; (2.17)

where bG;‘ arises at ‘-loop order in perturbation theory,

and we will focus on the first two coefficients, bG;1 and

bG;2, since they are the only scheme-independent ones.

Equivalently, with �G ¼ g2G=ð4�Þ,
d�G

dt
¼ ��2

G

2�

�
bG;1 þ bG;2�G

4�
þOð�2

GÞ
�
: (2.18)

Wewill apply these results forG equal to the ETC, TC, and
HC groups, respectively. To avoid cumbersome notation,
henceforth we will suppress the subscript G where no
confusion will result. Since the ETC and HC interactions
are asymptotically free, it follows that in each case b1 > 0.
If there are sufficiently many fermions that are nonsinglets
under a given interaction, b2 reverses sign from positive to
negative and, in this case, the perturbative beta function has
an infrared zero away from the origin given, to this order,
by

�IR ¼ � 4�b1
b2

: (2.19)

This perturbative IR zero is important as a natural origin
for walking technicolor. This will be especially important
for the one-family technicolor sector incorporated in our
models, since an analysis using the two-loop beta function
and the Dyson-Schwinger equation for the technifermion
propagator suggests that this theory exhibits an approxi-
mate infrared zero given by Eq. (2.19) and resultant walk-
ing behavior [21,22]. (We note that a beta function may
also exhibit a nonperturbative infrared zero away from the
origin [36–38].)
Let us, then, consider a possible channel for chiral

fermions, transforming as representations R1 and R2 under
a given gauge group, to form a bilinear condensate trans-
forming as Rcond:

R1 � R2 ! Rcond: (2.20)

An approximate measure of the attractiveness of this con-
densation channel is

�C2 ¼ C2ðR1Þ þ C2ðR2Þ � C2ðRcondÞ; (2.21)

where C2ðRÞ is the quadratic Casimir invariant for the
representation R [39]. A solution of the Dyson-
Schwinger equation for a fermion propagator with zero
input mass, in the approximation of single gauge boson
exchange, yields a solution with a nonzero, dynamically
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generated mass if the gauge coupling exceeds the critical
value �cr given by

3�C2�cr

2�
¼ 1: (2.22)

Corrections to this estimate have been studied in Ref. [40],
but it will be sufficient for our purposes here. Since the
dynamically generated mass multiplies the corresponding
bilinear operator for this fermion in the effective
Lagrangian, this is equivalent to the formation of a con-
densate for this operator. Some general formulas used in
our calculations of the beta functions for the models are
given in the appendix.

We comment on some other necessary conditions that an
acceptable ETCmodel should meet. First, a model needs to
satisfy the condition that the dynamical gauge symmetry
breaking occurs at the highest scale in such a manner as not
to break electroweak symmetry. This is not guaranteed
since, given that the SM-nonsinglet fermions (and techni-
fermions) transform as specified in Eqs. (2.4) and (2.5), the
theory contains the highly attractive possible condensation
channel

NETC � �NETC ! 1; with �C2 ¼ N2
ETC � 1

NETC

(2.23)

involving these SM-nonsinglet fermions. This condensa-
tion channel must be avoided in the ETC theory for a
number of reasons: (i) it would break electroweak symme-
try at too high a scale; (ii) it would not break the ETC
gauge symmetry; and hence (iii) it would not separate the
usual SM fermions from the technifermions, and could
produce a model in which all of these fermions are con-
fined by the ETC interaction. In quasirealistic models
(which have Ngen ¼ 3) such as those of Refs. [4,9–11],

one avoids the occurrence of the unwanted condensation in
the channel (2.23) by a hybrid mechanism which makes
use of the fact that the model contains SM-singlet chiral
fermions transforming as higher-dimensional representa-
tions of the ETC gauge group, and these can condense in a
first stage of ETC symmetry breaking. For the second and
third stages of ETC symmetry breaking, the models of
Refs. [4,9–11] rely on the effects of the auxiliary strongly
coupled hypercolor gauge interaction. Another comment
pertains to the sequential breaking of the ETC gauge
symmetry. The model should be constructed in a manner
that, although this symmetry is chiral, the residual TC
gauge symmetry is vectorial and unbroken, so that it con-
fines and produces the necessary bilinear technifermion
condensates. The one-family technicolor sectors in the
models that we consider here satisfy this condition.

III. A MODELWITH Ngen ¼ 1

A. Field content

We first study an ETC model that contains a single
generation of standard-model fermions, Ngen ¼ 1. From

Eq. (2.3), with the choice NTC ¼ 2, it follows that NETC ¼
3, so that the ETC gauge group is SUð3ÞETC. One constructs
the ETC model to have a single stage of gauge symmetry
breaking, viz.,

SU ð3ÞETC ! SUð2ÞTC: (3.1)

The fermions which are nonsinglets under the SM gauge
group are as given in Eqs. (2.4) and (2.5) with NETC ¼ 2.
We take the SM-singlet fermions to be

c i;R: ð�3; 1; 1; 1Þ0;R (3.2)

�i;�
R : ð3; 2; 1; 1Þ0;R (3.3)

and

!�;R: ð1; 2; 1; 1Þ0;R; (3.4)

where the numbers refer to the representations of
SUð3ÞETC � SUð2ÞHC � SUð3Þc � SUð2ÞL and the sub-
scripts denote the weak hypercharge, Y. This is an
anomaly-free chiral gauge theory. Here we define the
SUð3ÞETC index i ¼ 1 to refer to the single SM generation,
while the indices i ¼ 2; 3 are SUð2ÞTC indices. Note that
since the total number of chiral fermions transforming
according to the fundamental representation of SUð2ÞHC
is even (equal to four), the theory is free of a global
Witten anomaly associated with the homotopy group
�4ðSUð2ÞÞ ¼ Z2.

B. Condensation at �1 breaking SUð3ÞETC to SUð2ÞTC
We proceed to study the evolution of this theory from

high-energy scales. The SUð3ÞETC gauge interaction is
asymptotically free, and the first two coefficients of
the ETC beta function are b1 ¼ 5 and b2 ¼ �12. By
Eq. (2.19), the perturbative two-loop beta function for the
SUð3ÞETC theory thus has a zero at �ETC;IR ¼ 5�=3.
Obviously, this prediction has considerable theoretical un-
certainty because of the large value of the coupling.
The SUð2ÞHC sector is asymptotically free, with fermion

content consisting of four chiral fermions, or equivalently,
two Dirac fermions, transforming according as hypercolor
doublets. From Eqs. (A6) and (A7) with Nf;1=2 ¼
2Nf;D;1=2 ¼ 4, it follows that the first two coefficients of

the SUð2ÞHC beta function are b1 ¼ 6 and b2 ¼ 29. Since
b2 has the same sign as b1, this perturbative HC beta
function does not have a zero away from the origin. The
value Nf;D;1=2 ¼ 2 is well below the critical value, Nf;cr ’
8, where, according to the analysis of the Dyson-
Schwinger equation for the fermion propagator (discussed
further in the appendix), the theory would go over from one
with confinement and spontaneous chiral symmetry break-
ing (S�SB) to a chirally symmetric one, which is often
plausibly inferred to be a non-Abelian Coulomb phase.
This property is important for our use of the HC interaction
in this model, since it implies that as the energy scale �
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decreases, the HC interaction will produce condensates of
HC-nonsinglet fermions.

Since this theory has two asymptotically free gauge
interactions, SUð3ÞETC and SUð2ÞHC, the properties of the
theory depend on the relative sizes of the running cou-
plings �ETC and �HC at a given reference energy scale �.
In order to obtain the desired pattern of symmetry break-
ing, we choose the initial value of the HC coupling at a
high scale to be sufficiently large that the HC interaction
plays the dominant role in breaking SUð3ÞETC to SUð2ÞTC.
This strategy is used because the ETC interaction, by itself,
would favor condensation in the undesired channel (2.23),
viz., in this case 3� �3 ! 1, involving the left- and right-
handed SM-nonsinglet fermions and technifermions. This
unwanted condensation is avoided by making the HC
interaction strong enough to play the controlling role in
determining the formation of fermion condensates.

Thus, as the energy scale � decreases from high values
through a value that we shall denote as �1, the HC and
ETC gauge couplings grow sufficiently large that together
they produce a bilinear fermion condensate. Given the
dominant role of the HC interaction, the most attractive

channel involves the condensation of the �i;�
R . This channel

is

ð3; 2; 1; 1Þ0 � ð3; 2; 1; 1Þ0 ! ð�3; 1; 1; 1Þ0; (3.5)

with �C2 ¼ 4=3 for SUð3ÞETC and �C2 ¼ 3=2 for
SUð2ÞHC. The associated condensate is

h����ijk�j�T
R C�k�

R i; (3.6)

where �ijk and ��� are the totally antisymmetric tensor

densities for SUð3ÞETC and SUð2ÞHC, respectively.
(Condensation of the Hermitian conjugate operator is im-
plicitly understood to occur here and below.) As noted, the
HC attraction plays a crucial role here, since as far as the
ETC interaction itself is concerned, the channel (3.5) is less
attractive than the channel 3 ��3 ! 1, with �C2 ¼
2C2ðhÞ ¼ 8=3, involving the left and right chiral compo-
nents of the SM fermions, which are HC-singlets. The
condensation (3.5) breaks SUð3ÞETC to SUð2ÞTC and is
invariant under SUð2ÞHC. With no loss of generality, we
choose the uncontracted SUð3ÞETC index to be i ¼ 1, so
that, carrying out the sum over repeated SUð3ÞETC indices
in Eq. (3.6), one has, for the actual condensate,

2h����2;�T
R C�3�

R i: (3.7)

This condensate involves only SM-singlet fermions. With
this symmetry breaking, the i ¼ 1 components of the
various fermion multiplets with nonsinglet SM quantum
numbers split off from the other two components to be-
come the first generation of SM fermions, while the re-
maining components, with i ¼ 2; 3, are SUð2ÞTC
technifermions. The fermions �j�T

R with j ¼ 2; 3 involved
in the condensate gain dynamical masses of order �1, and

the five gauge bosons in the coset space SUð3ÞETC=SUð2ÞTC
gain masses of order gETC�1 ’ �1.

