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We investigate, via Monte Carlo simulations, the phase structure of a system of closed, nonintersecting

but otherwise noninteracting, loops in 3 Euclidean dimensions. The loops correspond to closed trajectories

of massive particles and we find a phase transition as a function of their mass. We identify the order

parameter as the average length of the loops at equilibrium. This order parameter exhibits a sharp increase

as the mass is decreased through a critical value, the behavior seems to be a crossover transition. We

believe that the model represents an effective description of the broken-symmetry sector of the 2þ 1

dimensional Abelian Higgs model, in the extreme strong coupling limit. The massive gauge bosons and

the neutral scalars are decoupled, and the relevant low-lying excitations correspond to vortices and

antivortices. The functional integral can be approximated by a sum over simple, closed vortex loop

configurations. We present a novel fashion to generate nonintersecting closed loops, starting from a

tetrahedral tessellation of three space. The two phases that we find admit the following interpretation: the

usual Higgs phase and a novel phase which is heralded by the appearance of effectively infinitely long

loops. We compute the expectation value of the Wilson loop operator and that of the Polyakov loop

operator. The Wilson loop exhibits perimeter law behavior in both phases implying that the transition

corresponds neither to the restoration of symmetry nor to confinement. The effective interaction between

external charges is screened in both phases, however there is a dramatic increase in the polarization cloud

in the novel phase as shown by the energy shift introduced by the Wilson loop.
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I. INTRODUCTION

Although it is one of the simplest gauge theories, the
Abelian Higgs model is of substantial theoretical interest
[1,2]. It corresponds to scalar electrodynamics consisting
of a charged scalar field and a neutral vector field which is
the gauge boson of a Uð1Þ local gauge symmetry. It can be
defined in any number of space-time dimensions.

In 1þ 1 dimensions, the general absence of spontaneous
symmetry breaking [3] nor the Higgs mechanism [4] poses
a puzzle as to the manifestation of the Uð1Þ symmetry for
the naively spontaneously broken sector. Indeed, topologi-
cal vortices play the role of instantons and give rise to
tunnelling transitions which end up disordering the vacuum
[5]. The symmetry is actually restored; however, a Uð1Þ
gauge theory in 1þ 1 dimensions is classically linearly
confining. Consequently, charged states are hidden in neu-
tral bound states.

In 2þ 1 dimensions, the compact version of the theory
behaves quite differently than the noncompact version. A
Uð1Þ gauge theory can be thought of as a theory either with
gauge group Uð1Þ living on the compact manifold S1, or
with gauge group R1, (the real numbers under addition)
living on the noncompact manifold R1. The compact the-
ory, in the unbroken phase, shows linear confinement of
charges, instead of the classically expected logarithmic
potential [6], due to magnetic monopoles which act as
instantons. The actual details of the mechanism of this

confinement are rather complicated and we will not de-
scribe them here. In the noncompact case, magnetic mono-
poles do not exist; hence the expression of the symmetry
should be along more traditional lines: either the symmetry
is manifest with a logarithmic potential between charged
particles, or it is spontaneously broken and the interaction
is screened. In principle, the theory could even be linearly
confining for fractionally charged external sources.
The classically spontaneously broken sector of the non-

compact theory in 2þ 1 dimensions will be of interest in
this article. Here, the theory has topological solitons,
Nielsen-Olesen [7] vortices, which tend to disorder the
vacuum. Vortex lines in a type II superconductor [2] are
examples of physical phenomena which are well described
by such solitons. Looking at the 3-dimensional Euclidean
version of the theory, these vortices extend to tubes of
quantized magnetic flux. For these configurations to have
relevance to the functional integral, finiteness of the action
requires that they form closed loops. The contribution of
such closed vortex loops to the expectation value of the
Wilson loop [8] was computed, at strong coupling, in a
heuristic semiclassical analysis by Samuel [9]. There it was
proposed that, if the vortices are light enough, they should
effectively condense, giving rise to a novel phase, what was
called the ‘‘spaghetti vacuum.’’ What this means is that
contributions to the Euclidean functional integral come
preponderantly from configurations which are full of vor-
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tex loops. It was further deduced that there should be a
logarithmic potential induced between external charges.
Such a potential is in fact confining: it takes an infinite
amount of energy to move two particles infinitely far away
from each other, although it is not linearly confining. A
phase transition going from the standard symmetry broken
phase to a novel phase corresponding to a disgorging of
vortex tubes into the vacuum has also been proposed by
Einhorn and Savit [10] in their study of the lattice Abelian
Higgs model.

