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Yang-Mills theories with a gauge group SUðNc � 3Þ and quark matter in the fundamental representa-

tion share many properties with the theory of strong interactions, QCD with Nc ¼ 3. We show that, for Nc

even and in the confinement phase, the gluonic average of the quark determinant is independent of the

boundary conditions, periodic or antiperiodic ones. We then argue that a Fermi sphere of quarks can only

exist under extreme conditions when the center symmetry is spontaneously broken and color is liberated.

Our findings are supported by lattice gauge simulations for Nc ¼ 2–5 and are illustrated by means of a

simple quark model.
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In particle physics, understanding the theory of strong
interactions, i.e., QCD, under extreme conditions is key for
a successful description of exotic matter which features in
the evolution of the Universe or cold compact stars. The
property of QCD which is most relevant for shaping the
QCD phase diagram (if presented as a function of tem-
perature and matter density) is color confinement. Under
normal conditions, confinement implies that quark matter
is organized in terms of hadrons only, and quarks and
gluons are only part of the particle spectrum under extreme
conditions.

By means of lattice gauge simulations, a precise picture
of hot QCD matter at small densities has emerged over the
last two decades: Center symmetry is spontaneously bro-
ken in the hot deconfinement phase for temperatures above
a certain critical value. Color is liberated and, in a theory
with heavy quarks only, the Polyakov line expectation
value serves as an order parameter [1,2].

On the other hand, the situation at high densities and
small temperatures is far from being clear. The reason is
the lack of first principles QCD results which would help to
scrutinize the proposals for the properties of matter in this
regime. Lattice gauge simulation techniques cannot be
applied because of the severity of the so-called sign or
overlap problem. These problems are absent for the so-
called two-color QCD, and intriguing results, even for
large quark chemical potential, have been accumulated
over the recent years [3–5]. For an investigation of cold
and dense matter in SUðNc � 3Þ QCD(-like) theories, we
are still awaiting major conceptual achievements.
Promising recent attempts abandon standard lattice
Monte Carlo techniques and are based upon stochastic
quantization [6] or worldline numerics [7].

Perturbative QCD and QCD-inspired quark models have
been a valuable tool for revealing mechanisms which
might operate in the cold and dense phase of QCD. On
this basis, the QCD phase diagram has gained a lot of
renewed interest when findings suggested that its structure
is far more complex than it had been suggested for deca-

des: At the highest densities, it is expected that quark
matter is forming a color superconductor which carries
along a rich phase structure on its own (for a recent review
see [8]). Studies of the Gross-Neveu model indicate that
dense QCD (at low temperatures) might form an inhomo-
geneous baryonic crystal [9–11].
By employing arguments based upon the large Nc ex-

pansion, it has been recently suggested that the tight rela-
tion between confinement and spontaneous chiral
symmetry breaking (inherent for zero density QCD) gets
alleviated [12,13]. In the phase diagram as a function of
chemical potential and temperature, the phase boundary
for chiral restoration might deviate from the boundary for
deconfinement. Most interesting, a phase for which con-
finement is still intact while chiral symmetry is restored has
attracted a lot of interest. This so-called quarkyonic phase
is characterized by a Fermi sphere of quarks while the
outer shell of the Fermi sphere necessarily consists of
baryons because of confinement [12].
In this paper, we point out that the properties of dense

quark matter in SUðNcÞ QCD-like theories are vastly dif-
ferent depending on whether the number of colors Nc is
even or odd. In the confining phase, the quark determinant
is averaged over center-transformed gluonic background
fields. Underpinned by lattice gauge simulations, we will
show that this averaged quark determinant is insensitive to
the boundary conditions of the quarks, periodic or anti-
periodic ones. Since the formation of a quark Fermi sphere
is crucially linked to antiperiodic boundary conditions (see
below for an illustration by a quark model), we will argue
that a Fermi sphere of quarks can only exist in the decon-
fined phase of SUðNcÞ QCD-like theories with Nc being
even.
QCD-like theories are SUðNcÞ Yang-Mills theories

coupled to fermions (‘‘quarks’’) in the fundamental repre-
sentation. We here adopt the lattice regularization based
upon a toroidal space-time lattice with lattice spacing a and
extension Nt � N3

s . The gluonic degrees of freedom
U�ðxÞ 2 SUðNcÞ satisfy periodic boundary conditions;
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e.g., U�ðx0 þ Nta; ~xÞ ¼ U�ðx0; ~xÞ. Quark fields qðxÞ are

associated with the lattice sites. Because of the Fermi
statistics of the bare quark fields, these fields satisfy anti-
periodic boundary conditions:

qðx0 þ Nta; ~xÞ ¼ ð�1Þqðx0; ~xÞ:
By using the Wilson action for the gluonic fields, the
partition function is given by