C. Condensation at �0
1 <�1

The effective theory operative at energy scales just
below �1 is invariant under the strongly coupled gauge
symmetries SUð2ÞTC � SUð2ÞHC. Given that the HC inter-
action plays a dominant role in the formation of conden-
sates, another one that forms in this theory at a scale that
we shall denote �0

1, slightly below �1, is driven by the HC
interaction alone, without the help of SUð2ÞTC. This in-

volves the remaining component of the original �i;�
R field,

namely �1;�
R , together with!�;R. These plausibly condense

via the channel

ð1; 2; 1; 1Þ0 � ð1; 2; 1; 1Þ0 ! ð1; 1; 1; 1Þ0; (3.8)

where here the first number in the parentheses refers to the
dimensionality of the representations of these fields under
SUð2ÞTC. The reason that this occurs at a scale somewhat
below �1 is that the channel (3.8) has the same measure of
attractiveness as regards the HC interaction as the most
attractive channel (3.5), namely �C2 ¼ 3=2, but does not
receive any additional attraction from the TC interaction.
The associated condensate is

h�1;�T
R C!�;Ri: (3.9)

This respects the same residual symmetry group as the
condensate (3.7). As a result of the formation of this

condensate, the �1;�
R and !�;R fermions gain dynamical

masses of order �0
1. In QCD the ratio of the lowest-lying

(JPC ¼ 0þþ) glueball mass to the QCD scale �QCD ’
250 MeV is about �g ’ 7. The present model (and the

models with higher values of Ngen) would also contain

SUð2ÞHC-singlet bound states of hypercolor gluons at
scales of order �g�1 and SUð2ÞTC-singlet bound states of

technigluons at scales of order �g�TC. The actual mass

eigenstates would be comprised of linear combinations of
purely gluonic and fermion-antifermion states.

D. Theory at energy scales below �0
1 and SM fermion

mass generation

The masses of quarks and changed leptons arise from the
one-loop diagram shown in Fig. 1. Here and below, it is
understood that higher-loop diagrams also make important
contributions because of the strong technicolor dynamics.
The resultant value of the fermion masses for thisNgen ¼ 1

case is

mf ’ �	
�3

TC

�2
1

; (3.10)

where � is a numerical factor of O(10) (computed in
Ref. [13]), and 	 is the renormalization factor, reflecting
the shift in the running mass between the scales �TC and
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�1:

	 ¼ exp

�Z �1

�TC

d�

�

ð�ð�ÞÞ

�
; (3.11)

where 
 is the anomalous dimension for the technifermion
bilinear and � refers to the TC coupling, as inherited from
the enveloping ETC theory. With Nf;cr ’ 8, as indicated by

the beta function and Dyson-Schwinger analysis [22], the
TC theory exhibits the slowest evolution of the coupling
between �TC and �0

1, where there are eight Dirac techni-
fermions active. Since the anomalous dimension for the
technifermion bilinear is generically 
 ’ Oð1Þ near the
approximate IR fixed point of the renormalization group
equation for the TC interaction, it follows that 	�
�0

1=�TC, so that

mf ’ �
�0

1�
2
TC

�2
1

for walking up to�0
1: (3.12)

In addition, owing to the presence of the approximate IR
fixed point, the TC theory presumably also exhibits at least
some walking behavior in the higher-lying interval be-
tween �0

1 and �1, where there are nine Dirac technifer-
mions active (including the c j;R with j ¼ 2; 3). To the

extent that the theory has walking behavior all the way
up to�1 with an associated large anomalous dimension for
the technifermion bilinear, the renormalization factor
would be larger, viz., 	��1=�TC, and hence

mf ’ �
�2

TC

�1

for walking up to�1: (3.13)

In this case, with ��Oð10Þ, the model has the interesting
feature that the fermion masses are comparable to the
electroweak-symmetry-breaking scale, given by �TC.
Even in the case where the TC theory exhibits walking
only up to �0

1, the fermion masses are considerably larger
than the value ��3

TC=�
2
1 that they would have had in the

absence of walking, since �0
1=�TC > 1. The ratio �0

1=�1

depends on the relative strength of the HC and ETC
interactions, as measured by the ratio of the running cou-
plings squared, �HC=�ETC. The larger this ratio is, the
smaller is the ratio �0

1=�1. We find that the model does
not have enough structure to lead to a low-scale seesaw

mechanism for small, nonzero neutrino masses, as pre-
sented in Ref. [10] for a Ngen ¼ 3 model. Further ingre-

dients would be necessary to produce such a seesaw.
At first sight, this model would appear to predict that for

the fermions of the single generation, the masses of the
charge 2=3 quark, the charge�1=3 quark, and the charged
lepton are all equal. However, here the walking behavior of
the technicolor theory can play yet another important role.
Although the SM gauge interactions are small at the scale
�TC where the electroweak symmetry breaking occurs,
such small perturbations would have a magnified effect
on fermion masses in a theory with walking behavior. In
turn, this has the potential to explain the relative sizes of
the up-type, down-type, and charged lepton masses. The
fact that the SUð3Þc interaction contributes an attractive
force that aids in the formation of the bilinear techniquark
condensates h �ULURi þ H:c: and h �DLDRi þ H:c: would
mean that these condensates would naturally form at a
somewhat higher scale than the technilepton condensate,
and hence the dynamically generated mass for the techni-
quarks would be somewhat larger than that for the techni-
leptons. This would provide a natural explanation for why
the quarks of a given generation (a single generation here
and multiple generations in other cases) have larger masses
than the charged leptons. Moreover, the Uð1ÞY interaction
is attractive for the h �ULURi þ H:c: condensate with
Y �UL

YUR
¼ �4=9, but repulsive for the h �DLDRi þ H:c:

condensate, with Y �DL
YDR

¼ 2=9, so that the former con-

densate might be somewhat larger than the latter, and
similarly for the corresponding dynamical techniquark
masses. In this model, this would imply that the charge
2=3 quark is heavier than the charge �1=3 quark. (For
leptons, the product Y �LL

YeR ¼ �2 is also attractive.)

However, one must remark that in a quasirealistic model,
the splitting of the dynamical masses of the charge 2=3 and
charge �1=3 techniquarks could produce an excessively
large violation of custodial symmetry. The explanation for
the fact that mu < md for the first generation requires
consideration of off-diagonal elements in the up- and
down-type quark mass matrices.

E. A variant of the Ngen ¼ 1 model

It is useful to discuss a variant of this model which
provides an illustration of another problem of which one
must be aware in TC/ETC model building. This is the
possibility that even if there are sufficiently few technifer-
mions and their representations are sufficiently small that
the technicolor interaction is asymptotically free, it may
still happen that the technicolor sector evolves into the
infrared with non-Abelian Coulombic behavior rather
than confinement and spontaneous chiral symmetry break-
ing. If the technicolor sector were to exhibit this behavior,
it would render the model untenable, since then the only
breaking of electroweak symmetry would be via QCD, at
much too low a scale [1,41].

FIG. 1. Graph generating a SM fermion mass term, mfi
�fi;Lf

j
R,

diagonal in generational indices i. Here f stands for a SM quark
or charged lepton, F for the corresponding technifermion, and �
for an SUð2ÞTC index.
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Thus, let us consider a modification of the Ngen ¼ 1

model in which we change the SM-singlet fermion content
so that there is a right-handed SM-singlet, HC-singlet
fermion that transforms as a 3 rather than a �3 of
SUð3ÞETC; consequently, after the breaking of SUð3ÞETC
to SUð2ÞTC, it can produce a mass term for the neutrino
without any ETC gauge boson mixing. To ensure that there
is no SUð3ÞETC gauge anomaly, one must also modify the
other SM-singlet, ETC-nonsinglet fermion representations.
An example of such a model has the SM-singlet fermion
sector

c i
p;R: 3ð3; 1; 1; 1Þ0;R (3.14)

�i;�;R: ð�3; 2; 1; 1Þ0;R (3.15)

and

!�
R: ð1; 2; 1; 1Þ0;R; (3.16)

where p ¼ 1; 2; 3 is a copy index for the c i
p;R fields. The

ETC symmetry breaking would again occur in the same
manner as before, with obvious switches of lower and
upper indices, via the formation of the condensates

h�1jk����T
j;�;RC�k;�;Ri ¼ 2h����T

2;�;RC�3;�;Ri; (3.17)

forming at the scale �1 and

h�T
1;�;RC!