In this paper we study, by means of Monte Carlo simu-
lations on a lattice [8,11], a discretized, effective version of
the Abelian Higgs model. This amounts to the study of a
gas of loops on a lattice with Boltzmann weight corre-
sponding to the total length of the loops. We find indeed
that there is a rather sharp transition from small average
loop length to a configuration with an effectively infinite
loop, the average loop length showing a remarkable in-
crease. This kind of transition is very reminiscent of per-
colation type transitions [12]. In the Abelian Higgs model
interpretation the transition is from the standard Higgs
phase to a novel phase characterized by saturation of the
functional integral by configurations that are filled with
vortex flux loops. We do not however find the correspond-
ing classical logarithmic potential induced between exter-
nal charges [9]. External charges are still screened;
however, we find that the energy of the screening cloud
increases dramatically.

II. EFFECTIVE ABELIAN HIGGS MODEL AT
STRONG COUPLING

The Abelian Higgs model is described by the
Lagrangian density

L ¼�1

4
F��F

��þ1

2
D��ðD��Þ���

4
ðj�j2��2Þ2; (1)

where� is a complex scalar field, A� is aUð1Þ gauge field,
D� ¼ @� � ieA�, F�� ¼ @�A� � @�A� (�, � ¼ 0, 1, 2)

and �, e and � are taken to be positive constants. This
theory undergoes spontaneous symmetry breaking ap-
pended by the Higgs mechanism yielding a perturbative
spectrum of a massive vector boson with mass M ¼ e�

and a neutral scalar boson with mass m ¼ ffiffiffiffiffiffi
2�

p
�.

Additionally, the theory contains vortex solitons of
quantized magnetic flux in this sector. Their mass behaves
like � ¼ �2 � fð2�=e2Þ [13], where fð2�=e2Þ is a func-
tion that satisfies fð1Þ ¼ 1, but can take any positive value
as a function of �=e2. We can take the strong coupling limit
�, e ! 1 while keeping � and �=e2 fixed. This decouples
the perturbative excitations, m, M ! 1, leaving only the
vortices as the effective excitations. As was shown in [7],
in this limit, the size of the vortices vanishes and their
world lines resemble perfect, fundamental strings. We will

only study the Abelian Higgs model in the description
afforded by this effective model. The phase structure of
the effective model must be the same as that of the original
Abelian Higgs model sufficiently deep in the strong cou-
pling regime. Thus our results will shed light on the
asymptotic region of the strong coupling limit of the
Abelian Higgs model.
In the lowest approximation, neglecting gradient ener-

gies due to curvature, the action is given by �� L for a
closed loop of length L. The Euclidean vacuum-to-vacuum
amplitude is obtained by functionally integrating over field
configurations that correspond to the following Euclidean
time histories: they are the classical vacuum configuration
at the initial time, contain a number of virtual vortex
antivortex pairs at intermediate steps, and revert back to
the classical vacuum configuration at the final Euclidean
time. Thus, in this limit, the Abelian Higgs model is
equivalent to a gas of massive particles that carry a con-
served flux; these particles are noninteracting except when
they are in close proximity. All other excitations and their
interactions are negligible. Thus the functional integral is
evaluated by integrating over field configurations corre-
sponding to closed vortex loops [9], indeed a 3 dimensional
loop gas. We will calculate this integral by a numerical
Monte Carlo simulation on a lattice discretized version of
this effective theory.

