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We study the formation and detection at the next linear eþe� collider of bound states of level-1 quark

Kaluza-Klein excitations BKK within a scenario of universal extra dimensions. The interactions of such

Kaluza-Klein excitations are modeled by an �s driven Coulomb potential. In order to obtain the threshold

cross section, we employ the Green function method which is known to properly describe the peaks below

threshold and to yield a net increase in the continuum region (above threshold) relative to the naive Born

cross section. We study such effect at different values of the scale (R�1) of the extra dimensions with an

explicit calculation for the mass spectrum as given by radiative corrections. The overall effect is roughly

2.7 at R�1 ¼ 300 GeV and goes down to 2.2 at R�1 ¼ 1000 GeV and a relatively large number of events

is expected from Nevents � 2:5� 104 at R�1 ¼ 300 GeV down to Nevents � 103 at R�1 ¼ 1000 GeV at

the anticipated annual integrated luminosity of L0 ¼ 100 fb�1. We finally discuss some potentially

observable signatures such as the multilepton channels 2jþ 2‘þ E6 and 2jþ 4‘þ E6 for which we

estimate statistical significance * 2 for R�1 up to 600� 700 GeV.
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I. INTRODUCTION

It is well known that as early as 1921 Theodore Kaluza
proposed a theory that was intended to unify gravity and
electromagnetism by considering a space-time with one
extra spacelike dimension [1]. A few years later Oscar
Klein proposed that the extra space dimension (the fifth
dimension) is in reality compactified around a circle of
very small radius [2]. These revolutionary ideas have there-
after been ignored for quite some time. However recent
developments in the field of string theory have suggested
again the possibility that the number of space-time dimen-
sions is actually different fromD ¼ 4 (indeed string theory
models require D ¼ 11, i.e. seven additional dimensions).
In 1990 it was realized [3] that string theory motivates
scenarios in which the size of the extra dimensions could
be as large as R � 10�17 cm (corresponding roughly to
electroweak energy scale ( � TeV) contrary to naive ex-
pectations which relate them to a scale of the order of the
Planck length LP � 10�33 cm (corresponding to the

Planck mass MP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
@c=G

p � 1019 GeV). See also [4].
Subsequently two approaches have been developed to

discuss the observable effects of these, as yet, hypothetical
extra dimensions. One possibility is to assume that the
extra spacelike dimensions are flat and compactified to a
‘‘small’’ radius. This is the so called ADD model [5] where
only the gravitational interaction is assumed to propagate
in the extra dimension. A second possibility is contem-
plated in the Randall-Sundrum type of models where the
extra dimensions do have curvature and are embedded in a
warped geometry [6,7].

Universal extra-dimensional models were introduced in
Ref. [8] and are characterized, as opposed to the ADD
model, by the fact that all particles of the standard model

(SM) are allowed to propagate in the (flat) extra space
dimensions, the so called bulk. Here to each SM particle

Xð0Þ corresponds in this model a tower of Kaluza-Klein

states XðnÞ (KK excitations), whose masses are related to
the size of the compact extra dimension introduced and the
mass of the SM particle via the relation m2

XðnÞ � m2
Xð0Þ þ

n2=R2. An important aspect of the universal extra dimen-
sions (UED) model is that it provides a viable candidate to
the cold dark Mmatter. This would be the lightest KK
particle (LKP) which typically is the level-1 photon.
Many aspects of the phenomenology of these KK excita-
tions have been discussed in the literature. For reviews see
Refs. [9–12]. In particular KK production has been con-
sidered both at the CERN large hadron collider (LHC) and
at the next linear collider (ILC). Direct searches of KK
level excitations at collider experiments give a current
bound on the scale of the extra dimension of the order
R�1 * 300 GeV. See, for example, Ref. [13]. At the
Fermilab Tevatron it will be possible to test compactifica-
tion scales up to R�1 � 500 GeV at least within some
particular scenario [14–16].
Lower bounds on the compactification radius arise also

from analysis of electroweak precision measurements per-
formed at the Z pole (LEP II). An important feature of
these type of constraints is their dependence on the Higgs
mass. A recent refined analysis [17] taking into account
subleading contributions from the new physics as well as
two-loop corrections to the standard model � parameter
finds that R�1 * 600 GeV for a light Higgs mass (mH ¼
115 GeV) and a top quark mass mt ¼ 173 GeV at 90%
confidence level (C.L.). Only assuming a larger value of
the Higgs mass the bound is considerably weakened down
to R�1 * 300 GeV for mH ¼ 600 GeV, thus keeping the
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model within the reach of the Tevatron run II. The finding
of this precision analysis are in qualitative agreement with
previous results [18], but are at variance with the conclu-
sions of a recent paper [19] where an analysis of LEP data
including data from above the Z pole and two-loop elec-
troweak corrections to the �� parameter pointed to R�1 *
800 (at 95% C.L.).

The lower bounds from the inclusive radiative decay
�B ! Xs� turn out to be equally important. It has been
shown in Ref. [20] that a refined analysis including in
addition to the leading order contribution from the extra-
dimensional KK states, the known next-to-next-to-leading
order correction in the SM gives a lower bound on the
compactification radius R�1 * 600 GeV at 95% C.L. and
independent of the Higgs mass.

In this work we study the formation, production, and
possible detection of bound states of Kaluza-Klein n ¼ 1
excitations at eþe� collisions. The production of bound
states of KK excitation has been the object of some pre-
vious work [21]. As compared to Ref. [21] where the
bound states production rates have been estimated by using
a Breit-Wigner approximation, our study makes use of the
method of the Green function in order to estimate the
bound-state contribution at the threshold cross section, an
effect which can be as large as a factor of 3 when consid-
ering strongly interacting particles. In describing the inter-
actions that allow the formation of level-1 KK bound states
we assume that the level-1 KK quark excitations interact
via an �s driven Coulomb potential. This allows the use of
analytic expressions for the Green function of the Coulomb
problem but it should be kept in mind that the results and
conclusions about formation and decay of the bound state
depend on this assumption. This method has also been
recently used by the present authors in a study of slepto-

nium bound states within a slepton co-next to lightest
supersymmetric particle (slepton co-NLSP) scenario of
gauge mediated symmetry breaking (GMSB) [22].
The plan of the paper is as follows. Section II briefly

describes the UED model taken as a reference scenario.
Section III discusses the formation criteria and shows that
the bound states of KK level-1 excitations do indeed form.
Section IV describes the Green function method for the
bound states providing an analytic formula for the Born
production cross section. The threshold cross section for
the bound state is studied for several values of the scale of
the extra dimension R�1. Section V discusses the possible
decays of the bound states. Finally in Sec. VI we discuss
the possible observation of the KK bound states at the
eþe� linear collider pointing to three possible signatures
whose standard model background are also considered
providing an estimate of the statistical significance. In
Sec. VII we present the conclusions.