�
Ri; (3.18)

forming at the somewhat lower scale �0
1. The fermions

involved in these condensates (which include all of the HC-
nonsinglet fermions) gain dynamical masses of order the
respective scales �1 and �0

1 and are integrated out in the
low-energy theory that is operative below �0

1.
The fermion representations of this model have been

chosen so as to allow technineutrino mass terms of the
form

��TC

X
i

�ni;Lc
i
p;R þ H:c:; (3.19)

where the sum on i is over the TC indices, and resultant
Dirac neutrino mass terms

�mD

X
i

��Lc
1
p;R þ H:c:; (3.20)

which could form without ETC gauge boson mixing. Of
course, this unsuppressed Dirac neutrino mass term itself
would be undesired without an appropriate seesaw to yield
appropriately small observable neutrino masses. What we
focus on here is the possible problem with this model
resulting from the fact that the SUð2ÞTC sector has 18 chiral
fermions, or equivalently, 9 Dirac fermions. This is slightly
greater than the estimate Nf;cr ¼ 8 for the critical number

of Dirac fermions beyond which an SU(2) gauge theory
would evolve, in the infrared, in a non-Abelian Coulombic
manner, such that the coupling would approach an infrared

fixed point and never get large enough to produce sponta-
neous chiral symmetry breaking. Although there is a theo-
retical uncertainty of order �Nf;cr � 1 in this estimate, this

is a concern. In the present context, if, indeed, as the
SUð2ÞTC theory evolved to scales below �0

1, the coupling

�TC did not increase sufficiently to produce the bilinear
technifermion condensates that are necessary for electro-
weak symmetry breaking, then the theory would not be
acceptable even as a toy model of dynamical EWSB. The
lesson from this model is that in constructing TC/ETC
models, there is a rather tight constraint on the number of
technifermions that should be present; this number should
be large enough so to yield an approximate infrared fixed
point in the TC beta function at a value �TC ¼ �IR that is
slightly larger than the critical value �cr for condensate
formation, thereby giving rise to walking behavior.
However, this number of technifermions must not be so
large as to push �IR below �cr, which would cause the
technicolor theory to evolve in the infrared as a non-
Abelian Coulomb phase.

IV. AN ILLUSTRATIVE Ngen ¼ 1 MODELWITH
ONLY ETC SYMMETRIES

In this section we deviate from the use of the high-scale
gauge group (2.1) and explore one of the questions posed at
the beginning of the paper, namely whether, for a different
value of Ngen than the physical value, one might be able to

construct a TC/ETC model that could be simpler, in that
the ETC symmetry breaking would involve only the ETC
interaction itself and not have to make use of the additional
strongly coupled hypercolor interaction. It is natural to
investigate this question for the case of Ngen ¼ 1, since

for this case one has what would appear to be an easier task
to accomplish, namely only one rather than three stages of
ETC symmetry breaking. However, there is a countervail-
ing effect: because the resultant ETC gauge group is just
SUð3ÞETC, fermion representations that are nontrivial, dis-
tinct representations for higher SUðNÞ groups degenerate
here. This makes it more difficult to use the ETC interac-
tion by itself to obtain condensates in channels that are
more attractive than the channel in Eq. (2.23). Recall that
one wants condensation in the channel (2.23) only at the
lowest, technicolor, stage, not at higher ETC scales, since,
among other things, such a condensate would break elec-
troweak symmetry at too high a scale. In the following we
will use interchangeably the notation ½k�N for the rank-k
antisymmetric representation of SUðNÞ and the Young
tableau notation. For example, for Ngen � 2 and hence,

by Eq. (2.3), NETC � 4, the ½2�NETC
representation is a

nontrivial distinct representation of the ETC gauge group,
but for Ngen ¼ 1, it is equivalent to the conjugate funda-

mental representation, ½�1�3. In general, for an SUðNÞ group
with even N ¼ 2k, the ½k�N representation is self-
conjugate. Hence, for example, for Ngen ¼ 2, whence
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NETC ¼ 4, a chiral fermion c ij
R that transforms as the

2 4 representation can condense as h�ijk‘c ijT
R Cc k‘

R i.
For our illustrative Ngen ¼ 1 model, we thus attempt to

use, as the high-scale gauge group, SUð3ÞETC �GSM with-
out hypercolor. We choose the SM-nonsinglet fermion
content as given in Eqs. (2.4) and (2.5) (with the SUð2ÞHC
entries implicitly removed) and the following SM-singlet
fermions:

�i;p;R: 6ð�3; 1; 1; 1Þ0 (4.1)

c ij: ð6; 1; 1; 1Þ0: (4.2)

That is, we use a fermion c ij
R transforming as the sym-

metric rank-2 tensor representation of SUð3ÞETC, of dimen-
sion 6, with six copies of the �3 representation of SUð3ÞETC,
indexed by p 2 f1; ::; 6g. The reason for the six copies is to
help cancel the anomaly of the symmetric tensor, which is
N þ 4 times that of the fundamental for an SUðNÞ theory.

The first two coefficients of the beta function for this
SUð3ÞETC theory are b1 ¼ 7=3 and b2 ¼ �218=3. This
two-loop perturbative beta function has an infrared zero at

�ETC;IR ¼ 14�

109
’ 0:40: (4.3)

Thus, as the energy scale decreases from large values,�ETC

increases toward this value. The most attractive channel for
the formation of a bilinear fermion condensate is

ð�3; 1; 1; 1Þ0 � ð6; 1; 1; 1Þ0 ! ð3; 1; 1; 1Þ0; (4.4)

with �C2 ¼ 10=3. If there were condensation in this chan-
nel, it would involve the condensate

hc ijT
R C�j;p;Ri; (4.5)

where, without loss of generality, we could pick i ¼ 1 and
p ¼ 1. However, from Eq. (2.22), the minimum value of
�ETC for condensate formation in this channel is

�cr ¼ �

5
’ 0:63: (4.6)

Even taking account of the possible contributions of
higher-order terms in the beta function and the theoretical
uncertainties in the analysis of the Dyson-Schwinger equa-
tion, the value of �ETC;IR in Eq. (4.3) is thus well below the

value needed to trigger the condensation in this channel.
We conclude that as the SUð3ÞETC theory evolves from

high-energy scales to lower ones, it would probably not
produce any condensates and instead would probably
maintain explicit chiral symmetry. The infrared zero in
the SUð3ÞETC beta function would thus be an exact infrared
fixed point. Of course, the failure of the theory to break
chiral symmetry with condensate formation would prevent
the splitting off of SM-nonsinglet, TC-singlet components
of quarks and leptons from the SUð3ÞETC multiplets in
Eqs. (2.4) and (2.5) and, related to this, would prevent
the breaking of the SUð3ÞETC symmetry to an SUð2ÞTC
symmetry. The absence of any technifermion condensates

breaking electroweak symmetry at the usual scale of
roughly 250 GeV would exclude this theory as a useful
toy model for dynamical electroweak symmetry breaking.
Although we do not try to present a no-go theorem pre-
cluding the construction of a TC/ETC theory with Ngen SM

fermion generations that could accomplish all of the stages
of ETC symmetry breaking without the use of the auxiliary
strongly coupled hypercolor gauge symmetry, this example
shows the type of difficulties that such a construction can
encounter, even for the simple case of Ngen ¼ 1.

V. A MODELWITH Ngen ¼ 2

A. Field content

Returning to the framework of Eq. (2.1), we next con-
sider the case of two SM fermion generations, Ngen ¼ 2.

Substituting this in Eq. (2.3) with NTC ¼ 2, we have
GETC ¼ SUð4ÞETC. In order to produce the necessary hier-
archical structure for the two generations of SM fermion
masses, we construct the model so that it undergoes a two-
stage sequential breaking of the ETC symmetry, namely

SU ð4ÞETC ! SUð3ÞETC at�1 (5.1)

followed by

SU ð3ÞETC ! SUð2ÞTC at�2; (5.2)

with�1 >�2. As before, in order to obtain this symmetry-
breaking pattern, we use an auxiliary SUð2ÞHC gauge in-
teraction. The SUð4ÞETC gauge interaction and each of the
descendants, SUð3ÞETC and SUð2ÞTC, as well as the
SUð2ÞHC, are asymptotically free. A choice of fermion
content that can achieve the necessary two-stage breaking
of the SUð4ÞETC symmetry includes the SM-nonsinglet
fermions given in Eqs. (2.4) and (2.5) with NETC ¼ 4,
together with the following SM-singlet fermion fields:

c i;R: ð�4; 1; 1; 1Þ0;R (5.3)

�i;�
R : ð4; 2; 1; 1Þ0;R (5.4)

and

�ij;�R : ð6; 2; 1; 1Þ0;R; (5.5)

where the numbers refer to the representations of
SUð4ÞETC � SUð2ÞHC � SUð3Þc � SUð2ÞL and the sub-
scripts denote the weak hypercharge. The six-dimensional
representation of SU(4) is the antisymmetric rank-2 tensor

representation, 42 , which is self-conjugate (and

hence has zero gauge anomaly).
The first two coefficients of the SUð4ÞETC beta function

are b1 ¼ 22=3 and b2 ¼ �109=12. Nominally, Eq. (2.19)
would imply that the perturbative two-loop beta function
for the SUð4ÞETC theory has an infrared zero at �ETC;IR ¼
352�=109 ’ 10. However, this is so large that the pertur-
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bative beta function may not be reliable. Fortunately, the
only result that we need concerning this beta function is
reliable, namely that the ETC coupling grows as the scale
� decreases. As will be discussed further below, the HC
interaction will play the dominant role in condensate for-
mation. The SUð2ÞHC sector has 10 chiral fermions, or
equivalently, 5 Dirac fermions, transforming according to
the fundamental representation. Using Eqs. (A6) and (A7)
with Nf;1=2 ¼ 2Nf;D;1=2 ¼ 10, we have, for the first two

coefficients of the SUð2ÞHC beta function, b1 ¼ 4 and b2 ¼
9=2. This perturbative HC beta function does not have a
zero away from the origin. Since the number Nf;D;1=2 ¼ 5

is substantially less than the estimate [22] for the critical
valueNf;cr ’ 8, we can be confident that the HC interaction

does, indeed, confine and break chiral symmetry, as re-
quired for the ETC symmetry breaking.