III. LATTICE LOOPS

On the lattice, it is not straightforward how to construct
closed loops. We construct closed loops by starting with a
tessellation of Euclidean 3-space with (nonregular) tetra-
hedra. To generate this tessellation, we start with a body-
centered cubic (bcc) lattice in a box of size N ¼ N2

sN�.
Joining the central vertex in each cube with its corners fills
each cube with 6 identical pyramids with square bases
given by the faces of each cube. Splitting each pyramid
in half yields two irregular tetrahedra and the desired
tessellation. To define the splitting, we start with the cube
with one vertex at the origin, extending into the positive
octant. We cut each face from the origin to the opposite
diagonal corner in the ðx; yÞðy; zÞ and the ðz; xÞ plane,
respectively. Then we translate this scheme throughout
the lattice. This converts each pyramid into two (identical)
nonregular tetrahedra, giving a total of 12 tetrahedra in
each cube. All points inside the box fall into one tetrahe-
dron or another, except for the set of measure zero which
resides on the surfaces of the tetrahedra. Therefore, we
have filled space with tetrahedra.
Loops are generated by distributing the three cube roots

of unity over the vertices of the tessellation. A given
triangular face is associated with an oriented length of
vortex tube piercing it and going to the center if the change
of phase about the triangle corresponds to �2�, using the
right hand rule. If a triangular face of a given tetrahedron
has the cube roots of unity distributed on the vertices so
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that one unit of flux enters the tetrahedron, with a little
reflection it is easy to see that assigning any cube root of
unity to the fourth vertex of the tetrahedron necessarily
defines one unit of flux exiting the tetrahedron through
another of its triangular faces, passing from the center of
the original tetrahedron to the center of the neighboring
one. But since space is filled with tetrahedra this exiting
flux tube enters the neighboring tetrahedron, and repeating
the argument it must exit this tetrahedron, entering a third
tetrahedron, and so on. It is topologically impossible for
the vortex line to end; it must ultimately close on itself,
forming a closed loop, since the lattice is made up of only a
finite number of tetrahedra. The resulting configuration is a
system of closed vortex loops which are by construction
nonintersecting, since it is also topologically impossible
for two vortices to enter the same tetrahedron. A similar
scheme was originally implemented on a cubic lattice [14]
for cosmic strings. There, one could have two vortex lines
entering a cube and two exiting it, although it was impos-
sible to resolve the path of the vortex lines inside the cube.
Our tetrahedral dissection of the cube resolves this
ambiguity.

The actual Euclidean geometrical length of the loop will
depend on the explicit trajectory that the loop takes since
the distances between the centers of neighboring tetrahedra
are not all the same. For a long loop, these geometrical
factors average out, simply giving a renormalization of the
value of �, which includes the lattice spacing. The corre-
sponding effective action is Seff / ð�� LTÞ where the LT

is the number of triangles through which the loop passes,
where by abuse of notation we use the same symbol � to
represent the mass times the lattice spacing. We will call
LT the length of the loop. The shortest closed loop has
LT ¼ 4 while the maximum is LT;max ¼ 12N2

sN�.

IV. MONTE CARLO SIMULATIONS

Our simulations are performed on a bcc cubic lattice
with Ns ¼ 100, N� ¼ 100 and � from 0 to 1.5 using
Monte Carlo simulations [15,16]. We begin with an initial
arbitrary configuration of closed loops. Then we use the
standard Metropolis algorithm to generate an ensemble of
configurations which follow the Boltzmann distribution
with weight given by (e��LT ).

A. Thermalization

In Fig. 1, on a semi logarithmic scale, we show the
convergence of the total length of loops LT versus
Monte Carlo time (updates) for several values of � and
N� ¼ 100. Our unit of time corresponds to one complete
update of each site of the 1003 bcc lattice. The equilibrium
state does not depend on the initial state, but it is strongly
dependent on �. The average total length and the absolute
fluctuations grow as � is decreased, but the relative fluc-
tuations diminish.

