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We extend our work on QCD thermodynamics with 2þ 1 quark flavors at nonzero chemical potential

to finer lattices with Nt ¼ 6. We study the equation of state and other thermodynamic quantities, such as

quark number densities and susceptibilities, and compare them with our previous results at Nt ¼ 4. We

also calculate the effects of the addition of the charm and bottom quarks on the equation of state at zero

and nonzero chemical potential. These effects are important for cosmological studies of the early

Universe.
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I. INTRODUCTION

The quark-gluon plasma (QGP) is a state of matter
which forms at very high temperatures or densities. It is
believed that up to microseconds after the big bang the
QGP was a dominant component of the Universe. This
state of matter is recreated in heavy-ion collision experi-
ments [such as are done at the Relativistic Heavy Ion
Collider (RHIC)] which study its formation and transition
to ordinary matter. The equation of state (EOS) of the QGP
is essential to our understanding of its hydrodynamic ex-
pansion and consequently of the particle spectra produced
in these experiments. We have studied the EOS at zero and
nonzero chemical potential previously [1,2]. Here we ex-
tend our work in two directions. (1) We present results for
the EOS at nonzero chemical potential at finer lattice
spacings than our previous work. Here the temporal lattice
extent is Nt ¼ 6, where previously it was Nt ¼ 4.
Preliminary results for the Nt ¼ 6 case were reported in
Ref. [3]. It is important to compare the two cases and
determine the size of the discretization error as a step
toward taking the continuum extrapolation. (2) We include
the effects of the charm and bottom quarks. A preliminary
progress report on the charm quark effects was given in

Ref. [4]. We use the heavy-quark-quenched approxima-
tion. That is, the charm and bottom quarks appear as
valence quarks, but not as dynamical sea quarks. Thus
we ignore all charm and bottom quark loops contributing
to the operators we determine in order to obtain the EOS.
This approximation introduces an error in our calculation.
However, considering that the charm and bottom quarks
are much heavier than our sea u, d, and s quarks, it seems
plausible that adding sea charm and bottom quarks would
have a small effect for temperatures much less than their
masses. Still, until we have a dynamical c- and b-quark
calculation to compare against, this statement remains a
conjecture. The equation of state with the charm and
bottom quarks added is most applicable to the study of
the early Universe, since the time scale relevant to the
heavy-ion collisions at RHIC is probably too short for
the charm and bottom quarks to thermalize and have a
visible effect on the particle data.
As in our previous Nt ¼ 4 determination of the EOS at

nonzero chemical potential, we employ the Taylor expan-
sion method. For a detailed description of the method, see
Refs. [5,6]. The expansion is carried up to sixth order in the
expansion parameters �q=T, where �q is the chemical

potential for a certain quark flavor q and T is the
temperature.
The gauge ensembles we used in this work are the same

as in Ref. [2]. They are generated using the asqtad im-
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proved staggered action [7] and have two degenerate light
quarks and a strange quark in the sea. The ensembles lie
approximately on a trajectory of constant physics, where
the strange quark mass ms is tuned to be close to its
physical value, and the light-quark mass ml is one-tenth
of ms. Because in this paper we also consider charm and
bottom quarks, we do not refer to the strange quark as the
‘‘heavy quark’’ as in Refs. [1,2].

In Sec. II, we present our results for the 2þ 1 flavor
EOS with nonzero chemical potential at Nt ¼ 6, and com-
pare it with our previous one atNt ¼ 4. We also show other
thermodynamic quantities, such as the quark number sus-
ceptibilities and light-quark density. Section III gives our
findings for the isentropic EOS for 2þ 1 flavors. In
Sec. IV, we calculate the effects of the charm quark on
the EOS at zero and nonzero chemical potential, using the
heavy-quark-quenched approximation to represent it.
Section V does the same for the bottom quark. In
Sec. VI, we give our conclusions. The Appendixes contain
some helpful formulas for the application of the Taylor
expansion method for the EOS calculation in the 2þ 1þ 1
quark flavor case.

II. THE EOS AT NONZERO CHEMICAL
POTENTIAL AT Nt ¼ 6 FOR 2þ 1 FLAVORS

The Taylor expansion method allows us to represent the
pressure p and the interaction measure I in the case where
both the light and the strange quark chemical potentials are
nonzero, as the following infinite sums:

p

T4 ¼ lnZ
T3V

¼ X1
n;m¼0

cnmðTÞ
�
��l

T

�
n
�
��s

T

�
m
; (1)

I

T4
¼ �N3

t

N3
s

d lnZ
d lna

¼ X1
n;m

bnmðTÞ
�
��l

T

�
n
�
��s

T

�
m
: (2)

In the above, ��l;s are the chemical potentials for the light

and strange quarks in physical units, T is the temperature,
Ns is the spatial lattice extent, Z is the partition function,
and a is the lattice spacing. Because of CP symmetry, the
expansion coefficients cnm and bnm are nonzero only if nþ
m is an even integer. The explicit forms of these coeffi-
cients are given in Ref. [2], and since they are somewhat
involved, we do not repeat them here. We calculate the
coefficients stochastically with random Gaussian sources.
Inside the transition region, we used 800 random sources
per lattice, and outside, 400. With these numbers, the
stochastic error in the unmixed second order coefficients,
i.e., the diagonal quark number susceptibilities at zero
chemical potential, is about 20% of the full statistical error.
These coefficients are the ones with largest contribution to
the thermodynamic quantities for each type of quark. For
the fourth order unmixed coefficients, this error is about
50% of the final error. For the rest of the coefficients
(mixed coefficients and all coefficients of sixth order),