II. UNIVERSAL EXTRA DIMENSIONS

The UED model is constructed considering the standard
model in a space-time of 4þD dimensions, and assuming
that all SM particles are allowed to propagate in the extra
dimensions which typically are assumed to be compacti-
fied to a radius R. In the following we follow strictly the
notation of Ref. [9]. We indicate the usual four-
dimensional coordinates as x�, � ¼ 0, 1, 2, 3 and with
ya, a ¼ 1; � � �D the extra space dimensions. The effective
four-dimensional Lagrangian is then obtained by dimen-
sional reduction, i.e. by integrating the 4þD dimensional
SM Lagrangian over the D extra space dimensions. Thus
one has

Leffðx�Þ ¼
Z

dDy

�
�X3

i¼1

1

2ĝ2i
Tr½FAB

i ðx�; yaÞFiABðx�;yaÞ�þ jðD� þD3þaÞHðx�;yaÞj2 þ�2H�ðx�; yaÞHðx�; yaÞ

��½H�ðx�;yaÞHðx�;yaÞ�2 þ ið �Q; �u; �d; �L; �eÞðx�; yaÞð��D� þ�3þaD3þaÞðQ;u;d;L; eÞðx�; yaÞ þ ½ �Qðx�; yaÞ
� ð�̂uuðx�; yaÞi�2H

�ðx�; yaÞ þ �̂ddðx�;yaÞHðx�; yaÞÞþH:c:� þ ½ �Lðx�; yaÞ�̂eeðx�; yaÞHðx�; yaÞ þH:c:�
�
: (1)

In the above Eq. (1) FAB
i are the gauge field strength tensors

of SM gauge group SUð2Þ �Uð1Þ � SUð3Þ and ĝi are the
gauge coupling constants in (4þD) dimensions which
have dimension of ðmassÞ�D=2 as well as the Yukawa
couplings �̂u;d;e. D� ¼ @=@x� �A� and Da ¼ @=@ya �
A3þa are the covariant derivatives and AA ¼
�i

P
3
k¼1 ĝkT

r
i ðAAÞri are gauge fields. Q, L are the SUð2Þ

doublets, while u, d, e are the singlet (4þD)-dimensional
fermion fields. �A, A ¼ 0; � � � ð3þDÞ are (4þD)-
dimensional gamma matrices satisfying the anticommuta-
tion relations f�A;�Bg ¼ 2gAB. In the following we shall

deal with the simplest case of only one extra dimension
(D ¼ 1).1

In order to extract the four-dimensional effective theory
one needs to specify how the extra dimensions are com-
pactified. It is found that in order to reproduce chiral
fermions in four dimensions (the SM fermions) one is
forced to assume an orbifold compactification structure
which depends on the number of extra dimensions. For
D-odd (e.g. D ¼ 1) one chooses an S1=Z2 orbifold struc-

1When D ¼ 1, one can choose �� ¼ �� and �4 ¼ i�5.
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ture with Z2 being the reflection symmetry y ! �y. One
assumes that the gauge fields A� and the Higgs boson H

are even under the y ! �y transformation, while the A5

is assumed odd. This results in a Fourier series expansion
of the fields which defines the zero modes (that correspond
to the SM particles) and the level-n KK excitation (coef-
ficients of the expansions).

Hðx�;yÞ¼ 1ffiffiffiffiffiffiffi
�R

p
�
H0ðx�Þþ ffiffiffi

2
p X1

n¼1

Hnðx�Þcos
�
ny

R

��
;

A�ðx�;yÞ¼ 1ffiffiffiffiffiffiffi
�R

p
�
A0

�ðx�Þþ
ffiffiffi
2

p X1
n¼1

An
�ðx�Þcos

�
ny

R

��
;

A5ðx�;yÞ¼
ffiffiffiffiffiffiffi
2

�R

s X1
n¼1

AðnÞ
5 ðx�Þsin

�
ny

R

�
: (2)

As already anticipated, difficulties arise when trying to
construct chiral fermion fields in more than four dimen-
sions. This is because in five dimensions, for example, it is
not possible to construct the equivalent of the �5 matrix
and bilinear quantities like �c���5c are not invariant
under five-dimensional Lorentz transformations and there-
fore they cannot appear in the 5D Lagrangian. This ulti-
mately implies that for each standard model field one must
introduce two 5D fermion fields whose zeroth order modes
combine to give the 4D chiral fermion. This however

leaves some extra massless degrees of freedom at the
zero level which can only be eliminated by formulating
the theory on an orbifold [10,23]. The five-dimensional
fermion field is thus expanded as

�ðx�; yÞ ¼ 1ffiffiffiffiffiffiffi
�R

p
�
c SMðx�Þ þ ffiffiffi

2
p X1

n¼1

c ðnÞ
L ðx�Þ cos

�
ny

R

�

þ c ðnÞ
R ðx�Þ sin

�
ny

R

��
: (3)

Performing the integration over the extra space dimen-
sion the derivatives with respect to y will bring about mass
terms that scale with the compactification radius R. Every
level-n KK excitation XðnÞ acquires, in addition to the SM

mass (level 0), obtained via the Higgs mechanism, a new
term:

m2
XðnÞ ¼ m2

Xð0Þ þ n2

R2
: (4)

These relations are however modified by radiative cor-
rections which turn out to be cutoff dependent. These
radiative corrections arise from loop diagrams traversing
the extra dimension [24] (bulk loops) and from kinetic
terms localized on the brane which appear on the orbifold
structure.