B. Numerical evidence for a change in phase

In Fig. 2, we show the expectation value of the total
length of loops hLTi as a function of inverse � on a
logarithmic scale. We see that there is a dramatic change
in the curve around � ¼ 0:15 indicating a transition in the
system. We define the total density of the loops � as the
ratio of the computed LT to LT;max. The transition corre-

sponds to the appearance of effectively infinite loops in the
simulation. If the simulation could be done in infinite
space, at the transition a truly infinite loop would appear.
Infinitely long loops [14] in a finite volume are operation-
ally defined as those loops having a length L, much longer
than that they would normally have if they corresponded to
a closed, self-avoiding random walk. The size of a self-
avoiding random walk on a simple cubic lattice behaves as
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FIG. 1 (color online). Total length of loops as a function of
time for 1003 bcc lattice. From top to bottom, � ¼ 0, 0.1, 0.15,
0.3, 0.9, 1.5. Insert displays � ¼ 0:3, for two different initial
configurations.
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FIG. 2 (color online). Expectation value of the total length of
loops as a function of �, 0 � � � 1:5, with the insert focusing
on the region of the transition.
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L�3=5, closing the loop adds one constraint which should
not greatly modify this scaling law. Actually it is found that
the exponent should be slightly less than 3=5 on a cubic
lattice, but the exact value is not analytically known [17].
On our 1003 bcc lattice, with the tetrahedral trajectories, it
is not clear how the size of self-avoiding, closed random
walks would exactly scale with their length. However,
taking the cubic lattice result as a guide, simple calculation

yields 2005=3 � 6840, where 200 is the number of steps
from one side to the other of our lattice, hopping from the
corner of a cube to the center, back to the next corner and
so on. Therefore we treat any loop of length substantially
greater than 10 000 as an infinite loop.

Figure 3 shows snapshots of closed vortex loops, with
periodic boundary conditions, generated in the equilibrium
phase before the transition, for� ¼ 0:152 (top) where only

finite closed loops are present, and after the transition, for
� ¼ 0:148 (bottom) where larger closed loops are formed.
For a better visualization, only some loops are presented,
as otherwise the picture looks completely black, filled with
vortex loops. There is some theoretical understanding of
this phenomenon in thermodynamical studies of a network
of cosmic strings. The authors of [18] have noted that at
formation, the density of states of cosmic strings in the
early Universe is dominated by a large loop containing
most of the energy with a thermal distribution of finite, low
mass, strings. This density distribution was also described
by the authors in [14]. The number of microstates available
to the system is much greater when reorganized as a large
number of finite loops augmented by one infinite loop. The
density at which this happens corresponds to the Hagedorn
temperature and the transition corresponds to the Hagedorn
phase transition [19]. In the cosmological situation, as the
Universe expands the phase space favors configurations
where all the strings are chopped off into the smallest
possible loops.
In Fig. 4, we graph the density of finite loops. For small

values of the total density, there are no infinite loops; hence
the curve is linear with slope 1. We see a dramatic tran-
sition around � ¼ 0:207 which corresponds to � ¼ 0:152.
At the transition there is a sudden reorganization of the
vortex loops into one infinitely long loop and a number of
finite loops. Remarkably, the increase in the total density/
length of loops caused by further decreasing� occurs only
by appending to the infinitely long loop, the density of
finite vortex loops remaining essentially constant.

V. ORDER PARAMETERS

We want to analyze the nature of the novel phase and to
study the system around the transition point. For that, we
turn to the following observables as order parameters: the
average length of the loops, the Wilson loop operator [8]
and the Polyakov [6] loop operator.