the contribution of the stochastic error is dominant. A
further increase of the number of sources as a way to
decrease the stochastic noise seems impractical at this
point. We need either significantly more computer power
or a substantial improvement of the noisy estimators in
order to reduce the resulting stochastic error.
Figures 1 and 2 show some of the coefficients in the

pressure expansion and compare our new results at Nt ¼ 6
(red filled circles) with the previous ones [2] at Nt ¼ 4
(black empty circles). We can see that the errors for the
Nt ¼ 6 case are smaller than the ones at the shorter tem-
poral extent, due to both the increased volume and in-
creased number of random sources. (We previously used
100–200 sources.) There is also a shift in the central values
between the two cases which indicates that the discretiza-
tion effects at Nt ¼ 4 are significant. The approach of the
coefficients to the (massless) Stefan-Boltzmann continuum
limit with increasing T in the case of Nt ¼ 6 is slower, and
the structure at low temperature is made somewhat clearer
due to the smaller errors on the data. Similarly, Figs. 3 and
4 compare the unmixed and mixed coefficients bnm in-
volved in the Taylor expansion of the interaction measure
at the two different temporal extents. These coefficients are
calculated independently from the ones in the pressure
expansion (although the two sets of coefficients are tech-
nically related by integration). The operators involved in
the determination of the interaction measure expansion
coefficients are intrinsically noisier, which is reflected in
the larger errors on the data. Still, the shift in central values
and errors in the bnm coefficients in going fromNt ¼ 4 to 6
is qualitatively similar to that of the pressure coefficients
cnm.
Having obtained the coefficients in the Taylor expan-

sions in Eqs. (1) and (2), we can now turn to calculating the
EOS. Because of the nonzero cn1ðTÞ terms, a nonzero
strange quark density ns is induced even with �s ¼ 0.
(We use�f to denote the chemical potential in lattice units

for flavor f.) To study the ns ¼ 0 plasma, we must, there-
fore, tune �s as a function of �l and T. Figures 5 (both
panels) and 6 (left panel) show the changes in the interac-
tion measure (�I), pressure (�p), and energy density
(�" ¼ �Iþ 3�p) at ��l=T ¼ 0:1, 0.2, 0.4, and 0.6, and
with ��s=T tuned along the trajectory so that ns � 0. We
see statistically significant discretization effects when we
compare theNt ¼ 4 and 6 cases for�p, with the latter data
lying lower than the former. The �I results have larger
errors, and discerning differences in the data from the two
temporal extents is more difficult. The Nt ¼ 6 data are
slightly but consistently lower than those from the Nt ¼ 4
calculation; however, this is not a statistically significant
observation. The change in the energy density �" inherits
the large errors from �I, and the same conclusions apply
for it. The discretization effects for the light-quark density
(nud), the light-light and strange-strange quark number
susceptibilities (�uu and �ss, respectively), are examined
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FIG. 1 (color online). Unmixed coefficients cn0 and c0n in the Taylor expansion of the pressure as a function of temperature. The new
results for Nt ¼ 6 are shown as filled (red) circles; empty (black) circles are used for Nt ¼ 4 (from Ref. [2]). Arrows indicate the
Stefan-Boltzmann limit for each of the coefficients.

FIG. 2 (color online). Mixed coefficients cnm in the Taylor expansion of the pressure as a function of temperature. The new results
for Nt ¼ 6 are shown as filled (red) circles; empty (black) circles are used for Nt ¼ 4 (from Ref. [2]). Arrows indicate the Stefan-
Boltzmann limit for each of the coefficients.
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FIG. 3 (color online). Unmixed coefficients bn0 and b0n in the Taylor expansion of the interaction measure as a function of
temperature. The new results for Nt ¼ 6 are shown as filled (red) circles; empty (black) circles are used for Nt ¼ 4 (from Ref. [2]).
Arrows indicate the Stefan-Boltzmann limit for each of the coefficients.

FIG. 4 (color online). Mixed coefficients bmn in the Taylor expansion of the interaction measure as a function of temperature. New
results for Nt ¼ 6 are shown as filled (red) circles; empty (black) circles are used for Nt ¼ 4 (from Ref. [2]). Arrows indicate the
Stefan-Boltzmann limit for each of the coefficients.
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FIG. 5 (color online). (Left panel) The change in the interaction measure due to the nonzero chemical potentials vs temperature. At a
given Nt, the larger ��l=T, the higher the data appear on the plot. (Right panel) Similarly, the change in the pressure.

FIG. 6 (color online). (Left panel) The change in the energy density due to the nonzero chemical potentials vs temperature. (Right
panel) The light-quark density vs temperature for several values of ��l=T (in different colors) and �s tuned such that ns � 0.

FIG. 7 (color online). (Left panel) The light-light quark number susceptibility vs temperature for several values of ��l=T (in different
colors) and �s tuned such that ns � 0. At a given Nt, the larger ��l=T, the higher the data appear on the plot. However, at low ��l=T
these differences are very small. (Right panel) The same for the strange-strange quark number susceptibility. Here the data dependence
on ��l=T is very weak.
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in Figs. 6 (right panel) and 7 (both panels). The effect of
increasing the temporal extent from Nt ¼ 4 to 6 is to lower
these quantities by 4%–10%. For the range of values of
��l=T that we examine, we do not find any evidence for
peaks that could presage critical behavior in �uu. The light-
strange quark number susceptibility (�us), shown in Fig. 8
(left panel), is too noisy for a reliable conclusion about its
discretization effects; there is only a hint at a possible move
toward lower absolute values at the larger Nt.