B. Condensation at �1 breaking SUð4ÞETC to SUð3ÞETC
To satisfy the requirement that the most attractive chan-

nels, in which the fermion condensation occurs at the high
scales above the EWSB scale, are not those involving SM-
nonsinglet, ETC-nonsinglet fermions, we again arrange the
initial conditions specifying the strengths of the gauge
couplings in the ultraviolet so that the HC gauge interac-
tion is sufficiently stronger than the ETC interaction that
the most attractive channels are those involving HC-
nonsinglet (SM-singlet) fermions. Given that one arranges
the model in this way, the most attractive channel for
condensation is

ð4; 2; 1; 1Þ0 � ð6; 2; 1; 1Þ0 ! ð�4; 1; 1; 1Þ0; (5.6)

with �C2 ¼ C2ð½2�4Þ ¼ 5=2 for SUð4ÞETC and�C2 ¼ 3=2
for SUð2ÞHC. The associated condensate is

h�ijk‘����j;�T
R C�k‘;�R i; (5.7)

where �ijk‘ is the totally antisymmetric tensor density for

SUð4ÞETC. This breaks SUð4ÞETC to SUð3ÞETC and is invari-
ant under SUð2ÞHC. With no loss of generality, we may
define the uncontracted SUð4ÞETC index in Eq. (5.7) to be
i ¼ 1, so that this condensate is proportional to

h���ð�2;�T
R C�34;�R � �3;�T

R C�24;�R þ �4;�T
R C�23;�R Þi: (5.8)

The six �j;�
R with j ¼ 2; 3; 4, � ¼ 1; 2 and the six �k‘;�R

with k‘ ¼ 34; 24; 23 and � ¼ 1; 2 involved in this conden-
sate gain dynamical masses of order�1, and the seven ETC
gauge bosons in the coset SUð4ÞETC=SUð3ÞETC gain dy-
namical masses of order gETC�1. Note that the measure of
attractiveness for the channel in Eq. (5.6) with respect to
the SUð4ÞETC interaction, �C2 ¼ 5=2, is less than the
�C2 ¼ 15=4 for the undesired condensation 4� �4 involv-
ing the left- and right-handed chiral components of the HC-
singlet ETC multiplets containing the SM quarks and
leptons (together with the respective techniquarks and
technileptons). The model is constructed so that the HC

gauge coupling at the scale �1 is sufficiently large that it
overwhelms this difference in �C2 values and makes
Eq. (5.6) the most attractive channel.

C. Theory for �2 � E <�1 and condensation at �2

breaking SUð3ÞETC to SUð2ÞTC
In the low-energy effective field theory operative at

energy scales � directly below �1, the light fermions
that are nonsinglets under the strongly coupled SUð3ÞETC
and/or SUð2ÞHC gauge groups include the SM nonsinglets

in Eqs. (2.4) and (2.5) and the SM singlets (i) �1j;�R ,

(ii) �1;�
R , and (iii) and c j;R with j ¼ 2; 3; 4. These trans-

form, respectively, as (i) (3,2), (ii) (1,2), and (iii) ð�3; 1Þ
representations of SUð3ÞETC � SUð2ÞHC. As the theory
evolves to lower energy scales �, the ETC and HC gauge
couplings continue to grow, and as � decreases through a
scale that we denote�2, the dominant SUð2ÞHC interaction,
in conjunction with the additional strong SUð3ÞETC inter-
action, produces a condensate in the most attractive chan-
nel, which is

ð3; 2; 1; 1Þ0 � ð3; 2; 1; 1Þ0 ! ð�3; 1; 1; 1Þ0: (5.9)

This has �C2 ¼ 4=3 for SUð3ÞETC and �C2 ¼ 3=2 for
SUð2ÞHC. The condensation in this channel breaks
SUð3ÞETC to SUð2ÞTC and is invariant under SUð2ÞHC.
The associated condensate is

h�ijk����1j;�TR C�1k;�R i; (5.10)

where i; j; k 2 f2; 3; 4g. With no loss of generality, we may
choose i ¼ 2 as the breaking direction in SUð3ÞETC, so that
this condensate takes the form

2h����13;�TR C�14;�R i: (5.11)

The four chiral fermions �13;�R and �14;�R with � ¼ 1; 2 gain
masses of order �2, and the five ETC gauge bosons in the
coset SUð3ÞETC=SUð2ÞTC gain masses of order gETC�2.

D. Condensation at �0
2 <�2

The low-energy effective field theory operative just
below �2 is thus invariant under the direct product group

SU ð2ÞTC � SUð2ÞHC �GSM: (5.12)

The massless SM-singlet fermions that are nonsinglets

under SUð2ÞTC or SUð2ÞHC are �1;�
R , �12;�R , and c i;R with

i ¼ 3; 4. The first two of these transform as (1,2) under
SUð2ÞTC � SUð2ÞHC and the last as ð�2; 1Þ � ð2; 1Þ. Given
that �HC >�TC, the most attractive channel is ð1; 2Þ �
ð1; 2Þ ! ð1; 1Þ, with condensate

h����1;�T
R C�12;�R i; (5.13)

with�C2 ¼ 3=2. The condensate is invariant under the full
group (5.12). It forms at a scale �0

2 <�2, since it has the
same measure of attractiveness, �C2, with respect to
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SUð2ÞHC as the channel (5.9), but is driven by hypercolor
alone, while the channel (5.9) involves attraction due to

both SUð2ÞHC and SUð3ÞETC. The four chiral fermions �1;�
R

and �12;�R get dynamical masses of order �0
2.

E. Theory at energy scales below �0
2

In the low-energy theory below �0
2, all of the HC-

nonsinglet fermions have gained dynamical masses and
have consequently been integrated out. The fermions in
Eqs. (2.4) and (2.5) together with c i;R with i ¼ 3; 4 com-

prise 16 chiral doublets, or equivalently, 8 Dirac doublets,
of SUð2ÞTC. As noted before, this TC theory plausibly
exhibits walking behavior. The Dirac mass terms for the
technineutrinos are of the form (2.13). The c i;R with i ¼
1; 2 are TC-singlets that play the role of electroweak-
singlet neutrinos.

Apart from mixing effects, the SM fermion masses of
generation i are generically of the form

mfi ’ �	i

�3
TC

�2
i

; i ¼ 1; 2; (5.14)

where the renormalization factor 	i is given by

	i ¼ exp

�Z �i

�TC

d�

�

ð�ð�ÞÞ

�
: (5.15)

Here, as before, � refers to the TC coupling as inherited
from the enveloping ETC theory. (The generational index i
is written as an upper, rather than lower, index on fi

because the quarks and charged leptons arise from funda-
mental, rather than conjugate fundamental, representations
of the ETC group.) Assuming that the theory exhibits
walking up to �0

2, this would be roughly of order

	i � �0
2

�TC

(5.16)

for both i ¼ 1 and i ¼ 2. It follows that, again neglecting
mixing,

mf1 ’ �
�0

2�
2
TC

�2
1

(5.17)

and

mf2 ’ �
�0

2�
2
TC

�2
2

; (5.18)

so that

mf1

mf2
¼

�
�2

�1

�
2
: (5.19)

Thus, this model succeeds in producing a generational
hierarchy in the standard-model fermion masses. Fur-
thermore, because of the expected walking behavior of
the technicolor sector and the resultant enhancement of
fermion masses via the factor (5.16), the fermions of the

higher generation, i ¼ 2, could have masses that are not
too much smaller than the electroweak-symmetry-breaking
scale, �TC.
The various condensates of ETC-nonsinglet fermions

give rise to corrections to fermion propagators that are
nondiagonal in ETC indices. In turn, via vacuum polariza-
tion diagrams, these produce mixings of different ETC
gauge bosons. In Figs. 2 and 3 we show graphs contributing
to the ETC gauge boson mixing V3

1 $ V1
4 , or equivalently,

V4
1 $ V1

3 . However, we find that the ETC gauge boson

mixing is not sufficient to give rise to the neutrino seesaw
mechanism of Ref. [10], so one would have to add further
ingredients to the model in order to obtain appropriately
small nonzero neutrino masses.

VI. A MODELWITH Ngen ¼ 3

A. Field content

Here, for reference, we give a brief review of an Ngen ¼
3 model, which is one of the models studied in
Refs. [4,10,11]. With Ngen ¼ 3 and NTC ¼ 2, one uses

SUð5ÞETC for the ETC group. The SM-nonsinglet fermions
and technifermions are given in Eqs. (2.4) and (2.5). The
SM-singlet fermions are

c ij;R: ð10; 1; 1; 1Þ0;R (6.1)

�ij;�R : ð10; 2; 1; 1Þ0;R (6.2)

and

!�;p;R: 2ð1; 2; 1; 1Þ0;R; (6.3)

FIG. 3. One-loop graph contributing to the ETC gauge boson
mixing V4

1 $ V1
3 (equivalently, V3

1 $ V1
4 ) in the Ngen ¼ 2

model.

FIG. 2. One-loop graph contributing to the ETC gauge boson
mixing V3

1 $ V1
4 (equivalently, V4

1 $ V1
3 ) in the Ngen ¼ 2

model.
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where the first number in parentheses is the dimension of
the representation of SUð5ÞETC and the others are the same
as defined before. In Eq. (6.3), p ¼ 1; 2 is the copy number
for the !�;p;R fields. The ½2�5 is the rank-2 antisymmetric

representation of SU(5), with dimension 10. One includes
an even number of copies of the !�;p;R field in order to

avoid a global anomaly in the SUð2ÞHC theory, and the
choice of two copies is made to produce desired mixings of
ETC gauge bosons and resultant off-diagonal elements of
fermion mass matrices.