Z ¼
Z

DU� DetAM½U�e
ð�=NcÞ

P
x;��

Re trP��ðxÞ
; (1)

where � ¼ 2Nc=g
2 is given in terms of the Yang-Mills

gauge coupling g, and P�� is the standard plaquette. The

determinant in (1) arises from the integration over the
quark fields. The subscript ‘‘A’’ indicates that the quarks
were subjected to antiperiodic boundary conditions. Here,
we work with Wilson quarks where

M½U� ¼ ðmþ 4Þ�xy � 1

2

X4
�¼1

½ð1� ��ÞU�ðxÞ�xþ�;y

þ ð1þ ��ÞUy
�ðx��Þ�x��;y�; (2)

where �� are the Hermitian Dirac matrices and m is the

current quark mass in units of the lattice spacing. For an
investigation of the quark determinant, we insert

1 ¼
Z

dQ�ðQ� DetAM½U�Þ

into (1) to write the partition function as

Z ¼
Z

dQQPAðQÞ; (3)

PAðQÞ ¼
Z

DU��ðQ� DetAM½U�ÞeSYM½U�; (4)

where PAðQÞ is the probability distribution of the quark
determinant. Note that PAðQÞ can be calculated by using
Monte Carlo techniques for pure Yang-Mills theory. Note
that the probability distribution of the quark determinant of
full QCD, PfullðQÞ, is related to that of pure Yang-Mills
theory, i.e., PAðQÞ, by PfullðQÞ ¼ QPAðQÞ. In particular,
for large lattices, little statistics is expected for the large Q
regime, which is more relevant for the simulation of Yang-
Mills theory with dynamical quarks included. If this re-
gime is under consideration, it is advisable to include the
determinant in the simulation [14] and to use refined
simulation techniques such as those in Refs. [15,16]
when finite temperatures and densities are addressed. The
intermediate Q regime will turn out to be sufficient to
illustrate our findings below, and thus only quenched simu-
lations are used throughout this paper.

Let us now consider a Roberge-Weiss transformation
[17] in the gluonic functional integral in (4). For a fixed
x0 ¼ t, we consider

U0ðt; ~xÞ ! znU0ðt; ~xÞ 8 ~x; (5)

zn ¼ exp

�
2�i

Nc

n

�
; 0 � n � Nc � 1: (6)

Given the invariance of the gluonic action and of the Haar
measure DU�, we find

PAðQÞ ¼
Z

DU��ðQ� DetAM½znU�ÞeSYM½U�: (7)

Reintroducing the quark fields for a moment,

Det AM½znU� ¼
Z

DqD �q exp

�X
xy

�qðxÞMxyqðyÞ
�
; (8)

we explore the virtue of the transformation:

U�
� ðxÞ ¼ �ðxÞU�ðxÞ�yðxþ�Þ; (9)

q�ðxÞ ¼ �ðxÞqðxÞ; (10)

�ðx0; ~xÞ ¼ zn for x0 > t; �ðx0; ~xÞ ¼ 1 else:

(11)

Note that t has been defined above (5). We point out that
�ðxÞ satisfies the boundary condition �ðx0 þ Nta; ~xÞ ¼
zn�ðx0; ~xÞ. The transformation (9) does not change the
boundary conditions of the link fields and leaves the
Yang-Mills action invariant. It can be therefore considered
as a gauge transformation of pure SUðNcÞ Yang-Mills
theory. Note, however, that the transformation (10) does
change the boundary conditions of the quark fields:

q�ðx0 þ Nta; ~xÞ ¼ ð�1Þznq�ðx0; ~xÞ: (12)

It therefore does not qualify as a gauge transformation of
the full theory. It, however, reveals an important property
of the distribution PAðQÞ. Specializing to an even number
of colors and choosing n ¼ Nc=2, zn ¼ �1, we obtain
from (8) using (9)–(11):

Det AM½znU� ¼ DetPM½U�; (13)

where the subscript ‘‘P’’ signals that the quark fields
now obey periodic boundary conditions. Inserting the last
result (13) into (7) and using the gauge invariance of Yang-
Mills action and Haar measure, we finally obtain

PAðQÞ ¼
Z

DU��ðQ� DetPM½U�ÞeSYM½U� ¼ PPðQÞ:

In QCD-like theories for an even number of colors and, at
least, for a finite volume (see comment below), the parti-
tion function is independent of the choice of the quark
boundary conditions, periodic or antiperiodic ones. In the
infinite volume limit, the center symmetry corresponding
to the transformation (6) is not always realized: It has been
known for a long time [1,2] that this symmetry is sponta-
neously broken under extreme conditions, high tempera-
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ture, and/or fermion densities. While periodic boundary
conditions are associated with an instability of the partition
function for vanishing temperature corresponding to Bose-
Einstein condensation, antiperiodic boundary conditions
are the essential ingredient for building up a Fermi sphere
in the dense phase. Hence, we argue that in the confining
phase of SUð2NÞ QCD-like theories, a quark Fermi surface
is unlikely to exist. We stress, however, that the deconfine-
ment phase at high densities (and low temperatures) might
well feature a Fermi sphere of quarks.