FIG. 3 (color online). Snapshots of the closed loops generated
in equilibrium phase for 1003 bcc lattice. Identification of the
axes is arbitrary. (Top): Only the largest closed loops are
displayed for � ¼ 0:152, 1400 � L � 3000. (Bottom): Larger
loops are formed after the transition (see text) as shown for � ¼
0:148; the closed loop shown has L ’ 155 500.
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FIG. 4 (color online). Density of finite loops as a function of
the total density for 0 � � � 1:5.
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A. Length of the average loop

The average length of the loops, hLi, that make up the
ensemble of equilibrium configurations shows a remark-
able transition as a function of �. Below we plot hLi as a
function of ln�. We observe in Fig. 5 that the transition
occurs at lnð�Þ � �1:9 � lnð0:15Þ, exactly at the point
where the effectively infinite loop appears. Continuing
the figure to larger values of lnð�Þ is not feasible as the
equilibrium configuration is not easily obtained. The
Monte Carlo process of attaining equilibrium is asymptoti-
cally slowed.

B. Wilson loop

The Wilson loop operator corresponds to inserting into
the system two static, equal but opposite charges q, sepa-
rating them by a distance L for a duration T with (T � L),
and then annihilating them. The expectation value of
Wilson loop operator is given by

WðL; TÞ ¼ he�iðq=eÞHA�dx�i; (2)

where the integration is over the rectangular Wilson loop
(L� T) contour. For our effective model a dramatic sim-
plification occurs,

H
A�dx� exactly measures 2� times the

linking number � of the Wilson loop with the closed vortex
loops:

WðL; TÞ ¼ he�ið2�q=eÞ�i: (3)

For large T,WðL; TÞ � e��ðLÞ	T , where �ðLÞ ¼ limT!1 �
ð1=TÞ lnðWðL; TÞÞ, the energy shift, is the interaction en-
ergy of the static q �q pair separated by a distance L [8]. In
the usual Higgs phase, we expect that finite closed vortex
loops will give a perimeter behavior for the expectation
value of Wilson loop operator, which means that the

charges are screened. In the novel phase, however, the
infinitely long vortex loops could give a contribution that
has no relation to the perimeter.

FIG. 6 (color online). Wilson loop WðL ¼ 20; T ¼ 80Þ as a
function of 2�q=e from 0 to � for � ¼ 0:3, 0.2, 0.152 (upper)
and � ¼ 0, 0.13, 0.14, 0.147, 0.152. (lower)

FIG. 7 (color online). d�=dL as a function of 2�q=e for T ¼
80, 90, 98. The data points are our numerical results for� ¼ 0:2.
The solid lines are the fit of the form CðTÞsin2ðð2�q=eÞ=2Þ.

FIG. 5 (color online). Average length of the loops as a function
of lnð�Þ.
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Figures 6–8 shows our results for the numerical calcu-
lation of the potential between q �q. In Fig. 6 we start with
the calculation of the Wilson loop operator WðL; TÞ for
0 � 2�q=e � 2� for various values of � in the Higgs
phase in the upper graph for � ¼ 0:3 to the border of the
phase transition at � ¼ :152 and in the lower graph in the
novel phase for � ¼ 0:152 to � ¼ 0. We note that the
curve moves rapidly from the borderline value at � ¼
0:152 to that deep in the Higgs phase at � ¼ 0:3, con-
versely there is very little movement from the transition at
� ¼ 0:152 to � ¼ 0.

The energy shift at finite T, �ðL; TÞ, is analyzed for the
value� ¼ 0:2 in the Higgs phase, shown in the Fig. 7. The
energy shift should be a periodic function of the external
charge q; the expected form is �sin2ðð2�q=eÞ=2Þ [20]. A
perimeter law then would imply

�ðL; TÞ ¼ AðTÞ 	 sin2ðð2�q=eÞ=2ÞðLþ TÞ=T; (4)

while an area law would give

�ðL; TÞ ¼ BðTÞ 	 sin2ðð2�q=eÞ=2ÞðL� TÞ=T: (5)