The SUð5ÞETC beta function of this theory has leading
coefficients b1 ¼ 31=3 and b2 ¼ 224=15. Thus, the cou-
pling �ETC increases to large values as the energy scale
decreases, triggering the formation of condensates. The
SUð2ÞHC sector has 12 chiral fermions, or equivalently, 6
Dirac fermions, transforming according to the fundamental
representation. From Eqs. (A6) and (A7) with Nf;1=2 ¼
2Nf;D;1=2 ¼ 12, it follows that the first 2 coefficients of

the SUð2ÞHC beta function are b1 ¼ 10=3 and b2 ¼
�11=3. The number Nf;D;1=2 ¼ 6 is less than the estimated

critical value of Dirac fermions, Nf;cr ’ 8, leading to the

inference that the HC interaction confines and produces
chiral condensates.

B. Condensation at �1 breaking SUð5ÞETC to SUð5ÞETC
In the context of variable Ngen, one can comment on

some features that are present in this Ngen ¼ 3 case that

were not present for the lower values of Ngen. Notably, for

SU(5), fermions in the conjugate rank-2 antisymmetric 10
representation can play an important role in self-breaking
of the ETC symmetry. In contrast, for SU(3) the rank-2
antisymmetric representation is equivalent to a conjugate
fundamental representation, while for SU(4) it is self-

conjugate. For SU(5), the 10 can form a condensate with
itself via the channel

ð10; 1; 1; 1Þ0 � ð10; 1; 1; 1Þ0 ! ð5; 1; 1; 1Þ0: (6.4)

The attractiveness of this channel, given by �C2 ¼ 24=5,
is the same as for the undesired channel condensation
(2.23). One can invoke vacuum alignment arguments to
infer that the initial condensation will occur in the channel
(6.4) rather than (2.23). As was noted in Ref. [10], the
channel (6.4) is actually not the channel with the largest

value of �C2; the latter is ð10; 1; 1; 1Þ0 � ð10; 2; 1; 1Þ0 !
ð1; 2; 1; 1Þ0, with �C2 ¼ 36=5, which would leave
SUð5ÞETC invariant and would break SUð2ÞHC. One must
thus invoke a vacuum alignment and generalized most
attractive channel argument to infer that the latter conden-
sation does not occur, since it would break the strongly
coupled HC interaction [10]. The formation of a conden-
sate in the channel (6.4) breaks SUð5ÞETC to SUð4ÞETC.
Hence, in this Ngen ¼ 3 case, in contrast to the situation

for the Ngen ¼ 1; 2 models analyzed above in Secs. III and

V, one can use the ETC interaction for the first stage of

ETC gauge symmetry breaking. Thus, here, the SUð5ÞETC
symmetry self-breaks, while in the Ngen ¼ 1; 2models, the

breaking of ETC is caused primarily by the HC interaction.
The scale at which the condensate (6.4) forms is denoted as
�1. Choosing, as before, the direction of breaking to be i ¼
1, one obtains the condensate h�1jk‘nc T

jk;RCc ‘n;Ri, or

equivalently,

hc T
23;RCc 45;R � c T

24;RCc 35;R þ c T
25;RCc 34;Ri: (6.5)

The six components c jk;R involved in this condensate gain

dynamical masses of order �1. The nine ETC gauge bo-
sons in the coset SUð5ÞETC=SUð4ÞETC gain masses of
order gETC�1 ��1. The components of the multiplets in
Eqs. (2.4) and (2.5) with i ¼ 1 split off from the other
components and become the first generation of SM
fermions.

C. Theory for �2 � E <�1 and condensation at �2

breaking SUð4ÞETC to SUð3ÞETC
The low-energy effective field theory just below �1 is

invariant under two strongly coupled gauge symmetries,
SUð4ÞETC, acting on the ETC indices 2 � i � 5, and
SUð2ÞHC. Decomposing the massless fermions inherited
from the SUð5ÞETC theory in terms of representations of
SUð4ÞETC (and the other exact symmetries at this level),
one has the following content: (i) c 1j;R, a ð�4; 1; 1; 1Þ0;
(ii) �1j;�R , a ð4; 2; 1; 1Þ0; (iii) �jk;�R , a ð6; 2; 1; 1Þ0; and
(iv) !�;p;R, forming two ð1; 2; 1; 1Þ0 representations, where
the SUð4ÞETC gauge indices are 2 � i, j � 5, the SUð2ÞHC
indices are � ¼ 1; 2, and the copy index is p ¼ 1; 2. The
next two stages of ETC symmetry breaking involve both
the ETC and the HC interactions. With the HC interaction
sufficiently strong, the next preferred step in gauge sym-
metry breaking, occurring at the scale �2, involves the
formation of a condensate in the most attractive channel

ð4; 2; 1; 1Þ0 � ð6; 2; 1; 1Þ0 ! ð�4; 1; 1; 1Þ0; (6.6)

with �C2 ¼ 5=2 for SUð4ÞETC and �C2 ¼ 3=2 for
SUð2ÞHC. This breaks SUð4ÞETC to SUð3ÞETC and preserves
the exact SUð2ÞHC symmetry. Given that the SUð2ÞHC
interaction is strongly coupled at �2, the HC glueballs
are expected to have masses of order �g�2.

The symmetry-breaking pattern in which this is the
second stage was denoted Ga in Ref. [10] and sequence
S1 in Ref. [13]. Note that, with respect to the SUð4ÞETC
interaction, the value of �C2 for this channel is less than
the value �C2 ¼ 15=4 for the undesired 4� �4 ! 1 chan-
nel (2.23) involving SM-nonsinglet fermions. Thus, one
again specifies a sufficiently large initial value for the HC
coupling �HC at a high scale so that the combination of the
HC and ETC interactions renders the channel (6.6) more
attractive than the channel 4� �4 ! 1 channel. With no
loss of generality, one defines the index in which the
SUð4ÞETC breaks as i ¼ 2, so that the condensate is
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h����2jk‘�1j;�TR C�k‘;�R i
¼ 2h���ð�13;�TR C�45;�R � �14;�TR C�35;�R þ �15;�TR C�34;�R Þi:

(6.7)

Here, �ijk‘ is the totally antisymmetric tensor density of the

SUð4ÞETC theory resulting from the breaking of SUð5ÞETC
and hence is identical to �1ijk‘ of the SUð5ÞETC theory.

The 12 �ij;�R fields in this condensate gain masses of order
�2, and the 7 ETC gauge bosons in the coset
SUð4ÞETC=SUð3ÞETC gain masses of order gETC�2 ’ �2.
At this scale �2, the second-generation SM fermions, with
i ¼ 2, split off from the other components of the multiplets
in Eqs. (2.4) and (2.5).

D. Theory for �3 � E <�2 and condensation at �3

breaking SUð3ÞETC to SUð2ÞTC
Because the effective field theory below �2 has

SUð3ÞETC symmetry (acting on the ETC indices i ¼
3; 4; 5), to analyze this, we decompose the SUð4ÞETC rep-
resentations in terms of SUð3ÞETC. The massless fermions
that are nonsinglets under the ETC and/or HC groups

operative here are (i) c 1j;R, a ð�3; 1; 1; 1Þ0; (ii) �2j;�R , a

ð3; 2; 1; 1Þ0 where j ¼ 3; 4; 5; (iii) �12;�R , a ð1; 2; 1; 1Þ0; and
(iv) !�;p;R, comprising two ð1; 2; 1; 1Þ0 representations.

Since the SUð3ÞETC and SUð2ÞHC interactions are asymp-
totically free, �ETC and �HC continue to grow. A third and
final stage of ETC symmetry breaking occurs at a scale
denoted �3. Given the specification of the strengths of the
ETC and HC interaction, the most attractive channel is

ð3; 2; 1; 1Þ0;R � ð3; 2; 1; 1Þ0;R ! ð�3; 1; 1; 1Þ0; (6.8)

with �C2 ¼ 4=3 for SUð3ÞETC and �C2 ¼ 3=2 for
SUð2ÞHC. This breaks SUð3ÞETC to SUð2ÞTC and preserves
SUð2ÞHC. With the breaking direction taken as i ¼ 3, the
associated condensate is

h�3jk����2j;�TR C�2k;�R i ¼ 2h�24;1TR C�25;2R � �24;2TR C�25;1R i:
(6.9)

Here, �ijk is the totally antisymmetric tensor density of the

SUð3ÞETC theory resulting from the breaking of SUð4ÞETC
and hence is identical to �2ijk of the SUð4ÞETC theory. The

six �2j;�R fields involved in this condensate gain dynamical
masses of order �3, and the five ETC gauge bosons in the
coset SUð3ÞETC=SUð2ÞTC gain masses of order gETC�3 ’
�3. At this scale �3, the third generation of SM fermions
splits off, leaving the residual technifermions in each of the
respective multiplets.

E. Condensation at �0
3 <�3

Since the HC interaction is strong, it can also produce
condensates involving residual massless fermions that are
singlets under SUð2ÞTC but nonsinglets under SUð2ÞHC, in

the channel

ð1; 2; 1; 1Þ0 � ð1; 2; 1; 1Þ ! ð1; 1; 1; 1Þ0; (6.10)

where the first number is the dimension of the representa-
tion with respect to SUð3ÞETC and the others are as before.
The condensates that form in this channel include

h����12;�TR C�23;�R i; (6.11)

h����12;�TR C!�
p;Ri; (6.12)

h����23;�TR C!�
p;Ri; (6.13)

and

h���!�T
1;RC!

�
2;Ri; (6.14)

with p ¼ 1; 2,. Since these condensates are formed only
via the hypercolor attraction, without any additional
SUð3ÞETC interaction, they form at a scale �0

3 & �3, where

�HC has grown somewhat larger than at �3. The fermions
involved in these condensates get dynamical masses of
order �0

3.