�ðm2
BðnÞ Þ ¼ g02

16�2R2

��39

2

	ð3Þ
�2

� n2

3
logð�RÞ

�
; �ðm2

WðnÞ Þ ¼ g2

16�2R2

�
� 5

2

	ð3Þ
�2

þ 15n2 logð�RÞ
�
;

�ðm2
gðnÞ Þ ¼

g23
16�2R2

�
� 3

2

	ð3Þ
�2

þ 23n2 logð�RÞ
�
; �ðmQðnÞ Þ ¼ n

16�2R

�
6g23 þ

27

8
g2 þ 1

8
g02

�
logð�RÞ;

�ðmuðnÞ Þ ¼
n

16�2R
½6g23 þ 2g02� logð�RÞ; �ðmdðnÞ Þ ¼

n

16�2R

�
6g23 þ

1

2
g02

�
logð�RÞ;

�ðmLðnÞ Þ ¼ n

16�2R

�
27

8
g2 þ 9

8
g02

�
logð�RÞ; �ðmeðnÞ Þ ¼

n

16�2R

9

2
g02 logð�RÞ:

(5)

Here 	ðzÞ is the Riemann zeta function, 	ð3Þ � 1:2020,
and � is the cutoff scale of the theory. It correspond to the
energy scale at which the effective five-dimensional theory
will break down, that is where the five-dimensional cou-
plings become strong and the theory is no longer perturba-
tive. � is the only additional parameter of the UED model
beside the size of the extra dimension R. It can be esti-
mated requiring that the loop expansion parameters remain
perturbative. It has been found that the SUð3Þ interaction
becomes nonperturbative before the other gauge interac-
tions for values of � * 10R�1. So the particle spectrum is
typically computed with the above Eq. (5) taking �R ¼ 5,
10, 20. In the above expressions the brane kinetic terms are
those dependent on the cutoff scale �. It should be noted
that for KK scalars and spin-1 bosons the corrections in
Eq. (5) simply add to Eq. (4), while the corrections for the

fermion masses are introduced via the replacement

n2=R2 ! ðn=Rþ �mðnÞÞ2.

III. u1 �u1 BOUND-STATE FORMATION

In this section we shall review the possible creation of a
bound state of the level-1 KK excitation of the u-quark, i.e.
a bound state u1 �u1. The interaction among two Kaluza-
Klein excitations are driven by the QCD interaction, thus
bearing no differences with respect to the standard model;
the strength of the interaction is given by �s computed at a
suitable scale [25–27]. We shall adopt the same formation
criterion stated there, namely, that the formation occurs
only if the level splitting depending upon the relevant
interaction existing among constituent particles is larger
than the natural width of the would-be bound state. This
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translates into the formation requirement

�E2P�1S � �; (6)

where �E2P�1S ¼ E2P � E1S and � is the width of the
would-be bound state. The latter is twice the width of the
single KK quark, � ¼ 2�KK, as each KK quark could
decay in a manner independent from the other.

We shall stress that � bears no resembling to the total
decay width of the resonance, as it only includes the single
KK decay mode and not the annihilation modes discussed
later in Sec. V. It represents the minimal energy level
spread needed for bound-state formation, which allows
for the separation among the fundamental and the first
excited state. If, and only if, the bound state is formed,
then it is possible to discuss its annihilation widths as
described in Sec. V. In our model VðxÞ is given by a
Coulombic potential

VðrÞ ¼ � 4�s

3r
(7)

with r ¼ jxj, and where �s is the usual QCD coupling
constant which has been taken at a suitable scale as de-
scribed in [25,26]. This model has proved to be reliable
because of high mass values involved in the problem, and
gives the great advantage of having full analytical results.
We are thus able to compute its energy levels given by the
expression

"n ¼ � 4

9

m�2
s

n2
(8)

and the separation of the first two energy levels is given by

�E2P�1S ¼ 1

3
m�2

s : (9)

The scale at which�s is evaluated is given by the inverse of
Bohr’s radius rB ¼ 3=ð2m�sÞ, the average distance of the
constituents of the bound state. Therefore it is found by
solving numerically the equation Q ¼ ð2=3Þm�sðQÞ and it
is of orderOð10 GeVÞ form � 300 GeV andOð100 GeVÞ
for m � 1200 GeV. The corresponding values of �s are
given in Table I. The mass of the nth bound state is given

by the expression

Mn ¼ 2mþ "n; (10)

where m is the mass of the constituent u1 quark and En is
given by (8). The wave function at the origin, which will be
needed in order to compute decay widths, for this particu-
lar model is given by the expression

jc ð0Þj2 ¼ 1

�

�
2

3
m�s

�
3
: (11)

The obtained results are given in Table I.
We observe that the bound-state energies are of the order

of the GeV for this range of KK mass, and that the spread-
ing of the first two bound states raise linearly with m.
In order to determine whether the bound state will be

formed we shall apply the criterion given in Eq. (6). The
KK-quark decay widths have been already computed in
[21], where it has been shown that their values are at most
of the order of 100 MeV, 1 order of magnitude less than the
energy splittings. In this scenario the Eq. (6) requirement is
always fulfilled, and the bound state is formed for KK-
quark masses in this investigation range.

IV. GREEN FUNCTION

In order to describe the cross section of a KK bound state
in the threshold region we shall use the method of the
Green function. We briefly review here the essential fea-
tures of the mechanism, and refer the reader to the litera-
ture for further details [28]. We start from the Schrödinger
equation which describes the bound state by means of a
suitable potential VðxÞ,

H c ¼
�
�r2

x

2m
þ VðxÞ

�
c ¼ Ec ; (12)

where E is the energy eigenvalue of the bound state. The
threshold cross section of this bound state is then propor-
tional to the imaginary part of the Swave Green function of
this Schrödinger equation, G1Sðx; y; EÞ, where the two
constituent particles are sited in x, y and E is the energy
offset from the threshold (not to be confused with E),

TABLE I. Results of Coulombic model for the bound state of the level-1 isodoublet U1 quark. The strong coupling �s is computed at
the scale Q ¼ r�1