III. THE ISENTROPIC EQUATION OF STATE

The form of the EOS most applicable to the experimen-
tal conditions of the heavy-ion collisions is the isentropic
one. There, after thermalization, the system expands and
cools with constant entropy. We determine the isentropic

EOS by performing our calculations at fixed ratio of en-
tropy to baryon number (s=nB). This is achieved by finding
the trajectories in the ð�l;�s; TÞ space which satisfy
(within errors) both s=nB ¼ C and ns ¼ 0, where C is a
constant whose value depends on the particular experiment
we are interested in. For AGS, SPS, and RHIC, we have
s=nB ¼ 30, 45, and 300, respectively. Figures 8 (right
panel) and 9 (both panels) show our results for the inter-
action measure, pressure, and energy density for the differ-
ent s=nB values appropriate for these experiments. We
compare the new results at Nt ¼ 6 (filled symbols) with
the ones already published in Ref. [2] at Nt ¼ 4 (empty
symbols). For these three quantities, the comparison shows
negligible effects due to the increase of the temporal extent
Nt. The reason for this is that by far the largest contribution
to these quantities—the zero chemical potential (zeroth

FIG. 8 (color online). (Left panel) The light-strange quark number susceptibility vs temperature for several values of ��l=T (in
different colors) and �s tuned such that ns � 0. As in Fig. 7 (right panel), the data dependence on ��l=T is very weak. (Right
panel) The isentropic interaction measure vs temperature for selected values of s=nB.

FIG. 9 (color online). (Left panel) The isentropic pressure vs temperature for selected values of s=nB. (Right panel) The same for the
isentropic energy density.
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order) term in their respective Taylor expansions—does
not show large discretization effects [1]. On the other hand,
quantities which do not have a zeroth order term may show
larger differences between the Nt ¼ 6 and 4 cases. Indeed,
small discretization effects are evident in the isentropic
light-light and strange-strange quark number susceptibili-
ties in Figs. 10 (right panel) and 11 (left panel), respec-
tively. However, the isentropic light-quark density, shown
in Fig. 10 (left panel), has only marginal discretization
effects, despite the fact that it does not have a zeroth order
contribution. The large errors on the strange-light suscep-
tibility, shown in Fig. 11 (right panel), precludes us from
drawing a conclusion about its discretization effect. To
conclude with our final observation, for both values of
Nt, we find rather smooth behavior for the isentropic
variables indicating that experiments are far from any
critical point in the �� T plane.

IV. THE EFFECTS OF THE CHARM QUARK ON
THE EOS

In this section, we study the effects of the charm quark
on the EOS at zero and nonzero chemical potential. Our
preliminary results were reported in Ref. [4]. First, let us
discuss the relevance of the charm quark contribution. The
experiments at RHIC create a ‘‘fireball’’ which thermalizes
within � � 10�24 s [8]. The u, d, and s quarks participate
in the thermal ensemble describing the state of the ther-
malized fireball. Under the experimental conditions, the
c quark probably is not thermalized, and thus the 2þ 1
flavor EOS is considered sufficient for the hydrodynamics
models applied to the current experimental data. The ques-
tion of equilibration of charm, however, is not completely
settled as argued, for example, in Ref. [9]. Furthermore, the
situation may change for the future LHC experiments. A
quark-gluon plasma also existed microseconds after the big

FIG. 10 (color online). (Left panel) The isentropic light-quark density vs temperature for selected values of s=nB. (Right panel) The
same for the isentropic light-light quark number susceptibility.

FIG. 11 (color online). (Left panel) The isentropic strange-strange quark number susceptibility vs temperature for selected values of
s=nB. (Right panel) The same for the isentropic light-strange quark number susceptibility.
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bang. Under these primordial conditions and longer time
scales, the c quark probably participated in the thermal
ensemble as well, which implies that for the study of the
early Universe, the EOS with 2þ 1þ 1 flavors would be
important [10]. For example, the scale factor of the early
Universe is affected by the number of quark flavors in the
EOS used for its determination [11]. Previously, the ques-
tion of the charm quark contribution to the EOS at zero
chemical potential has been studied on the lattice in
Ref. [12] at Nt ¼ 4, 6, and 8 using the p4 fermion for-
mulation. That study treated the charm quark as a valence
staggered quark. We do the same, but in the asqtad for-
mulation at Nt ¼ 6. We tuned the charm quark using a
different strategy than in Ref. [12], where the charm quark
mass was determined using the �c or J=� rest mass on all
available ensembles. In our study, the charm quark mass
was tuned to match the rest mass of the Ds at � ¼ 7:08
(a � 0:086 fm) where the discretization effects are small-
est on our trajectory. We chose the Ds for our tuning
purposes because the discretization effects are smaller for
heavy-light mesons than for the heavy-heavy ones [13]. We
found mc=ms ¼ 10 at our tuning point with a 4% uncer-
tainty. We have kept this ratio constant for lower tempera-
tures. It is probably incorrect at the lowest available
temperatures, but due to large discretization effects, the
tuning is inherently problematic there. Still, we do not
expect this to matter much, thanks to the large mass of
the c quark and its very small contribution in that region.