F. Theory at energy scales below �0
3

In the effective theory below�3, all of the fermions �ij;�R

have gained masses and have been integrated out, as have
all of the c ij;R for 2 � i, j � 5, and all of the!�;p;R fields.

The resultant theory has one strongly coupled symmetry
with massless nonsinglet fermions, namely the technicolor
group SUð2ÞTC. The technifermions include those with
SM-nonsinglet quantum numbers, given in Eq. (2.4) and
(2.5), and the c 1j;R for j ¼ 4; 5. These constitute 4ðNc þ
1Þ ¼ 16 chiral fermion doublets, or equivalently, eight
Dirac fermion doublets, of SUð2ÞTC. Thus, b1 ¼ 2 and
b2 ¼ �20 for the beta function of this theory, which has
an approximate infrared zero at �TC ¼ 2�=5 ’ 1:3. To
within the theoretical uncertainties, this is equal to the
critical value �cr ¼ 4�=9 ’ 1:4 for condensation of the
technifermions to form the condensates (2.12). Fur-
thermore, as noted, since the number of technifermions
in this theory is close to Nf;cr, it plausibly exhibits the

desired property of walking associated with the approxi-
mate infrared fixed point at �TC.
The various condensates give rise to a variety of ETC

gauge boson mixings. In turn, these lead to mass matrices
for the quarks and charged leptons with both hierarchical
diagonal and off-diagonal entries. The diagonal elements
have the generic form of Eq. (5.14) with i ¼ 1; 2; 3. Since
the walking behavior extends over the energy interval
where there are eight massless Dirac technifermions,
namely from�TC to�3, it follows that the renormalization
factor is roughly 	i ��3=�TC. This makes it possible for
the mass of the top quark to be comparable to the
electroweak-symmetry-breaking scale. However, as noted,
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the model with the content of quarks, leptons, techni-
quarks, and technileptons as given in Eqs. (2.4) and (2.5)
has difficulty explaining the large splitting between mt and
mb. In general, the running masses of SM fermions of the
ith generation,mfiðpÞ, are constants (apart from logs) up to

the highest scale, �i, where they arise, and decay asymp-
totically like mfiðpÞ / �2

i =p
2 (up to logs) for p >>�i,

where p is a Euclidean momentum [28]. This model is
also able to produce appropriate Dirac and Majorana
masses for neutrinos, in a manner such as to yield a
seesaw that generates acceptably light observed neutrino
mass eigenstates [10,13]. Further details are given in
Refs. [4,10,11,13].

VII. A MODELWITH Ngen ¼ 4

A. Field content

One can also investigate a situation withNgen larger than

the inferred physical value of 3 [8]. In considering models
with larger values of Ngen, we will require that these

models retain the basic properties of QCD, namely that
(i) it is asymptotically free, which implies that the number
of quarks, Nq, is bounded above by Nq < 33=2; and (ii) as

the scale decreases below a GeV, QCD should confine and
spontaneously break chiral symmetry rather than evolving
into the infrared in a chirally symmetric manner such as
would be associated with a non-Abelian Coulomb phase.
Analyses of the Dyson-Schwinger equation for the quark
propagator [22] yield Nf;cr ’ 12, and recent lattice simu-

lations are broadly consistent with this estimate, to within
their theoretical uncertainties [24]. Keeping the number of
quarks below 12 means keeping the number of generations
below 6, which allows one to consider the values Ngen ¼ 4

and Ngen ¼ 5, given the above constraints. Here we will

study the case Ngen ¼ 4. As noted before, although we will

consider this case from the abstract field-theoretic point of
view of its effect in constructing a TC/ETC model, we note
that there are continuing studies of the possibility that there
really are four generations of SM fermions which, how-
ever, must necessarily avoid having a fourth light active
neutrino [15,17,18,42]. Combining the value Ngen ¼ 4

with the value NTC ¼ 2 in Eq. (2.3) yields SUð6ÞETC as
the ETC gauge group. Just as for Ngen ¼ 3 one could use

purely ETC interactions for the first stage of ETC symme-
try breaking (which is thus self-breaking), so also for this
Ngen ¼ 4 case we find that one can use the ETC interaction

by itself for the first two stages of ETC self-breaking, from
SUð6ÞETC to SUð5ÞETC and then to SUð4ÞETC. We rely on
the hypercolor interaction to produce the final two stages of
ETC breaking down to SUð2ÞTC. However, we specify the
initial value of the HC coupling slightly above the first
condensation to be such that as the HC coupling �HC

grows, it becomes significantly large at the third level of
symmetry breaking, �3.

We take the SM-singlet chiral fermions of the model to
consist of

�i
R: ð½1�6; 1; 1; 1Þ0 (7.1)

c ij
R : ð½2�6; 1; 1; 1Þ0 (7.2)

	ijk
R : ð½3�6; 1; 1; 1Þ0 (7.3)

�i;�;R: ð½�1�6; 2; 1; 1Þ0 (7.4)

and

!�;p;R: 2ð1; 2; 1; 1Þ0; (7.5)

where the SUð6ÞETC gauge indices run from 1 to 6, and the
copy index on !�;p;R takes the values p ¼ 1; 2. Note that

since the �i;�;R fields comprise an even number (six) of

SUð2ÞHC doublets, it is necessary to use an even number of
the ETC-singlet, HC-doublet!�;p;R fields to avoid a global

SU(2) anomaly. We use two copies, p ¼ 1; 2. Since the
dimensionality of the ½k�N representation is ( Nk ), we have

dimð½1�6Þ ¼ 6, dimð½2�6Þ ¼ 15, and dimð½3�6Þ ¼ 20. By
construction, this theory is free of anomalies in the SU(6)
gauged currents. The one- and two-loop coefficients of the
SUð6ÞETC beta function are

b1 ¼ 38

3
; b2 ¼ 76

3
: (7.6)

Since these have the same sign, the SUð6ÞETC beta function
does not have a perturbative zero away from the origin. The
SUð2ÞHC theory contains eight chiral fermions, or equiv-
alently four Dirac fermions, transforming as doublet rep-
resentations. This is well below the estimated value
Nf;cr ’ 8 separating the chirally broken from chirally sym-

metric phases of an SU(2) theory, so that we can be con-
fident that the SUð2ÞHC interaction confines and produces
fermion condensates as required.

B. Condensation at �1 breaking SUð6ÞETC to SUð5ÞETC
The most attractive channel and hence the one most

likely for condensation to form at the highest scale, is

ð½2�6; 1; 1; 1Þ0 � ð½3�6; 1; 1; 1Þ0 ! ð½�1�6; 1; 1; 1Þ0; (7.7)

with �C2 ¼ 7, which breaks SUð6ÞETC to SUð5ÞETC. As
before, we denote this first and highest ETC symmetry-
breaking scale as �1. Note that this is more attractive than
the undesired condensation channel 6� �6 ! 1 involving
the left- and right-handed components of the SM-
nonsinglet fermions in Eqs. (2.4) and (2.5), which has
�C2 ¼ 35=6 ¼ 5:83. The condensate associated with the
channel (7.7) is

h�ijk‘mnc
jkT
R C	‘mn

R i; (7.8)

where �ijk‘mn is the totally antisymmetric tensor density for

SU(6). With no loss of generality, we can pick the uncon-
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tracted SUð6ÞETC index to be i ¼ 1. The ð52Þ ¼ 10 compo-

nents c jk
R with 2 � j, k � 6 and j � k, and the ð53Þ ¼ 10

components 	‘mn
R with 2 � ‘, m, n � 6 (with unequal

values of ‘, m, n) pick up dynamical masses of order �1.
The 11 ETC gauge bosons in the coset SUð6ÞETC=SUð5ÞETC
also gain masses�gETC�1 ��1. At this stage, �

1
R decou-

ples from the strong dynamics, since it is a singlet under
the residual SUð5ÞETC � SUð2ÞHC interaction.

C. Theory for �2 � E <�1 and condensation at �2

breaking SUð5ÞETC to SUð4ÞETC
The low-energy theory operative just below �1 has two

strongly coupled gauge groups, SUð5ÞETC and SUð2ÞHC.
The content of massless SM-singlet fermions that are non-
singlets under these groups, in addition to !�;R, is

�j
R: ð5; 1; 1; 1Þ0 (7.9)

c 1j
R : ð5; 1; 1; 1Þ0 (7.10)

and

�j;�;R: ð�5; 2; 1; 1Þ0 (7.11)

with 2 � j � 6, and

	1jk
R : ð10; 1; 1; 1Þ0; (7.12)

where 2 � j � k � 6. A most attractive channel in this
theory is

ð10; 1; 1; 1Þ0 � ð10; 1; 1; 1Þ0 ! ð�5; 1; 1; 1Þ0; (7.13)

with �C2 ¼ 24=5, breaking SUð5ÞETC to SUð4ÞETC. With
no loss of generality, we may take the breaking direction in
SUð5ÞETC to be i ¼ 2, so that associated condensate is

h�2jk‘m	1jkT
R C	1‘m

R i; (7.14)

where �ijk‘m is the totally antisymmetric tensor density of

SUð5ÞETC and the sums over repeated indices are over the
values 3, 4, 5, and 6. Since the measure of attractiveness for
this condensation channel, �C2 ¼ 24=5, is less than the
�C2 ¼ 7 for the first condensation, it follows that the
scale, �2, at which the second condensation occurs is
lower than the first condensation scale, �1. As in the
Ngen ¼ 3 case, one can use vacuum alignment arguments

to infer that the condensation (7.13) occurs instead of the
unwanted condensation (2.23) involving the SM-
nonsinglet fermions (which has the same value of �C2 ¼
24=5). The six chiral fermions 	1jk

R with 3 � j, k � 6
involved in the condensate (7.14) gain dynamical masses
of order �2, and the nine ETC gauge bosons in the coset
SUð5Þ=SUð4ÞETC gain masses of order gETC�2 ��2. At
this stage, �2

R and c 12
R decouple from the strong dynamics,

since they are singlets under the residual SUð4ÞETC �

SUð2ÞHC interaction. Note that, as far as SUð5ÞETC is
concerned, the channel ð10; 2; 1; 1Þ0 � ð10; 2; 1; 1Þ0 !
ð�5; 3; 1; 1Þ0 is as attractive as the channel (7.13), with
�C2 ¼ 24=5. However, since this involves a symmetric
combination of the two representations, it yields a triplet
representation under SUð2ÞHC and is thus repulsive with
respect to the HC interaction, with �C2 ¼ �1=2. For this
reason, one may safely conclude that there is no conden-
sation in this channel.