B , where rB ¼ 3=ð2m�sÞ is the Bohr’s radius. For each mass value m the scale Q ¼ r�1
B depending itself on �s must

be solved numerically from the equation Q ¼ ð2=3Þm�sðQÞ.
R�1 (GeV) KK mass (GeV) �sðr�1

B Þ State mass M (GeV) E1S (GeV) �Eð2P� 1SÞ (GeV)
300 358.54 0.136 714.06 2.937 2.203

400 478.05 0.131 952.57 3.627 2.720

500 597.56 0.127 1190.92 4.279 3.209

600 717.08 0.124 1429.30 4.903 3.677

700 836.60 0.122 1667.69 5.505 4.128

800 956.11 0.120 1906.11 6.089 4.567

900 1075.62 0.118 2144.54 6.658 4.993

1000 1195.14 0.116 2382.98 7.214 5.411
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ðH� EÞG1Sðx; y; EÞ ¼ �ðx� yÞ: (13)

By means of the substitution E ! Eþ i� we take into
account the finite width of the state.

The cross section is thus proportional to the expression

�� Im

�
Tr

@

@xi

@

@yj
G1Sðx; y; EÞ

���������x¼0;y¼0
: (14)

The derivative of Eq. (14) has a simple expression, as we
have

Tr
@

@xi

@

@yj
G1Sðx; y; EÞjx¼0;y¼0 ¼ 9G1Sð0; 0; EÞ: (15)

The complete expression for the 1S Green function of
our problem as a function of energy from threshold is given
with a slight change of notation by [29]

G1Sð0; 0; Eþ i�Þ ¼ m

4�

�
�2�

�
k

2�
þ log

�
k

�

�

þ c ð1� 
Þ þ 2�� 1

��
; (16)

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�mðEþ i�Þp
, � ¼ 2�sm=3 and the wave

number is 
 ¼ �=k; E ¼ ffiffiffi
s

p � 2m. The c is the logarith-
mic derivative of Euler’s gamma function �ðxÞ, � ’
0:577 21 is Euler’s constant, and � is an auxiliary parame-
ter coming out from a dimensional regularization, the
factorization scale, that cancels out in the determination
of physical observables.

The final expression for the production cross section of a
KK bound state is thus given by

�ðm;E;�; �sÞ ¼ 18�

m2
�BIm½G1S�; (17)

where �B is the Born expression of the cross section [30]
The process eþe� ! U1

�U1 proceeds through the annihi-
lation into the standard model (level-0) gauge bosons � and
Z but in principle one should also consider the contribution
of the level-2 gauge bosons �ð2Þ and Zð2Þ. Especially so in

our case of threshold production of the pair u1 �u1. Indeed in
this case m � 1=R, and

ffiffiffi
s

p ¼ 2mþ E � 2=Rþ E and
since m�2

� 2=R when producing at threshold the u1 �u1
pair we would be close to the �2 and Z2 resonances.
However as discussed in Sec. II the mass spectrum is
modified by the radiative corrections. We have verified
that over the region of parameter space 300 GeV 	 R�1 	
1000 GeV and 2 	 �R 	 70 the pair-production thresh-
old 2mu1 is always larger than m�2

, mZ2
and thus these

resonances should in principle be included in the calcula-
tion. We have also verified, cross-checking our calculation
with the output of a CalcHEP [31,32] session, that the
numerical impact of these diagrams is completely negli-
gible. Their contribution turns out to be 5 orders of magni-
tude smaller than that of the SM gauge bosons �, Z. The
analytic formula of the Born pair-production cross section
eþe� ! ��, Z� ! U1

�U1 can be deduced, for example,

from those of heavy quark (t�t) [33] taking into account
the fact that the level-1 KK quarks are vectorlike i.e. their
coupling to the Z is of the �� type and has no axial
component. Following the notation of [33] the amplitude
is written as

M ¼ g2V
X

V¼�;Z

�vðk2Þ��ðaV þ bV�
5Þuðk1Þ

� 1

DVðs;MVÞ �uðp1Þ��ðAV þ BV�
5Þvðp2Þ;

where DVðsÞ ¼ s�M2
V þ iMZ�Z is the gauge boson

propagator factor, aV , bV are the (standard model) cou-
pling coefficients of the electron to the gauge bosons while
AV , BV are the coupling coefficients of the level-1 KK U1

quark to the gauge bosons. These electron coefficients are
a� ¼ �1, b� ¼ 0, aZ ¼ �1=4þ sin2�W , bZ ¼ þ1=4,

with �W the Weinberg angle of the SUð2Þ 
Uð1Þ gauge
theory. The U1 coefficients are A� ¼ þ2=3, AZ ¼ 1=2�
ð2=3Þsin2�W [9], B� ¼ BZ ¼ 0 (recall that U1 is vector-

like). Finally g� ¼ e and gZ ¼ e=ðcos�W sin�WÞwith e the
electronic charge. The final expression of the Born pair-
production cross section is

�B ¼ �� þ �Z þ ��Z; (18)

�� ¼ 16��2

9s2
�ðsþ 2m2Þ; (19)

�Z ¼ 4��2 ða2Z þ b2ZÞA2
Z

½c2ws2w�2
�ðsþ 2m2Þ
jDZðsÞj2

; (20)

��Z ¼ �8��2
aZA�AZ

c2ws
2
w

�ðsþ 2m2Þ
jDZðsÞj2

�
1�M2

Z

s

�
; (21)

where cW ¼ cos�W and sW ¼ sin�W and � ¼ e2=ð4�Þ is
the QED fine structure constant. From Eq. (16) one can
readily see the behavior of the cross section (17) for large E
is given by k. The finite width of the state has been taken
into account by the substitution E ! Eþ i�, and this
position makes a great quantitative difference below
threshold. When computed for positive energy offset the
variation of � makes essentially no difference for the
resulting cross section.
In this work we shall concentrate on the continuum

region of the cross section, namely E> 0. The region
below threshold, E< 0, has been already discussed in
detail in Ref. [21], where the authors presented an analysis
of both the positions and the widths of the peaks using a
Breit-Wigner description. In this respect the Green func-
tion approach does not carry substantial differences rela-
tive to the Breit-Wigner one. Indeed the position of the
poles and the broadening of the peaks are the same due to
the presence, inside the c function of Eq. (16), of terms
which include the binding energy En of Eq. (8) and the
decay width �. For values of E close to En, the argument of
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the c function inside Eq. (16), namely, (1� 
), ap-
proaches a negative integer, simple pole of the function
in the complex plane, while the presence of the � deter-
mines the width of the peak centered in En.