Following our method in Ref. [1] for determining the
EOS at zero chemical potential, the 2þ 1þ 1 flavor in-
teraction measure was obtained by adding to our previous
results for the 2þ 1 flavor case the charm contribution

Ica
4 ¼ � 1

4

�
dðmcaÞ
d lna

�h �c c ic þ du0
d lna

�

�
�c
dM

du0
c

�
c

�
;

(3)

where the observables in the above are calculated in the
heavy-quark-quenched approximation and � stands for the
difference between the zero and nonzero temperature value
of an observable. The mass beta function is approximated
as

dðmcaÞ
d lna

¼ 10
dðmsaÞ
d lna

; (4)

since we kept the ratio mc=ms ¼ 10 constant along the
trajectory. We determined the strange quark mass beta
function and the function du0=d lna previously [1]. To
find the charm contribution to the pressure and energy
density, we integrated Eq. (3) along the physics trajectory,
as in Ref. [1] for the 2þ 1 flavor case.

Again, the nonzero chemical potential calculation was
done using the Taylor expansion method, taken to sixth
order. For 2þ 1þ 1 quark flavors, the Taylor expansion of
the pressure is modified to the following form:

p

T4 ¼ X1
n;m;k¼0

cnmkðTÞ
�
��l

T

�
n
�
��s

T

�
m
�
��c

T

�
k
; (5)

where ��l;s;c are the chemical potentials in physical units

for the light ðu; dÞ, strange (s), and charm (c) quarks.
Because of CP symmetry the terms in the above are non-
zero only if nþmþ k is even. The interaction measure
has the same form with only cnmk ! bnmk. Some details of
the explicit calculations for the pressure and interaction
measure coefficients can be found in the Appendixes. We
used 800 random sources per lattice in the transition region
and 400 outside it to calculate the new observables in the
expansions of the pressure and interaction measure. For the
calculation at nonzero chemical potential, the valence
c quark had a low cost in terms of computer time, but it
required a sizable software development. For 2þ 1 flavors
we had 95 observables to code and for 2þ 1þ 1 flavors
there were 399.
Turning to our results, let us first examine the effects of

the charm quark on the EOS at zero chemical potential.
Figure 12 (left panel) shows our results for the EOS with
2þ 1þ 1 flavors and compares it with previous results for
2þ 1 flavors [1]. The charm quark contribution grows with
temperature, as expected, and at the highest available T it
contributes about 20% to the energy density. We conclude
that in the cases where the charm quark is thermalized, its
contribution to the EOS at temperatures higher than about
200 MeV cannot be ignored. Our result at Nt ¼ 6 is
qualitatively similar to the previous work [12], but quanti-
tatively our charm quark contributions to the energy den-
sity and pressure are about 25%–30% lower by comparison
at temperatures around 400 MeV. A possible explanation
for this is the larger discretization effects for the heavy-
quark pressure for the asqtad action than for the p4 action.
Figure 12 (right panel) shows the free quark pressure as a
function of the ratio of the (heavy) quark mass and the
temperature for different staggered lattice fermion formu-
lations. The asqtad action atNt ¼ 6 shows a negative value
for the pressure for a range of heavy-quark masses while
the p4 action is close to the continuum limit. Our results
for the charm contribution to the EOS do not show the
outright unphysical behavior occurring in the free quark
case, but it is possible that the heavy-quark discretization
effects depress the lattice values.
Now let us turn to the results at nonzero chemical

potential. Figures 13 and 14 present some of the pressure
and interaction measure expansion coefficients which are
directly related to the charm quark contribution at nonzero
chemical potential. The first row in both figures shows the
unmixed coefficients and the second row—three of the
mixed coefficients. The mixed coefficients are quite small
and are much noisier than the unmixed ones, which was
expected. As a whole, the new unmixed coefficients c00n
and b00n in the pressure and interaction measure expan-
sions are small compared with the cn00, c0n0, bn00, and b0n0
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coefficients. For numerical comparisons see Sec. II, where
the latter four sets are defined without the last zero in the
subscripts. These new coefficients remain well below the
continuum (massless) Stefan-Boltzmann values at the

highest temperature available here. This is not surprising,
since over our temperature range T < 2Tc, the charm quark
mass is much larger than the temperature. The first panel of
Fig. 13 shows that c002 becomes slightly negative for

FIG. 12 (color online). (Left panel) Interaction measure (I), pressure (p), and energy density (") divided by the temperature to the
fourth power (T4) for the cases of 2þ 1 (red) and 2þ 1þ 1 (black) flavors. The arrows indicate the energy density Stefan-Boltzmann
limit for both cases. (Right panel) The pressure for 1 quark flavor in the free theory vs the ratio of the quark mass (m) and temperature
(T) for different staggered quark formulations. The rise of the pressure at large m=T in the HISQ case shows that higher order
corrections to the Naik term are needed in this region. Currently we have corrections up to Oðm8Þ only.

FIG. 13 (color online). Some of the new Taylor expansion coefficients for the pressure at nonzero chemical potential when the charm
quark is added to the partition function.
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FIG. 15 (color online). (Left panel) The quark number susceptibility for 1 quark flavor in the free theory vs the ratio of the quark
mass (m) and temperature (T) for different staggered quark formulations. The reason for the rise of the susceptibility in the HISQ case
for large m=T is the same as explained in the caption of the right panel of Fig. 12. (Right panel) The isentropic interaction measure at
selected s=nB values for 2þ 1 and 2þ 1þ 1 flavors (red and black, respectively). For a data set with the same color (i.e., produced
with the same number of quark flavors), the highest lying results are for s=nB ¼ 30, in the middle is the s=nB ¼ 45 case, and the case
of s=nB ¼ 300 has the lowest lying values.