D. Theory for �3 � E <�2 and condensation at �3

breaking SUð4ÞETC to SUð3ÞETC
The low-energy effective theory operative just below the

scale �2 is invariant under two strongly coupled groups,
SUð4ÞETC � SUð2ÞHC, where the SUð4ÞETC acts on the in-
dices 3 � j � 6. The content of massless fermions that are
nonsinglets under this direct product group includes

�j
R: ð4; 1; 1; 1Þ0 (7.15)

c 1j
R : ð4; 1; 1; 1Þ0 (7.16)

�j;�;R: ð�4; 2; 1; 1Þ0 (7.17)

and

	12j
R : ð4; 1; 1; 1Þ0; (7.18)

with 3 � j � 6, There are also massless fermions that are
singlets under SUð4ÞETC and doublets under SUð2ÞHC
namely �j;�;R, j ¼ 1; 2 and !�;p;R. Since the hypercolor

interaction is asymptotically free, its coupling, �HC, in-
creases as the reference scale� decreases from�1 through
�2, and the initial conditions can be chosen so that at the
scale �3 <�2, the SUð2ÞHC interaction is sufficiently
strong to produce condensation of HC-doublet fermions.
The most attractive channel is

ð�4; 2; 1; 1Þ0 � ð1; 2; 1; 1Þ0 ! ð�4; 1; 1; 1Þ0; (7.19)

with �C2 ¼ 3=2 for SUð3ÞHC. This breaks SUð4ÞETC to
SUð3ÞETC and preserves SUð2ÞHC. The associated conden-
sate is

h����Tj;�;RC!p;�;Ri: (7.20)

With no loss of generality, we choose the ETC gauge index
j ¼ 3 so that the residual SUð3ÞETC gauge symmetry acts
on the indices 4, 5, and 6. We may also choose the copy
index to be p ¼ 1 for the !�;p;R field. The explicit con-

densate is then

h����T3;�;RC!1;�;Ri: (7.21)

The �3;�;R and !1;�;R fields pick up dynamical masses of

order �3 and the ETC five gauge bosons in the coset
SUð3ÞETC=SUð2ÞTC gain masses of order gETC�3 ��3.
With the same degree of attractiveness, and hence at the

same scale, �3, there is an HC-driven condensation of two
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SUð4ÞETC-singlet fields in the channel ð1; 2; 1; 1Þ0 �
ð1; 2; 1; 1Þ0 ! ð1; 1; 1; 1Þ0. The associated condensate is

h����T1;�;RC�2;�;Ri: (7.22)

This is invariant under the same strongly coupled
SUð3ÞETC � SUð2ÞHC symmetry group as the condensate
(7.20). As a consequence of these condensations, the fer-
mions �j;�;R with j ¼ 1; 2; 3 and !�;R gain dynamical

masses of order �3 and the seven ETC gauge bosons in
the coset SUð4ÞETC=SUð3ÞETC gain masses of order
gETC�3 ��3. At this stage, �

3
R, c

13
R , and 	123

R decouple
from the strong dynamics since they are singlets under the
residual SUð3ÞETC � SUð2ÞETC interaction.

E. Theory for �4 � E <�3 and condensation at �4

breaking SUð3ÞETC to SUð2ÞTC
The effective field theory operative just below �3 is

invariant under the strongly coupled group SUð3ÞETC �
SUð2ÞHC, with the SUð3ÞETC acting on the indices j ¼ 4,
5, and 6. The massless fermions that are nonsinglets under

this group are (i) �j
R, c

1j
R , and 	12j

R , forming ð3; 1; 1; 1Þ0
representations; (ii) �j;�;R, forming ð�3; 2; 1; 1Þ0; and

(iii) !�;2;R, forming ð1; 2; 1; 1Þ0. The most attractive chan-

nel, which involves both SUð3ÞETC and SUð2ÞHC interac-
tions, is

ð�3; 2; 1; 1Þ0 � ð�3; 2; 1; 1Þ0 ! ð3; 1; 1; 1Þ0; (7.23)

with �C2 ¼ 4=3 for SUð3ÞETC and the usual �C2 ¼ 3=2
for SUð2ÞHC. This condensation breaks SUð3ÞETC to
SUð2ÞTC and preserves the SUð2ÞHC symmetry. The asso-
ciated condensate is h����ijk�Tj;�;RC�k;�;Ri. With no loss of

generality, we may choose i ¼ 3 as breaking direction in
SUð3ÞETC, so that the actual condensate is proportional to

h����T5;�;RC�6;�;Ri: (7.24)

We denote the energy scale at which this condensation
occurs as �4. The �j;�;R with j ¼ 5; 6 involved in this

condensate gain dynamical masses of order �4, and the
five ETC gauge bosons in the coset SUð3ÞETC=SUð2ÞTC
gain masses of order gETC�4 ’ �4. At this final stage of
ETC symmetry breaking, �4

R, c
14
R , and 	124

R decouple from
the strong dynamics, since they are singlets under the
residual SUð2ÞTC � SUð2ÞHC interaction.

F. Condensation at �0
4 <�4

The HC interaction can also produce a condensate in-
volving fermions that are SUð2ÞTC singlets. Since the for-
mation of this condensate is not aided by the SUð3ÞETC
interaction, it takes place at a somewhat lower scale than
�4, where �HC has grown to a somewhat larger value. We
denote this scale as �0

4. The associated condensate is

h����T4;�;RC!�;2;Ri: (7.25)

This condensate is invariant under the same strongly
coupled symmetry group, SUTC � SUð2ÞHC, as the con-

densate (7.24). The �4;�;R and !�;2;R fermions get dynami-

cal masses of order �0
4 due to this condensation. Thus, as

the theory evolves below �0
4, all of the HC-nonsinglet

fermions have gained masses and have accordingly been
integrated out.

G. Theory below the energy scale �4

The theory below �4 is invariant under the strongly
coupled groups SUð2ÞTC � SUð2ÞHC and underGSM, which
is still weakly coupled at this scale. The SUð2ÞTC acts on
the 2 remaining unbroken ETC indices j ¼ 5; 6. This
SUð2ÞTC sector includes the 15 SM-nonsinglet techni-
quarks and technileptons in Eqs. (2.4) and (2.5), together

with three SM-singlet technifermions, �j, c 1j
R , and 	12j

R ,
with j ¼ 5; 6, to make a total of 18 chiral doublets, or
equivalently, 9 Dirac doublets. If the technicolor theory
confines and produces the requisite bilinear technifermion
condensates, breaking electroweak symmetry, then this
may be an acceptable illustrative model of a theory with
Ngen ¼ 4 SM generations. However, we note the same

concern that was mentioned earlier, namely that an
SUð2ÞTC theory with 9 Dirac technifermion doublets might
evolve into the infrared without producing technifermion
condensates and breaking electroweak symmetry. It would
be very desirable to use lattice simulations to elucidate the
boundary of the chirally symmetric phase of SU(2) as a
function of the content of light fermions and to check the
Dyson-Schwinger prediction of Nf;cr ’ 8 for fermions in

the doublet representation. These would constitute a natu-
ral extension of the intensive recent lattice work that has
been performed for SU(3) [24].
The sequential ETC breakings as discussed above would

produce, as desired, a hierarchy of SM fermion masses,
with the diagonal elements of the respective mass matrices
given by the generic formula (5.14), with i ¼ 1; 2; 3; 4, i.e.,
for the four generations. Assuming that the SUð2ÞTC sector
would confine, it would exhibit strong walking behavior,
since the value of Nf is so close to the boundary with the

chirally symmetric phase. Hence, the renormalization fac-
tor for the fermion bilinears would be 	i ��4=�TC. One
could also study the various ETC gauge boson mixings and
resultant off-diagonal elements of fermion mass matrices,
as well as neutrino masses, especially the requirement of
avoiding a fourth light neutrino. However, our results in
this section above already demonstrate that one can con-
struct a plausibly tenable model with dynamical EWSB
and four SM fermion generations with a corresponding
hierarchy of masses.

VIII. DISCUSSION AND CONCLUSIONS

The origin of electroweak symmetry breaking and of the
standard-model fermion generations is an outstanding
question in particle physics, and it is not yet understood
why Ngen ¼ 3, rather than some other number. In contrast
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to the standard model, supersymmetric extensions thereof,
and grand unified theories, where one just puts the number
Ngen in by hand in a manner that is independent of the

gauge group, this number plays a central role in the struc-
ture and properties of an extended technicolor model, since
it determines what the initial ETC gauge symmetry is, via
Eq. (2.3), and how many stages of breaking the ETC
symmetry undergoes as it is reduced to the TC subgroup
symmetry. In this paper we have taken Ngen as a variable,

and have explored the consequences of varying this num-
ber, in the context of models with dynamical EWSB. We
have explicitly demonstrated that one can construct TC/
ETC models with Ngen ¼ 1, 2, and 4, extending the ex-

tensive previous work for the physical case of Ngen ¼ 3.