In general, we allow a sum of the two behaviors and
AðTÞ ! A and BðTÞ ! B independent of T as T ! 1.
Then

d�ðL; TÞ=dL ! ðA=T þ BÞsin2ðð2�q=eÞ=2Þ (6)


 CðTÞsin2ðð2�q=eÞ=2Þ (7)

should be independent of L. The dots correspond to our
numerical simulation; the solid lines correspond to the fit.
In Fig. 8, the T dependence of CðTÞ is displayed; it is a
linear function of 1=T. The extrapolation of the curve to
T ! 1 yields Cð1Þ ¼ 0, i.e. B ¼ 0. This means that there
is only the perimeter law behavior for the Wilson loop
operator in the Higgs phase.

In the novel phase, for � � 0:152, the Wilson loop, as a
function of 2�q=e, does not vary greatly with �. It de-
creases as x 
 2�q=e approaches approximately 0.98

where it vanishes. This implies that the interaction energy
of the external charges is so large that our numerical
analysis is not able to resolve its value, within the resolu-
tion permitted by our lattice approximation. It does not by
any means imply confinement. In the novel phase we
cannot use the simple function sin2ðð2�q=eÞ=2Þ to give
the dependence on q. However we can easily see that the
Wilson loop is independent of the area. In Fig. 9 we plot the
Wilson loop as a function of L for a loop of size ðL; 100�
LÞ i.e. for a fixed value of the perimeter, and for a fixed
value 2�q=e ¼ 0:4. It is evident that the value of the
Wilson loop does not vary.
To compare the novel phase with the Higgs phase, we

can look at the distribution of the linking number, �, of the
Wilson loop. The histogram for the distribution of the
linking number are given in Figs. 10 and 11 for � ¼
0:13 and � ¼ 0:17, respectively. Such histograms were

FIG. 9 (color online). Wilson loop WðL; T ¼ 100� LÞ as a
function of area for � ¼ 0:13.

FIG. 10 (color online). Histogram of the Wilson loop linking
number � forWðL; T ¼ 40; 80Þ for � ¼ 0:13 in the novel phase.

FIG. 8 (color online). CðTÞ as a function of 1=T, � ¼ 0:2. The
dotted line is the linear fit.
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calculated for different values of � on either side of the
transition and for different sizes of the Wilson loop. In
Fig. 12 we plot the variance 	2, of the histograms as a
function of the perimeter, Lþ T for L ¼ 40 and T varying.
Clearly we find a perimeter law for the variance.

The expectation value of Wilson loop is constructed
from the histograms of linking number of the Wilson

loop. We compute eið2�q=eÞ�� for each value of the linking
number �, weigh that phase with the number of configu-
rations with that value of �, and then sum over all linking
numbers. This actually corresponds to calculating the char-
acteristic function of the probability distribution function
for the linking number [21]. Clearly this gives a sum of
phases which are distributed over the unit circle in a
manner depending on the exponent. If the 	� 2�q=e is
of the order of oð1Þ, the phases are essentially randomly
distributed over the unit circle, and the characteristic func-
tion vanishes. This is seen in Fig. 6 (lower graph) where the
expectation value of the Wilson loop crashes to zero for
2�q=e� :6 in the novel phase, when the variance sud-
denly becomes large. This behavior is to be contrasted with
that in the Higgs phase where the expectation value is a
smooth sinusoidal function of 2�q=e 2 ½0; 2�� as seen in
Fig. 6 (upper) for �> 0:152.

The perimeter law for the variance does translate into a
perimeter law for the Wilson loop. In Figs. 13 and 14, for
� ¼ 0:2 in the Higgs phase and for � ¼ 0:13 in the novel
phase, we plot the log of the expectation of the Wilson loop
as a function of the perimeter. We see a perimeter law for
the Wilson loop and a linear behavior of the derivative of
the energy shift in both phases. We do our analysis for a
fixed value of 2�q=e ¼ 0:4.