FIG. 14 (color online). Some of the new Taylor expansion coefficients for the interaction measure at nonzero chemical potential
when the charm quark is added to the partition function.
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temperatures up to about 220 MeV. This behavior is ob-
viously unphysical, since this coefficient is directly pro-
portional to the necessarily positive charm quark number
susceptibility at zero chemical potential �ccð�l;s;c ¼ 0Þ �
hn2ci, where nc is the charm quark number density. It
follows that c002 should be a non-negative number at all
temperatures. We tracked this unphysical behavior to the
interplay between the heavy-quark mass and the Naik term
in the asqtad action. In the tuning of the latter, corrections
proportional to m2

c were not included. It is easiest to under-
stand this if we examine the quark number susceptibility
for free asqtad (Naik) fermions at large quark masses
shown in Fig. 15 (left panel). In the continuum limit, this
susceptibility should approach zero from above with in-
creasing heavy-quark mass. We find that at Nt ¼ 6 and 8
there is a pronounced ‘‘dip’’ into negative values for a
certain range of large quark masses. This effect is much
smaller at Nt ¼ 12. Since this particular discretization
effect does not occur for standard staggered fermions at
Nt ¼ 6, we conclude that certain thermodynamic quanti-
ties, such as susceptibilities, are sensitive to the ‘‘length’’
of the Naik term and require large Nt’s in order to over-
come their unphysical behavior. From Fig. 15 (left panel),
the p4 action seems to be much closer to the continuum
limit at Nt ¼ 6 and very probably will not show this
particular discretization effect in the dynamical case. The
HISQ action [14] improves the heavy-quark dispersion
relation by tuning the coefficient of the Naik term. (The
same tuning could have been done with the asqtad action.)
Tuning suppresses this unphysical behavior for Nt � 6 for
the range of m=T up to Oð8Þ. Still, in our unquenched 2þ
1 flavor case, the negative dip in the c002 coefficient is quite
small, so that its effect, for example, on the isentropic EOS
is negligible over the parameter range relevant to heavy-
ion collisions. Of course, other mixed and unmixed coef-
ficients might be affected by the limited temporal extent

Nt ¼ 6 as well, but since they are even smaller than c002 we
can also ignore their unphysical contribution at low tem-
peratures and small chemical potentials.
From the point of view of the isentropic EOS, our results

show that the effect of the charm quark cannot be simply
ignored. We have determined the approximate isentropic
trajectories in the ð�l;�s; �c; TÞ space, by numerically
solving the system

s

nB
ð�l;�s; �c; TÞ ¼ C;

ns
T3

ð�l;�s; �c; TÞ ¼ 0;

nc
T3

ð�l;�s; �c; TÞ ¼ 0;

(6)

with C ¼ 30, 45, and 300. Figures 15 (right panel) and 16
(both panels) present the 2þ 1þ 1 flavor isentropic inter-
action measure, pressure, and energy density, respectively,
and compare them with the 2þ 1 flavor case. We see that
the charm quark contribution is non-negligible, although it
is due mainly to the contribution of the zeroth order
coefficients in the Taylor expansions (i.e., the EOS calcu-
lated at zero chemical potential). We also note that for the
range of temperatures between about 220 and 280MeV, the
errors on the isentropic interaction measure become large.
In this region of the isentropic trajectory, �c is big enough
to make contributions from the quite noisy mixed coeffi-
cients visible. The isentropic energy density, of course,
inherits this feature, being a linear combination of the
interaction measure and the pressure.

V. EFFECTS OF THE BOTTOM QUARK ON THE
EOS

In the previous section, we presented evidence that the
charm quark contributions to the EOS are non-negligible.
At still higher temperatures the b- and eventually t-quark
contributions should be similarly non-negligible. In this
section, we examine the effects of the bottom quark on the

FIG. 16 (color online). (Left panel) The isentropic pressure at selected s=nB values for 2þ 1 and 2þ 1þ 1 flavors (red and black,
respectively). The data ordering is as in the right panel of Fig. 15. (Right panel) The same for the isentropic energy density.
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EOS in the range of temperatures up to about 400 MeV.
Since the bottom quark is considerably heavier than the
charm quark, we expect its contribution to the EOS to be
smaller. To estimate it, we simply repeated the charm quark
calculation but with a heavier mass corresponding to the
bottom quark. The quenching error, even if relevant, will
be smaller than the corresponding one for the charm quark.
On the ensemble that we used for the charm quark, we tune
the bottom quark mass to match the Bs rest mass to its
experimental value. We found that within 5% mb=ms ¼
38. We kept that ratio constant along the physics trajectory.
The problems of the tuning of the bottom quark are poten-
tially worse than in the case of the charm quark, but we do
not expect them to skew significantly our final result for the
EOS, since the bottom quark contribution itself is expected
to be small. Figure 17 (left panel) shows the pressure and
energy density at zero chemical potential with (2þ 1þ
1þ 1) and without (2þ 1þ 1) the bottom quark. We can
conclude that the bottom quark contribution to the EOS at
zero chemical potential is small (less than a standard
deviation) in the transition region. It grows to about a
standard deviation at temperatures close to 400 MeV.
However, the range of temperatures we examine here is
somewhat limited and probably by T � 600 MeV the bot-
tom quark effects would grow to be statistically significant
for comparable statistics at that temperature. We also have
to bear in mind that the heavy-quark discretization effects
may play a significant role here and keep the bottom quark
contribution lower than what it would be in the continuum
limit.