Our results show that the auxiliary strongly coupled gauge
symmetry (hypercolor) is quite useful for obtaining the
desired ETC symmetry breaking for these cases Ngen ¼
1, 2, and 4, just as it was for Ngen ¼ 3. We have also shown

how, for values of Ngen other than 3, one can construct TC/

ETC models in which the technicolor theory that results
from the sequential ETC symmetry breaking produces the
necessary technifermion condensates and plausibly exhib-
its the desired property of a large but slowly running gauge
coupling associated with an approximate infrared-stable
fixed point. We have demonstrated that one can build TC/
ETC models that can yield generational hierarchies for all
of the values of Ngen that we considered. Furthermore,

because in each case we were able to obtain a residual
technicolor sector that can exhibit walking behavior and
hence enhancement of SM fermion masses, the fermions of
the highest generation generically have masses that can be
comparable in size to the electroweak breaking scale.
Stated in other terms, the real-world fact that the top quark
has a mass of order the EWSB scale could be shared by
fermions of the highest generation in these TC/ETC mod-
els with values of Ngen different from 3. It is interesting to

compare this result with the situation with the conventional
Yukawa mechanism for producing SM fermion masses,
where the triviality property of the Yukawa interaction
places an upper limit on the Yukawa coupling and hence
on the resultant fermion mass. This triviality upper limit on
the fermion mass produced by the Yukawa coupling is also
comparable to the electroweak-symmetry-breaking scale,
as has been shown by fully nonperturbative, dynamical-
fermion lattice simulations [19]. In a theory with strong
walking behavior, the effects of SM gauge couplings,
which are relatively small perturbations at the TeV scale,
could be magnified. However, it is questionable whether
the models would produce large intragenerational mass
splittings, in particular, between the charge 2=3 and charge
�1=3 quarks of a given generation. Our results for Ngen ¼
4 may be useful for those studying the possibility of a real
fourth generation. With an illustrative example specifically
constructed for the purpose in Sec. IV, we have also
illustrated a problem that one can encounter in model

building, in which an excessive number of technifermions
can lead to a chirally symmetric evolution of the (asymp-
totically free) technicolor theory rather than the requisite
formation of technifermion condensates at the electroweak
scale.
Clearly, TC/ETC theories are subject to a number of

severe phenomenological constraints, and one does not yet
know if the origin of electroweak symmetry breaking is
dynamical, or is due to the vacuum expectation value of a
fundamental Higgs field, as hypothesized in the standard
model and supersymmetric extensions thereof. However,
we believe that the present study of models with variable
Ngen yields useful insights into the role of this number in

theories with dynamical electroweak symmetry breaking
and can be of value in the continuing quest to understand
the origin of standard-model fermion generations. More-
over, since this work involves analyses of patterns of
dynamical symmetry breaking of strongly coupled gauge
theories, it is also of more abstract field-theoretic interest in
its own right. One looks forward eagerly to the elucidation
of the physics that is responsible for electroweak symmetry
breaking, and an answer to the question of whether it
involves strongly or weakly coupled interactions at the
TeV scale, that will be forthcoming soon from the Large
Hadron Collider.

ACKNOWLEDGMENTS

This research was partially supported by the Grant
No. NSF-PHY-06-53342.

APPENDIX

In this appendix we list some formulas that are relevant
to our study of the evolution of the TC and HC gauge
interactions as functions of energy scale. We consider a
(zero-temperature) vectorial SUðNÞ gauge group with Nf

massless Dirac fermions in the fundamental representation.
It is assumed that this theory is asymptotically free, i.e.,
b1 > 0 in Eq. (2.17). Let us define

Nf;IR ¼ 34N3

13N2 � 3
: (A1)

If Nf < Nf;I, then b2 > 0, and the only zero of the pertur-

bative two-loop beta function is the zero at the origin (the
ultraviolet fixed point of the renormalization group). AsNf

increases through the value Nf;IR, b2 reverses sign and

becomes negative, so that the beta function has a zero
away from the origin, at the value

�IR ¼ �4�ð11N � 2NfÞ
34N2 � 13NNf þ 3N�1Nf

: (A2)

As the energy scale � decreases from large values, �
increases toward the value �IR, which is thus an infrared
fixed point of the renormalization group. It is (i) an exact
IR fixed point if there is no change in the massless particle
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content as � increases toward �IR from below, or alter-
natively (ii) an approximate IR fixed point if, as � in-
creases toward �IR, it exceeds a critical value �cr for
spontaneous chiral symmetry breaking via the formation
of bilinear condensates of the fermions at some scale � ¼
�cr. In the latter case, these fermions gain dynamical
masses and are integrated out in the effective low-energy
theory that is applicable for�<�cr; as a consequence, the
massless particle content of the theory changes and it
evolves further into the infrared in a manner governed by
a different set of coefficients in the beta function.

As Nf increases above Nf;IR, the value of �IR decreases,

and as Nf increases through a critical value Nf;cr, �IR

decreases below the minimum value, �cr, for condensate
formation. For Nf;cr <Nf < ð11=2ÞN, the theory is there-

fore in a chirally symmetric phase. In accord with physical
arguments connecting confinement and spontaneous chiral
symmetry breaking [43], this is often inferred to be a
conformal, non-Abelian Coulomb phase. This inference
is clearly valid in the limit where Nf approaches

ð11=2ÞN from below, so that b1 and �IR become very
small, and the gauge interaction becomes very weak. The
inference assumes that in this phase without any fermion
condensates, where the fermions do not pick up any dy-
namical masses, there are also no glueballs; i.e., the glue-
balls of the confined phase have become unbound,
producing free massless gluons. The value of Nf;cr is

determined by setting �IR ¼ �cr, yielding the result [22]

Nf;cr ¼ 2Nð50N2 � 33Þ
5ð5N2 � 3Þ : (A3)

For N ¼ 2, this gives Nf;cr ’ 8 (and for N ¼ 3 it gives

Nf;cr ’ 12). This is the basis for the statement that a one-

family technicolor theory, which has 2ðNc þ 1Þ ¼ 8 Dirac
technifermions, plausibly exhibits walking behavior.
Clearly, Eq. (2.22) and the resultant Eq. (A3) are only
rough estimates, in view of the strongly coupled nature
of the physics and the fact that this approach neglects
nonperturbative effects, such as instantons, which enhance
chiral symmetry breaking [44]. Moreover, the Dyson-
Schwinger equation does not incorporate confinement,
and the condition in Eq. (2.22) is obtained by doing a
loop integration over all Euclidean loop momenta, but in
fact the integration range is reduced, since a particle con-
fined within a size r� 1=� has a maximum wavelength
and equivalently, a minimum bound-state momentum of
order �, the confinement energy scale [37]. Fortunately,
these two omissions (instantons and reduction of the inte-
gration range in the Dyson-Schwinger integral) affect the
prediction for �cr in opposite ways, so that the omission of
both of them may not be too serious. As noted in the text, a
continuum study of corrections to the one-gluon exchange
approximation in solving the Dyson-Schwinger equation
found it to be reasonably accurate [40]. More recently, in
the case of SU(3), lattice studies yield results that are

broadly consistent with the predictions of the earlier
Dyson-Schwinger analysis [24]. In this context, one should
note that the study of the Dyson-Schwinger equation for
the fermion propagator only gives information about chiral
symmetry breaking; this equation does not directly contain
information about confinement. In principle, if appropriate
conditions were satisfied [45] (which are necessary but not
sufficient conditions), one could have a confined phase
without spontaneous chiral symmetry breaking. However,
this possibility is not relevant for our present analysis,
since we require that there be S�SB in the ETC and HC
sectors to produce the sequential ETC symmetry breaking,
and in the TC sector to produce the electroweak symmetry
breaking.
For our analyses of the successive stages of ETC sym-

metry breaking we will apply this sort of method for a
chiral gauge theory with a general set of fermion repre-
sentations. In this case, in terms of the chiral fermion
representations R, the first two coefficients of the beta
function are [46]

b1 ¼ 1

3

�
11C2ðGÞ � 2

X
R

TðRÞNf;R

�
(A4)

and [47]

b2 ¼ 1

3

�
34C2ðGÞ2 �X

R

½10C2ðGÞ þ 6C2ðRÞ�TðRÞNf;R

�
:

(A5)

Higher coefficients are scheme-dependent, and these first
two, which are scheme-independent, will suffice for our
purposes. For a vectorial theory, the left- and right-handed
chiral fermions of representation R are combined into a
single Dirac fermion in this representation. It is not neces-
sary that the enveloping ETC group or the intermediate
subgroups above the level of SUð2ÞTC exhibit walking
behavior; our only constraints for these groups are
(i) that they be asymptotically free and (ii) that their
fermion content be such that, as they evolve into the
infrared, they spontaneously break chiral symmetry via
formation of fermion condensates instead of evolving
into a non-Abelian Coulomb phase. This does not require
a perturbative infrared zero of the beta function.
In particular, given that the SUð2ÞHC gauge interaction

has an even number, Nf;1=2, of chiral fermions transform-

ing as doublet representations, as it must to avoid a global
anomaly, it can always be rewritten as a vectorial gauge
theory with Nf;D;1=2 ¼ Nf;1=2=2 Dirac doublets. Hence for

this HC theory we have

b1 ¼ 1

3
ð22� 2Nf;D;1=2Þ (A6)

and

b2 ¼ 1

3

�
136� 49Nf;D;1=2

2

�
: (A7)
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