The conclusion we can make is that there is a dramatic
increase in the polarization cloud surrounding the external
charges as one passes from the Higgs phase to the novel
phase. From Figs. 13 and 14 we see that the coefficient for

the perimeter law for � ¼ 0:13 in the novel phase is
approximately 9 times larger than that for � ¼ 0:2.
Indeed, we can construct graphs analogous to Figs. 13
and 14 for many values of � and plot the parameter C,
which is the slope of the line in the graph of� lnðWÞ versus
Lþ T. We find a sharp crossover at the transition as shown
in Fig. 15, indicating the almost tenfold increase of the
polarization cloud energy.

C. Polyakov loop

At finite temperatures, one looks at the behavior of the
Polyakov loop operator, which is defined as the Wilson
loop variable taken along the entire (periodic) time direc-
tion N� for a fixed spatial position ~x. This is related to the
free energy of the system, Fq, in the presence of a single

FIG. 12 (color online). Plots of the variance as a function of
the perimeter for � ¼ :13, 0.2, 0.3, and 0.6. The dashed lines are
a linear fit.

FIG. 13 (color online). Plot of � lnðWÞ for � ¼ 0:13. The
dashed lines are a linear fit, we find � lnðWÞ ¼ 0:009 280ð�4�
10�6Þ 	 ðLþ TÞ þ 0:003 50ð�5� 10�4Þ

FIG. 11 (color online). Histogram of the Wilson loop linking
number for WðL; T ¼ 40; 80Þ for � ¼ 0:17 in the Higgs phase.
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heavy quark by [22]: hPð ~xÞi ¼ e�
Fq . In Fig. 16, we see the
behavior of the expectation value of the Polyakov loop
operator hPi mirrors almost exactly the behavior of the
Wilson loop as in Fig. 6. The position of the transition has
changed to a smaller value of �, and at a larger value of
2�q=e as should be expected, because the temperature has
been increased, corresponding to a Euclidean time direc-
tion of length 20.

VI. SCALING STUDY

In any lattice simulation, it is important to use a lattice
which is sufficiently large to eliminate finite size effects. In
Fig. 17, the mean total length of loops as a function of� is
displayed for various lattice sizes; normalizing by the
maximum possible length of loops Fig. 18, we see that it

FIG. 16 (color online). Polyakov loop for various values of �
for a lattice 20� 1002.

FIG. 17 (color online). Mean total length of loops hLTi for
various lattice sizes.

FIG. 15 (color online). Plot of the parameter C as a function of
� at fixed q.

FIG. 14 (color online). Plot of � lnðWÞ for � ¼ 0:2. The
dashed lines are a linear fit, we find � lnðWÞ ¼ 0; 001030�
ð3� 10�7ÞðLþ TÞ þ 8; 7� 10�4 � ð5� 10�5Þ.

FIG. 18 (color online). Normalized mean total length of loops
hLTi=Lmax for various lattice sizes.

MACKENZIE, NEBIA-RAHAL, AND PARANJAPE PHYSICAL REVIEW D 81, 114505 (2010)

114505-8



is independent of the lattice size, as expected. We find that
the transition point occurs for � � 0:15 for all lattices
larger than 103, so the lattice size used in this study
(1003) is amply sufficient.

In Fig. 19, the density of finite loops versus the total
density is illustrated, for various lattice sizes. The large
error bars are only present for the smaller lattices sizes,
103, 203, already at 403 we approach a consistent size
independent density as a function of �. For lattices sizes
greater than � 903, the results are essentially independent
of the lattice size. Finally in Fig. 20 the expectation value
of two sizes of Wilson loop are displayed for various
lattices sizes for � ¼ 0:13 as a function of 2�q=e.

Again, the results are clearly independent of the lattice
size. Therefore we conclude that using a lattice consider-
ably larger than 403, and especially the size 1003 that was
used for most of the simulations are perfectly adequate to
remove all finite size effects.