As for the EOS at small nonzero chemical potential, our
results for the coefficients of the Taylor series beyond the
zeroth order term discussed above show that the bottom
quark contribution can be safely ignored at the present
level of statistics. The discretization effect which we found

for the charm quark in the previous section is much worse
for the bottom quark. Figure 17 (right panel) compares the
c0020 coefficient (referred to as c002 in the previous section)
and the coefficient c0002 in the Taylor expansion for the
pressure when all chemical potentials �l;s;c;b � 0. The

c0002 is persistently negative at all available temperatures.
At the present level of statistics and small nonzero chemi-
cal potential, this effect is unimportant. But if higher
precision is desired, one should tune the coefficient of
the Naik term and increase Nt.

VI. CONCLUSIONS

We extended our thermodynamics study of the quark-
gluon plasma with chemical potential to finer lattices with
temporal extent Nt ¼ 6. Comparing our results with pre-
vious results at Nt ¼ 4 gives an indication of the impor-
tance of cutoff effects. As before, we used the Taylor
expansion method to sixth order for the case of 2þ 1 quark
flavors. We found small but significant changes in the
coefficients of the Taylor expansions of the pressure and
interaction measure in going from Nt ¼ 4 to 6. This leads
to small differences in the resulting interaction measure,
pressure, and energy density between the two cases, when
matching to the experimental condition of zero strange
quark density and keeping ��l=T constant. Under these
conditions, small discretization effects are also visible in
the light-light, light-strange, and strange-strange quark
number susceptibilities and the light-quark density. On
the other hand, the isentropic EOS shows very little differ-
ence between Nt ¼ 4 and 6. More pronounced lattice
spacing effects are evident in the isentropic light-light
and strange-strange quark number susceptibilities, which
we attribute to the fact that these quantities have contribu-
tions only from the nonzeroth order Taylor expansion
coefficients which are more sensitive to the cutoff. And

FIG. 17 (color online). (Left panel) The pressure and energy density vs temperature for 2þ 1þ 1 and 2þ 1þ 1þ 1 flavors (red
and black, respectively). The arrows indicate the energy density Stefan-Boltzmann values for both cases. (Right panel) The pressure
Taylor expansion coefficients c0020 and c0002 vs temperature.
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finally, we did not find any peaks along the isentropic
trajectories, which suggests that current experiments oper-
ate away from a possible critical point.

A full-flavor quark-gluon plasma EOS is undoubtedly
important for cosmological studies. Accordingly, we de-
termined the effects of the charm quark (at zero and non-
zero chemical potential) and the bottom quark (at zero
chemical potential only) on the EOS. Both heavy quarks
were represented in the heavy-quark-quenched approxima-
tion by asqtad valence quarks. We expect that the quench-
ing error for such heavy quarks is small, especially for the
b quark, but only a direct comparison with a calculation
with dynamical c and b quarks can confirm that. We found
that the contribution of the charm quark at zero chemical
potential reaches about 20% in the energy density at tem-
peratures of about 400 MeV and cannot be ignored in a
high-precision cosmological calculation of the properties
of the early Universe. The bottom quark contribution is
within a standard deviation at that temperature. Our results
for the charm and bottom effects on the EOS, however,
may be affected by the heavy-quark discretization error we
find in the free asqtad action calculation. This implies that
they are possibly lower than their respective continuum
values.

At nonzero chemical potential, both charm and bottom
quarks present a problem (the bottom quark much more
so), since we found heavy-quark discretization effects in
the Taylor expansion coefficients (especially large for the
bottom quark), which could be overcome by tuning the
coefficient of the Naik term and/or using Nt > 6. However,
the charm and bottom quark contributions to the EOS due
exclusively to the nonzero chemical potential are very
small over the parameter range accessible to heavy-ion
collisions, and at our level of precision they are entirely
within the present statistical errors of the EOS at zero
chemical potential.
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APPENDIX A: GENERAL FRAMEWORK FOR
ADDING THE CHARM QUARK TO THE EOS AT

NONZERO CHEMICAL POTENTIAL

With the addition of the charm quark to the u, d, and s
quarks in the sea, the partition function becomes

Z ¼
Z

DUeðnl=4Þ ln detMleðns=4Þ ln detMseðnc=4Þ ln detMce�Sg ;

(A1)

with Mf being the quark matrix for flavor f. Thus, the

pressure can be now expanded in the following manner:

p

T4 ¼ X1
n;m;k¼0

cnmkðTÞ
�
��l

T

�
n
�
��s

T

�
m
�
��c

T

�
k
; (A2)

where ��f is the quark chemical potential for flavor f and

the coefficients are

cnmkðTÞ ¼ 1

n!

1

m!

1

k!

N3
�

N3
�

� @nþmþk lnZ
@ð�lN�Þn@ð�sN�Þm@ð�cN�Þk

���������l;s;c¼0
; (A3)

where �f is the quark chemical potential in lattice units.

The coefficients above are nonzero only if nþmþ k is
even. A similar expansion applies to the interaction mea-
sure. These coefficients are for the asqtad quark action:

bnmk ¼� 1

n!m!k!

N3
t

N3
s

X
f¼l;s;c

nf
4

�
dðmfaÞ
d lna

���������l;s;c¼0

� tr
@nþmþkh2M�1

f i
@ð�lNtÞn@ð�sNtÞm@ð�cNtÞk

���������l;s;c¼0

þ du0
d lna

���������l;s;c¼0

� tr
@nþmþkhM�1

f
dMf

du0
i

@ð�lNtÞn@ð�sNtÞm@ð�cNtÞk
���������l;s;c¼0

�

� 1

n!m!k!