In Fig. 1 we show the cross section for a range of the
value of the scale of the extra dimension, R�1 ¼
300–600 GeV, while Fig. 2 provides the same plots are
shown the range R�1 ¼ 700–1000 GeV. In both figures
the value of the other parameter is fixed at �R ¼ 20. This
parameter enters our calculations only when computing the
mass spectrum through the logarithmic terms in Eq. (5).
We thus provide a quantitative study of the effect of the
formation of bound states of the level-1 KK quarks with
respect to the parameter of the model (R�1). The results are
less sensitive to the other parameter (�R) which only
enters through the logarithmic factors in the radiative

correction terms in the mass spectrum of the model. In
Figs. 1 and 2 we have fixed �R ¼ 20 and varied R�1

computing the corresponding values of the level-1 KK
quark mass, and assuming the energy of the collider being
fixed at

ffiffiffi
s

p ¼ 2mU1
þ E, E being the energy offset from

the threshold. We have used a value of � ¼ 0:5 GeV for
illustrative purpose, compatible with the formation of
bound state. Different choices of � by even 2 orders of
magnitude smaller will not make a visible difference on the
figures.
One can observe that the cross section obtained by the

Green function has a behavior like
ffiffiffiffi
E

p
for small energy

offset. The cross section decreases with increasing mass:
for E¼10GeV its value is about 250 fb at R�1¼300GeV,
goes down to approximately 70 fb at R�1 ¼ 500 GeV.
Finally it approaches 13 fb at R�1 ¼ 1000 GeV as can
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FIG. 1. Production cross sections of level-1 KK doublet quark bound states U1
�U1 as a function of the energy offset from threshold

(
ffiffiffi
s

p ¼ 2mU1
þ E), for values of the scale of the extra dimension R�1 in the range ½300� 600� GeV and a total width of � ¼ 0:5 GeV.

The continuous line is the Green function result, the dotted one is the Born approximation given by our analytical formula [Eq. (22)].
The full circles represent the Born cross section from the CalcHEP [31] numerical session including also the annihilation diagrams of
�2 and Z2 whose contribution is however completely negligible. The numerical results from CalcHEP are in complete agreement with
our analytical formula in Eq. (22). The cutoff scale �, at which perturbative expansions break down, has been fixed so that �R ¼ 20.

N. FABIANO AND O. PANELLA PHYSICAL REVIEW D 81, 115001 (2010)

115001-6



be seen form Fig. 2. The Green function cross section is
larger than the Born cross section by a factor that ranges
from 2.7 (at R�1 ¼ 300 GeV) down to 2.2 (at R�1 ¼
1000 GeV) at the same energy offset value (E ¼
10 GeV). This result is due to the fact that the Green
function method takes into account the existing interaction
among constituent particles, and the contribution of bind-
ing energies accumulate towards the " ¼ 0 level, thus
substantially contributing to the continuum region as well.

An important consideration is in order here. The results
for the bound-state cross section given depend solely on the
coupling constant �sðrBÞ and the mass of the KK excita-
tion, thus they are universal to bound states made out of
other flavors of KK quarks. This however does not apply to
other kinds of KK excitations bound states, like for in-
stance bound states of KK leptons. In this case we have
� � �QED for coupling constant, much weaker at this scale

than the strong coupling constant �sðrBÞ. The QED cou-
pling constant would lead, not only to lower values for the
absolute production cross section, but will also reduce
drastically the main effect being discussed here, i.e. the
enhancement, above threshold, due to the bound-state in-
teraction relative to the Born cross section. The threshold
cross section would be only a few percent larger than the
Born cross section. It would not clearly be an effect as large
as that shown in Figs. 1 and 2 which turns out to be quite
striking, i.e. the threshold bound-state cross section is
about 3 times as large as the Born result.

V. u1 �u1 DECAY WIDTHS

The KK bound states we discuss here are the pseudo-
scalar 1S0 and the vector one 3S1. For the pseudoscalar

state the decay channels are into two photons or two gluons
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FIG. 2. Production cross sections of level-1 KK doublet quark bound states U1
�U1 as a function of the energy offset from threshold

(
ffiffiffi
s

p ¼ 2mU1
þ E), for values of the scale of the extra dimension R�1 in the range ½700� 1000� GeV and a total width of � ¼

0:5 GeV. The continuous line is the Green function result, the dotted one is the Born approximation given by our analytical formula
[Eq. (18)]. The full circles represent the Born cross section from the CalcHEP [31] numerical session including also the annihilation
diagrams of �2 and Z2 whose contribution is however completely negligible. The numerical results from CalcHEP are in complete
agreement with our analytical formula in Eq. (18). As in Fig. 1 we have kept fixed �R ¼ 20.
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for which the following Born level expressions hold (see
for instance [26]):

�Bð1S0 ! ��Þ ¼ q4i �
2 48�jc ð0Þj2

M2
(22)

and

�Bð1S0 ! ggÞ ¼ �2
s

32�jc ð0Þj2
3M2

: (23)

Here qi is the charge of the constituent quark of the bound
state, while M and jc ð0Þj2 are given by (10) and (11),
respectively.

The QCD radiative correction [34], which is the same in
the two cases, leads to the following one-loop width:

� ¼ �B

�
1þ �s

�

�
�2 � 20

3

��
: (24)

The results obtained for the two decays 1S0 ! �� and
1S0 ! gg are shown in Fig. 3.

For the vector case 3S1 the relevant decay channels are
the one in charged pairs and the one into three gluons, for
which one has

�Bð3S1 ! qþf q
�
f Þ ¼ q2i q

2
f�

2 16�jc ð0Þj2
M2

(25)

and

�Bð3S1 ! gggÞ ¼ ð�2 � 9Þ
�

�3
s

160�jc ð0Þj2
81M2

: (26)

The charge of the final state charged particle is given by qf.