VII. DISCUSSION AND CONCLUSIONS

Our results show numerical evidence for a novel phase
in the phase diagram of the 3-d Abelian Higgs model at the
asymptotic boundary corresponding to strong (infinite)
coupling in the spontaneously broken Higgs phase. At
strong coupling the perturbative massive excitations, cor-
responding to the gauge boson and the neutral scalar, are
completely decoupled. The only remaining particle is the
vortex, which is an adjustable parameter. For a large mass
of the vortex, the vacuum configuration is saturated by
short loops of virtual vortex antivortex pairs. As this
mass is lowered, the vacuum is filled with longer and
longer virtual vortex antivortex pair loops. Finally at a
critical value, there is a transition to a novel phase, in
which the vortex loops reorganize into one effectively
infinite loop in addition to a bath of smaller finite loops.
In the Higgs phase, external charges are screened due to

a polarization cloud which leads to a perimeter law for the
Wilson loop, external charges are not confined. Smaller
than a critical value for the mass of the vortices, the
polarization cloud increases dramatically causing the en-
ergy shift as defined by the Wilson loop to increase 9–10
fold. The Wilson loop behavior however, remains the
perimeter law, contrary to the behavior that was surmised
in [9]. Since we have decoupled all perturbative excitations
of the scalar field, including specifically charged excita-
tions, it is in principle possible for the Wilson loop to
exhibit linear confinement. We explicitly find no depen-
dence on the area for the Wilson loop. We find that the
Wilson and Polyakov loop order parameters both vanish
after a large enough value of the external charge, however
this simply means that our lattice calculation is not able to
resolve the details of its behavior.
The novel phase is characterized by the appearance of an

effectively infinite vortex loop. The individual finite vortex
loops suddenly reorganize at the transition into one infinite
loop and a gas of remaining finite loops, as a function of�.
The total length of the loops increases as a function of
decreasing vortex mass, primarily through appending to
the infinite vortex loop. This novel phase was predicted by
[9] and also in [10]. In [10] the transition is described as the
passage between the phases labeled VII and I.
In [23] it was proven that there is no transition between

the Higgs phase and the Coulomb phase, however, they
look strictly at the compact version of the model. We are
considering the noncompact model here, the analysis for
nonexistence of confinement does not apply. Unfor-
tunately, we do not find any evidence of confinement,
even for fractionally charged external charges. Numerical

FIG. 20 (color online). WðL; TÞ for � ¼ 0:13 for various lat-
tice sizes.

FIG. 19 (color online). Density of finite loops as a function of
the total density for various lattice sizes.
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work similar to ours was also undertaken by [24], however
they did not see our phase. There are two differences
between our simulation and theirs. First, we simulate
only the effective model; hence, our results are valid only
on the asymptotic boundary of the full phase diagram of
the Abelian Higgs model whereas they [24], simulate
directly the gauge fields and scalar fields. Second, the
limits taken are slightly different: we take �, e ! 1 keep-
ing �=e2 fixed, whereas they take first � ! 1 and only
afterwards do they take e ! 1. Hence we go to the corner
of the phase diagram (in � and e space) along a particular
fixed line, while they go up to the rectangular edge first (at
� ¼ 1) and then move along the edge (taking e ! 1) to
the corner. It is clearly possible the two limiting procedures
do not commute. Furthermore, their numerical work was
done on a 163 lattice, which, according to our scaling
analysis, most probably will exhibit finite size effects.
The existence of the novel phase is expected to have

important ramifications for the phase structure of the
model in the presence of the Chern-Simons term [25].

ACKNOWLEDGMENTS

We thank NSERC of Canada and the Center for
Quantum Spacetime of Sogang University with Grant
No. R11-2005-021 for financial support. We thank Yvan
Saint-Aubin, Jeong-Hyuck Park, and David Ridout for
useful discussions and we thank Jacques Richer, of the
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