N3
t

N3
s

@nþmþkhGi
@ð�lNtÞn@ð�sNtÞm@ð�cNtÞk

���������l;s;c¼0
:

(A4)

In the above, G ¼ �dSg=d lna, with Sg being the gluon

part of the action.
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APPENDIX B: CALCULATING THE PRESSURE
COEFFICIENTS IN THE TAYLOR EXPANSION

These are most easily calculated using the following
(similar to the derivation in the appendix in Ref. [2]):

@ lnZ
@�l

� A100 ¼ hL1i; (B1)

@ lnZ
@�s

� A010 ¼ hH1i; (B2)

@ lnZ
@�c

� A001 ¼ hQ1i: (B3)

It can be shown that

@Anmk

@�l

¼ Anþ1;m;k �A100Anmk; (B4)

@Anmk

@�s

¼ An;mþ1;k �A010Anmk; (B5)

@Anmk

@�c

¼ An;m;kþ1 �A001Anmk; (B6)

where

A nmk �
�
e�L0e�H0e�Q0

@neL0

@�n
l

@meH0

@�m
s

@keQ0

@�k
c

�
: (B7)

In all of the above, Qk is defined as

Qk ¼ nc
4

@k ln detMc

@�k
c

: (B8)

The operators Lk and Hk have a similar form for the light
and the strange quark, respectively. All coefficients cnmk

which have at least one of the indices equal to zero have the
same form as in the appendix of Ref. [2], with appropriate
substitutions of Ln or Hn with Qk. The ‘‘new’’ coefficients
that appear to Oð6Þ are cð2;1;1Þ, cð3;2;1Þ, c222, and cð4;1;1Þ,
where the notation ðm; n; kÞmeans all distinct permutations
of the indices. Explicitly we have

c211 ¼ 1

2!1!1!

1

N3
sNt

ðA211 � 2A110A101

�A011A200Þ; (B9)

c222 ¼ 1

2!2!2!

1

N3
sN

3
t

ðA222 þ 16A110A101A011

þ 4A2
101A020 þ 4A2

011A200 þ 4A2
110A002

þ 2A002A200A020 �A002A220 �A200A022

�A202A020 � 4A101A121 � 4A110A112

� 4A011A211Þ; (B10)

c321 ¼ 1

3!2!1!

1

N3
sN

3
t

ðA321 þ 12A2
110A101

� 6A211A110 � 2A011A310 � 3A220A101

�A020A301 � 3A200A121

þ 6A020A200A101 þ 12A011A110A200Þ;
(B11)

c411 ¼ 1

4!1!1!

1

N3
sN

3
t

ðA411 þ 24A110A101A200

� 4A301A110 � 4A101A310 �A011A400

� 6A200A211 þ 6A011A2
200Þ: (B12)

Permuting the indices above gives us the rest of the coef-
ficients. Calculating the Anmk is straightforward from
Eq. (B7).

APPENDIX C: CALCULATING THE
INTERACTION MEASURE COEFFICIENTS IN

THE TAYLOR EXPANSION

1. First type of derivative

This section gives a method to calculate the derivative:

@nþmþkhM�1
f i

@ð�lNtÞn@ð�sNtÞm@ð�cNtÞk
���������l;s;c¼0

; (C1)

for f ¼ l, s, c, when all of the indices n, m, and k are
nonzero. See Ref. [2] for results when at least one is zero. It
is convenient to define the observables:

B nmk �
�
e�L0e�H0e�Q0

@nðtrM�1
l eL0Þ

@�n
l

@meH0

@�m
s

@keQ0

@�k
c

�
;

(C2)

B 0
nmk �

�
e�L0e�H0e�Q0

@neL0

@�n
l

@mðtrM�1
s eH0Þ

@�m
s

@keQ0

@�k
c

�
;

(C3)

B 00
nmk �

�
e�L0e�H0e�Q0

@neL0

@�n
l

@meH0

@�m
s

@kðtrM�1
c eQ0Þ

@�k
c

�
:

(C4)

The above means:

B 000 � htrM�1
l i; (C5)

B 0
000 � htrM�1

s i; (C6)

B 00
000 � htrM�1

c i: (C7)

Let f ¼ l, then we have the following rule:
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@Bnmk

@�l

¼ Bnþ1;mk �A100Bnmk; (C8)

@Bnmk

@�s

¼ Bn;mþ1;k �A010Bnmk; (C9)

@Bnmk

@�c

¼ Bnm;kþ1 �A001Bnmk: (C10)

Using the above, we calculate:

@4htrM�1
l i

@2�l@�s@�c

¼ B211 þ 2B000A011A200 �B000A211

þ 4B000A110A101 �A011B200

� 2B101A110 � 2B110A101

�B011A200; (C11)

@6htrM�1
l i

@2�l@
2�s@

2�c

¼ B222 �B000A222 þ 2A002A200B020 þ 2A002B200A020 þ 2B002A200A020 � 4A011B211

� 4B112A110 � 4A101B121 �B002A220 �B200A022 �A202B020 þ 16A011A101B110

þ 16A011B101A110 þ 16B011A101A110 þ 8B000A211A011 þ 8B000A101A121

þ 8B000A110A112 þ 8B101A101A020 þ 8A002A110B110 þ 8A011A200B011 þ 2B000A202A020

þ 2A002B000A220 þ 2B000A200A022 � 12A002B000A2
110 � 12B000A200A2

011

� 12B000A2
101A020 �A002B220 �A200B022 �B202A020 � 4B101A121 � 4B110A112

� 4B011A211 þ 4B002A2
110 þ 4A2

011B200 þ 4A2
101B020 � 6A002B000A200A020

� 48B000A110A011A101; (C12)