The QCD radiative corrections [34] modify these expres-
sions into

�ð3S1 ! qþf q
�
f Þ ¼ �Bð3S1 ! qþf q

�
f Þ
�
1� 16

3

�s

�

�
(27)

and

�ð3S1 ! gggÞ ¼ �Bð3S1 ! gggÞ
�

�
1þ�s

�

�
�14þ 27

2
ð1:161þ logð2ÞÞ

��
:

(28)

Observe that the �s that appears in the perturbative cor-
rections has to be computed at a scale of the order of 2m. It
is thus different from the �s occurring in the expression of
the wave function at the origin given by (11), the latter
being computed at the scale of the inverse of Bohr radius.

The two decays of the vector state are shown together in
Fig. 4.

We observe that only the pseudoscalar hadronic decay is
in the MeV range and raises approximately linearly with

KK mass. The 1S0 photonic decay and 3S1 decays are

smaller by almost 2 orders of magnitude for the considered
KK mass range. For the pseudoscalar case the hadronic is
the dominant decay by far, while in the vector case the
decay into charged particles, when taking into account all
possible processes as seen in Fig. 4 overtakes the hadronic
decays.
Other electroweak decay channels are negligible. Those

are proportional to �2, thus their ratio to gluonic decays is
suppressed by ð�=�sÞ2, at least by 2 orders of magnitude.
For most scenarios depending upon the values of � and

R [21] single quark decay becomes the dominant decay
channel for the bound state.
Any two-body decay width of the bound state is propor-

tional to g2jc ð0Þj2=M2, where g is the relevant coupling to
the decay particles. Thus any electroweak width is in the
keV range, as previously seen. This result is true in general
for any two-body decay process, the only notable excep-
tion being the hadronic decay of (23), as the g coupling this
time is rather large, being equal to �s. In this case the value
is in the MeV range, as seen in Fig. 3.
Three-body decays are further suppressed with respect

to previous formula by another power in g and phase-space
reduction, resorting again in the keV range of energies.
From [21] one sees that in most cases single quark

decays (SQD) are by far the most important decay channels
of the bound state, to the order of hundreds of MeV, while
as discussed above bound-state decays are essentially neg-
ligible. Moreover a comparison of those SQD widths with
the results of Table I through Eq. (6) shows that for the
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FIG. 3. Solid line: decay width (keV) of the pseudoscalar u1 �u1
bound state to two photons as a function of KK excitation mass.
Dashed line: decay width (MeV) of the pseudoscalar u1 �u1 bound
state to two gluons as a function of the KK mass.
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considered mass range of KK there is formation of the
bound state.

VI. DETECTION

As we have previously seen, for large R�1 values
(R�1 > 300 GeV) SQD is the dominant decay channel
for a KK bound state, thus leading a to a dominant signa-
ture consisting of two monochromatic quarks plus missing
energy. Other interesting signatures that could be consid-
ered, for example, the three jet production due to the
bound-state decay into three gluons 3S1 ! ggg discussed
in the previous section, are clearly subdominant given the
fact that Bð3S1 ! gggÞ � 10�3.2 Such signatures, in ad-
dition would have to be confronted with important QCD
backgrounds. Therefore in the following discussion we
concentrate on the dominant channels given by the single
quark decay whose branching fractions, on the contrary,
can be as high as 65% and 98% and involve missing energy
in the final state. Following [28] we limit our analysis to the
region above threshold, i.e. E> 0. The region below
threshold, E< 0, is characterized by peaks in the cross
section for values of E equal to binding energies of the
bound states. The width of those peaks are given by the
decay width of the bound state, which are at most of the
order of the MeV for the SQD and much less, of the order

of the keV, for other annihilation decay modes, as dis-
cussed in Sec.. V.
From Eq. (8) we can estimate the separation of the

various peaks below threshold, which tend to merge
when they accumulate, that is for n such that

4

9
m�2

s

�
1

n2
� 1

ðnþ 1Þ2
�
� �: (29)

In this manner we estimate that the last resolved peak has a
quantum number n that satisfies

2nþ 1

n2ðnþ 1Þ2 � 9�

4m�2
s

¼ �

E1

 1 (30)

from the values Table I and using a width value of the order
of 20 MeV there are only around 5 peaks left before
merging.
Because of initial state radiation (ISR) and beam energy

spread, of the order of the GeV for a future linear collider,
it is unclear whether it could be possible to resolve those
peaks of keV magnitude with this machine. The only
potentially detectable peaks should be the ones belonging
to a SQD, provided one has a scenario with widths of the
order of the MeV.
The situation above threshold changes drastically with

respect to the ‘‘naive’’ Breit-Wigner estimate, as is clearly
shown in Figs. 1 and 2. A few GeV above threshold make
for a factor of 3 of increase compared to the Born cross
section, allowing a clear distinction between the two cases.
Assuming an annual integrated luminosity of L0 ¼
100 fb�1 and a scale of the extra dimension R�1 ¼
300 GeV one finds around 2:5� 104 events per year of
two quark decay for a center of mass energy of 10 GeV
above threshold (we adopt here the scenario for which the
branching ratio of SQD is essentially 1). The number of
events per year loses an order of magnitude at R�1 ¼
700 GeV, that is about 3� 103, as could be inferred
from Fig. 2.
As we have already said the decay width of the KK

bound state will be given by twice the decay of the single
quark, as the SQD dominates, being of the order of up to
hundreds of MeV. For our �u1u1 bound state there are two
possible scenarios of decay pattern [24]. The first one
concerns the isosinglet u1R for which the decay channel

into W1 is forbidden while that into Z1 is heavily sup-
pressedBðu1R ! Z1u0RÞ � sin2�1 � 10�2 � 10�3 and the

dominant channel is given by u1R ! u0R�1, with Bðu1R !
u0R�1Þ � 0:98 whose signature is a monochromatic quark

and missing energy of the KK photon, the latter being the
LKP [24].
For the isodoublet u1L the situation is more interesting,

as more channels are available [24], notably u1L ! d0LW1

with Bðu1L ! d0LW1Þ � 0:65 and u1L ! u0LZ1, with

Bðu1L ! u0LZ1Þ � 0:33 while the branching ratio into �1

is negligibleBðu1L ! u0L�1Þ � 0:02. The decay chain into
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FIG. 4. Decay widths of the u1 �u1 vector bound state to two
charged particles and into three gluons as a function of KK mass.
Here we have considered all possible electromagnetic decay.

2The valueBð3S1 ! gggÞ � 10�3 is easily obtained assuming
a SQD width of the order of a few hundreds MeVand combining
this with the results of the partial widths given, for example, in
Fig. 4 [or by using Eq. (25) and (26)].
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W1 can follow the scheme u1L ! d0LW1 ! d0L‘0
1L !
d0L‘0
0�1 with branching ratio given by

Bðu1L ! d0L‘0
0�1Þ � Bðu1L ! d0LW1Þ
�BðW1 ! l0
1ÞBð
1 ! 
0�1Þ

� 0:65� 1=6� 1 � 10�1 (31)

and alternatively, the same final state could be reached by
the scheme u1L ! d0LW1 ! d0L‘1
0L ! d0L‘0
0L�1. As

compared to the isosinglet case, the result is a monochro-
matic quark, a lepton and missing energy in both cases.

The decay into the Z1 channel is u1L ! u0LZ1 !
u0L‘0‘1 ! u0L‘0‘0�1, resulting in a monochromatic

quark, two leptons, and missing energy. The branching
ratio of the above chain is

Bðu1L ! u0L‘0‘0�1Þ � Bðu1L ! u0LZ1ÞBðZ1 ! L0L1ÞB
� ðL1 ! ‘0�1Þ

� 1

3
� 1

6
� 1 � 5� 10�2: (32)

These leptonic decays of u1 have much cleaner signatures
than the hadronic ones allowing, in principle, for a better
detection of the signal.

In all cases we emphasize that the observable signal of
the bound-state production at the linear collider would be
similar to that of the Born pair production except for the
absolute value of the cross section. In particular, assuming
for definiteness a linear collider operating around the
threshold

ffiffiffi
s

p ¼ 2mþ E GeV we would have for R�1 ¼
300 GeV and E ¼ 10 GeV, in the case of an isosinglet
bound state (or Born pair production of u1R):

eþe� ! 2 jetsþ E6 (33)

with cross section

�ðeþe� ! 2 jetsþ E6 Þ � �BKK
� ½Bðu1R ! u0�1Þ�2

� 173 fb: (34)

We note that the �BKK
for the isosinglet u1 has to be

computed ex novo and cannot be read from the values of
Fig. 1 since it refers to the isodoublet U1. The singlet and
doublet have, when including radiative corrections, differ-
ent masses and the corresponding pair-production thresh-
old is therefore different. For the values of the scale of the
extra dimension R�1 ¼ 300 GeV the mass of the u1 iso-
singlet is mu1 ¼ 351:75 GeV (slightly lighter than the iso-

doublet) and the corresponding Green function cross
section at an energy offset of E ¼ 10 GeV is �BKK

¼
181 fb. At an eþe� collider this signal has a standard
model background from ZZ production with one Z decay-
ing to neutrinos and the other decaying hadronically. The
cross section for ZZ boson production is � 244 fb at an
energy offset of E ¼ 10 GeV from the relative thresholds.
This provides the following estimate for the SM back-

ground at R�1 ¼ 300 GeV:

�SMð2 jetsþ E6 Þ � 244 fb� 0:7� 0:2 � 34 fb: (35)

In the case of an isodoublet bound state (or Born pair
production of U1) the W1 decay chain gives the signal

eþe� ! 2 jetsþ 2‘þ E6 (36)

with cross section (see Fig. 1)

�ðeþe� ! 2jþ 2‘þ E6 Þ ¼ �BKK
½Bðu1L ! d0L‘0
0�1Þ�2

� 275 fb� ð10�1Þ2
¼ 2:75 fb; (37)

while the Z1 decay chain gives rise to the signature

eþe� ! 2 jetsþ 4‘þ E6 (38)

with cross sections

�ðeþe� ! 2jþ 4‘þ E6 Þ ¼ �BKK
½Bðu1L ! u0L‘0‘0�1Þ�2

¼ 275 fb� ð5� 10�2Þ2
� 0:69 fb: (39)

Triple gauge boson production, WWZ, ZZZ at a high
energy linear collider has been studied in Refs. [35,36].
It has been found that these processes receive a substantial
enhancement in the Higgs mass range 200 GeV<mH <
600 GeV particularly the ZZZ channel. As these processes
provide a source of standard model background for our
signal we estimate them both at a value of mh ¼ 120 GeV
and at a value of mh ¼ 200 GeV for which the cross
sections are enhanced. Production of WWZ can for in-
stance give rise to the signature of 2 jetsþ 2‘þ E6 via
leptonic decay of the W gauge bosons and hadronic decay
of the Z boson, while the ZZZ production can produce
2 jetsþ 4‘þ E6 via hadronic decay of one Z while the
others decay leptonically with one of them to a pair of 
which subsequently decay to ‘
 �
 (‘ ¼ e, �). Estimates of
the resulting cross sections are found using the CalcHEP
[32] and CompHEP [37] software. We have verified agree-
ment with previous results given in Ref. [36] and for a
Higgs mass of mh ¼ 200 GeV we find, for R�1 ¼
300 GeV at

ffiffiffi
s

p ¼ 2mU1
þ 10 � 724 GeV,

�ðWWZÞ � 72 fb; (40)

�ðZZZÞ � 7 fb: (41)

We thus find at
ffiffiffi
s

p ¼ 724 GeV within the standard model

�SMð2jþ 2‘þ E6 Þ � 70 fb� ð0:1Þ2 � 0:7 � 0:5 fb;

�SMð2jþ 4‘þ E6 Þ � 7 fb� ð0:3Þ2 � 0:7� ð0:17Þ2
� 1:2� 10�2 fb: (42)

The 2 jetsþ 2‘þ E6 channel could be potentially conta-
minated also from t�t pair-production cross section which at
such high energies is Oð300Þ fb [38]. Assuming the top
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quarks to decay with probability one toWb and then theW
gauge boson decay via the leptonic mode [with BðW !
‘
‘Þ � 0:1] would mimic the signal with a cross section
�SMð2 jetsþ 2‘þ E6 Þ � 3 fb. However in this case we
expect b-tagging of the hadronic jets. Assuming an effi-
ciency in b-tagging of 60% we would get a contribution of
1.2 fb to the 2 jetsþ 2‘þ E6 cross section which has to be
added to that in Eq. (42). This has been done in the
calculation of the statistical significance of Table II.