@6htrM�1
l i

@3�l@
2�s@

1�c

¼ B321 �B000A321 þ 12A110A011B200 þ 6B000A220A101 þ 12B110A011A200

� 36B000A2
110A101 þ 12B011A200A110 þ 6A020A200B101 þ 24B110A101A110 � 6A110B211

� 3B200A121 þ 2B000A020A301 þ 12A2
110B101 þ 12B000A110A211 � 3A220B101

þ 6B000A200A121 � 6A211B110 � 3B220A101 � 2B011A310 �A020B301 �B020A301

� 36A011B000A110A200 � 3A200B121 þ 6A020A101B200 � 18A020B000A200A101

þ 4A011B000A310 þ 6A101B020A200 � 2A011B310; (C13)

@6htrM�1
l i

@4�l@
1�s@

1�c

¼ B411 �B000A411 �B011A400 �A011B400 þ 24A101B110A200 þ 24A110A200B101

þ 12A200A011B200 þ 24A110A101B200 þ 12B000A200A211 þ 8B000A301A110

þ 8A101B000A310 � 4A101B310 � 4A110B301 � 4B110A301 � 4A310B101 � 6A200B211

� 6A211B200 � 72B000A200A101A110 þ 6A2
200B011 þ 2B000A011A400 � 18A011A2

200B000:

(C14)

Replacing B with B0 or B00 in the above, we get the
expressions for the derivatives of htrM�1

s i or htrM�1
c i.

The explicit forms of Bnmk are easy to deduce from
Eq. (C2). To get the B0

nmk or B
00
nmk we need to interchange

appropriately the three observables:

ln ¼ @n trM�1
l

@�n
l

; (C15)

hn ¼ @n trM�1
s

@�n
s

; (C16)

qn ¼ @n trM�1
c

@�n
c

; (C17)

along with Ln, Hn, and Qn in the explicit forms of Bnmk.
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2. Second type of derivative

We also need to calculate the derivatives:

@nþmþkhM�1
f

dMf

du0
i

@ð�lNtÞn@ð�sNtÞm@ð�cNtÞk
���������l;s;c¼0

; (C18)

where again f ¼ l, s, and c. Similarly to the previous
section, we define the observables:

Cnmk �
�
e�L0e�H0e�Q0

@n½trðM�1
l

dMl

du0
ÞeL0�

@�n
l

� @meH0

@�m
s

@keQ0

@�k
c

�
; (C19)

C0nmk �
�
e�L0e�H0e�Q0

@neL0

@�n
l

@m½trðM�1
s

dMs

du0
ÞeH0�

@�m
s

� @keQ0

@�k
c

�
; (C20)

C 00
nmk �

�
e�L0e�H0e�Q0

@neL0

@�n
l

@meH0

@�m
s

� @k½trðM�1
c

dMc

du0
ÞeQ0�

@�k
c

�
: (C21)

From the above,

C 000 �
�
tr

�
M�1

l

dMl

du0

��
; (C22)

C 0
000 �

�
tr

�
M�1

s

dMs

du0

��
; (C23)

C 00
000 �

�
tr

�
M�1

c

dMc

du0

��
: (C24)

Let f ¼ l, then it is easy to see that

@Cnmk

@�l

¼ Cnþ1;mk �A100Cnmk; (C25)

@Cnmk

@�s

¼ Cn;mþ1;k �A010Cnmk; (C26)

@Cnmk

@�c

¼ Cnm;kþ1 �A001Cnmk: (C27)

Similar expressions apply in the case of C0nmk and C00nmk.

Then the derivatives

@nhtrðM�1
l;s;c

dMl;s

du0
Þi

@�n
l;s;c

(C28)

have the form of the derivatives of htrðM�1
l;s;cÞi in the pre-

vious section with the substitutionsBnmk ! Cnmk,B0
nmk !

C0nmk, and B00
nmk ! C00nmk. The explicit forms of Cnmk, C0nmk,

and C00nmk are the same as for Bnmk, B0
nmk, and B00

nmk with

the substitutions ln ! �n, hn ! �n, and qn ! �n, where

�n ¼ @n trðM�1
l

dMl

du0
Þ

@�n
l

; (C29)

�n ¼
@n trðM�1

s
dMs

du0
Þ

@�n
s

; (C30)

�n ¼ @n trðM�1
c

dMc

du0
Þ

@�n
c

: (C31)

3. Third type of derivative

The last type of derivative that we need is the gauge
derivative

@nþmþkhGi
@ð�lNtÞn@ð�sNtÞm@ð�cNtÞk

���������l;s;c¼0
: (C32)

In this case, let

Gnmk �
�
Ge�L0e�H0e�Q0

@neL0

@�n
l

@meH0

@�m
s

@peQ0

@�k
c

�
; (C33)

and similarly as before

@Gnmk

@�l

¼ Gnþ1;mk �A100Gnmk; (C34)

@Gnmk

@�s

¼ Gn;mþ1;k �A010Gnmk; (C35)

@Gnmk

@�c

¼ Gnm;kþ1 �A001Gnmk; (C36)

with

G000 ¼ hGi: (C37)

This means that the necessary derivatives

@nþmþkhGi
@ð�lNtÞn@ð�sNtÞm@ð�cNtÞk

���������l;s;c¼0

have the same form as the derivatives

@nþmþk trhM�1
f i

@ð�lNtÞn@ð�sNtÞm@ð�cNtÞk
���������l;s;c¼0

withBnmk ! Gnmk. The Gnmk observables have very simi-
lar form to the Anmk observables, but with an additional
multiplication by G inside the ensemble average brackets
of each term in them.
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