We conclude providing an estimate of the statistical
significance,

SS ¼ Nsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ns þ Nb

p ; (43)

of the three signals discussed above as related to an inte-
grated luminosity of L0 ¼ 100 fb�1 (Ns is the number of
signal events and Nb is the number of background events).

These estimates are given in Table II and Fig. 5. Albeit
quite encouraging (especially so the SS of the 2 jetsþ E6 )
we should bear in mind that the actual observation of these
signals might be not be so easy from the experimental point
of view. Indeed it is quite likely that in a framework of a
quasidegenerate KK mass spectrum the jets will be typi-
cally quite soft and therefore difficult to detect. It is there-
fore customary to concentrate on the much cleaner
multilepton signatures [24,39]. Indeed a similar analysis
to the one given here, but with a perspective on signals
arising at the Compact Linear Collider (CLIC), regarding
the (Born) pair production of level-1 KK leptons and level-
1 KK quarks is given in Ref. [39].
It is also well known that jets, multilepton, and missing

energy signals are as well typical of supersymmetric mod-
els. Indeed detailed studies have already appeared in the
literature regarding the possibility of distinguishing super-
symmetric and universal extra-dimension models at both
the large hadron collider and linear collider: see, for ex-
ample, Refs. [40–42].
However, in all cases, angular, invariant mass, and/or

missing energy distributions of the discussed signals would
be identical to those obtained in the Born pair production.
In our opinion further detailed analysis of the signals and
of the possible SM backgrounds (and/or competing SUSY
signals) goes beyond the scope of this study, whose main
objective is to emphasize the dramatic increase of the
bound-state cross section relative to the Born pair
production.

VII. CONCLUSIONS

Within a universal extra-dimensional model we have
considered the formation and decay of a bound state of
level-1 quark Kaluza-Klein excitation and its consequent
detection at a linear eþe� collider. Since mKK should be
larger than at least 300 GeV we have used a model with a

300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

R 1 GeV

SS

2j ME 10 1

2j 2 ME

2j 4 ME

FIG. 5. Statistical significance (SS) for the various channels
discussed in the text as a function of the scale R�1 of the extra
dimensions. Note that the statistical significance of the 2jþ E6 is
scaled down by a factor of 10.

TABLE II. Estimate of the statistical significance SS as defined in Eq. (43) and corresponding to the annual integrated luminosity
L0 ¼ 100 fb�1 for the three channels discussed in the text as a function of R�1 and

ffiffiffi
s

p ¼ 2mU1
þ E, assuming an energy offset of

E ¼ 10 GeV from the threshold. The physical threshold of the 2 jetsþ E6 channel is different form that of the other two channels as it
refers to the u1 isosinglet level-1 KK quark whose masses at various values of R�1 are given in column two and can be compared with
the corresponding masses of the U1 state from Figs. 1 and 2. The values of the statistical significance for the two multilepton channels
have been computed for two values of the Higgs mass mh ¼ 120ð200Þ GeV. Again �R ¼ 20.

R�1 (GeV) mu1 (GeV) 2 jetsþ E6 2 jetsþ 2‘þ E6 2 jetsþ 4‘þ E6
(isosinglet) mh ¼ 120 ð200Þ GeV mh ¼ 120 ð200Þ GeV

300 351.7 121.8 13.1 (12.9) 8.3 (8.2)

400 469.0 81.1 8.2 (8.1) 5.6 (5.6)

500 586.2 58.7 5.7 (5.6) 4.2 (4.2)

600 703.5 44.4 4.1 (4.1) 3.3 (3.3)

700 820.7 35.3 3.1 (3.1) 2.7 (2.7)

800 938.0 29.0 2.4 (2.4) 2.3 (2.3)

900 1055.2 24.1 1.9 (1.9) 1.9 (1.9)

1000 1172.5 20.8 1.6 (1.6) 1.7 (1.7)

THRESHOLD PRODUCTION OF METASTABLE BOUND . . . PHYSICAL REVIEW D 81, 115001 (2010)

115001-11



Coulombic potential. Admittedly this is a model assump-
tion and it should be kept in mind that our results are
strictly valid only within this premise, which however
has the advantage of providing full analytical expressions
for the effect. Being a bound state we have used the Green
function technique for the evaluation of its formation cross
section in the threshold region, which is more appropriate
than the standard Breit-Wigner picture as it takes into
account the binding energy and the peaks of the higher
level excitations that coalesce towards the threshold point.
The net effect is a dramatic increase of the cross section in
the continuum region right of the threshold. This multi-
plicative factor is roughly 2.7 for R�1 ¼ 300 GeV and
drops down to 2.2 at R�1 ¼ 1000 GeV. The Green func-
tion cross section would allow more than� 104 events per
year even at R�1 ¼ 400 GeV (mU1

� 478 GeV) for a

suitable integrated luminosity of the eþe� linear collider
(L0 ¼ 100 fb�1). The number of events R�1 ¼ 1000 GeV
(mU1

� 1200 GeV) would still be � 103 at the same inte-

grated luminosity.

The large difference among the two descriptions of the
cross section should also possibly help in the determination
of the correct model for such a heavy bound state outside
the SM.
Our analysis of the backgrounds to the final states sig-

nals, though very simplified, indicates that the multilepton
channels have a good statistical significance (SS * 2) at
least up to R�1 ¼ 600� 700 GeV, which certainly war-
rants further detailed and dedicated studies of these chan-
nels and their backgrounds. The potentially large (1 order
of magnitude) estimated statistical significance of the 2jþ
E6 channel must be taken however with great caution be-
cause this type of signal may prove difficult to observe as it
will be characterized by soft jets within the relatively
degenerate mass spectrum of the extra-dimensional model.
Further detailed studies are also needed for this channel.
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