We are now going to illustrate our findings by using
lattice gauge simulations as well as a simple quark model.
We have carried out simulations for SUðNcÞ, Nc ¼ 2; 3;
4; 5, by using a 44 space-time lattice and a Dirac massm ¼
0:01. The Wilson parameters � have been chosen such that
in all cases the lattice spacing a in units of string tension �
was roughly constant; i.e., �a2 ¼ 0:467ð10Þ. Keeping �a2
fixed when the number of colors Nc is increased also
complies with the so-called ’t Hooft limit where g2Nc ¼
constant. The simulation parameters are summarized in
Table I.

The determinants have been calculated exactly by using
the standard left-upper decomposition. In order to explore

the sensitivity of the quark determinants to the boundary
condition, we define

x ¼ DetPM½U�
DetAM½U ¼ 1� ; y ¼ DetAM½U�

DetAM½U ¼ 1� ; (14)

and consider the ratio r½U� :¼ x=y for a given lattice
configuration. For Nc even, we find with the results above
that

r½znU� ¼ 1=r½U� ) hri ¼ h1=ri (15)

if the center symmetry is realized. Our numerical findings
for these expectation values are summarized in Table II.
We here find a clear coincidence between hri and h1=ri

for the gauge group SU(2) while the corresponding pa-
rameters for SU(3) are significantly different. We also
observe a tendency that the difference fades away for
increasing number of colors Nc. We finally present the
probability distribution for the variable lnr in Fig. 1. For
gauge groups with Nc even, we expect that the correspond-
ing histograms are symmetric with respect to lnr ! � lnr
[see (15)]. This expectation is nicely confirmed for the
gauge groups SU(2) and SU(4). A clear asymmetry is
observed for SU(3) while the asymmetry is very small
for SU(5) if present at all. We also empirically observe
that the width of the probability distribution decreases for
an increasing number of colors.
Let us finally illustrate by means of a quark model how

center sector tunneling eliminates the quark Fermi surface.
The theory which we are proposing is essentially a free
theory of quarks which, however, interact with a constant
center background field. We here work in the ab initio

TABLE I. Simulation parameters: 9902 configurations were
used for SU(2) and SU(3), 8000 for SU(4), and 4500 for
SU(5) to estimate the expectation values.

Group SU(2) SU(3) SU(4) SU(5)

� 2.2 5.63 10.99 16.57

g2naiveNc 3.63 3.2 2.9 3.0

TABLE II. Sensitivity parameters hri and h1=ri for several gauge groups.

SU(2) SU(3) SU(4) SU(5)

hri 1:66� 0:02 1:365� 0:009 2:9977� 0:07 1:0469� 0:005
h1=ri 1:65� 0:02 1:587� 0:02 2:87� 0:07 1:0571� 0:007
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FIG. 1 (color online). Probability distribution for lnr in comparison for SU(2) and SU(3) (left) and for SU(4) and SU(5) (right).
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continuum formulation. By parameterizing the center
background field by [H ¼ diagð1; . . . ; 1; 1� NcÞ=Nc

from the Cartan algebra]

An ¼ 2�nTH; 0 � n � Nc � 1 (16)

(where T is the temperature), the partition function of our
model is in Euclidean space

Z ¼ X
n

pn

R
DqD �q expf �qði6@þ ðAn þ i�Þ�0 þ imÞqgR

DqD �q expf �qði6@þ imÞqg ;

(17)

where m is the quark mass and � is the quark chemical
potential. Thereby, pn is the probability that the center
sector n is attained. In the quenched approximation, all
center sectors occur with equal probability; i.e., pn ¼
1=Nc. Note, however, that in a more QCD-relevant setting
dynamical quarks induce a bias towards the trivial center
sector; i.e., p0 > pn�0. Furthermore, An acts as a constant
gauge field which can be eliminated from the action at the
expense of changing the boundary conditions for the quark
fields. The partition function can be calculated in closed
form:

Z ¼ X
n

pn

Y
~p; ~q

ð1þ zne
�½Eð ~pÞ���=TÞð1þ zyne�½Eð ~qÞþ��=TÞ;

where zn is related to the trace of the Polyakov line P line
by

P ¼ expfiAn=Tg; 1

Nc

trP ¼ zn:

Moreover, the product extends over spatial momenta ~p and

Eð ~pÞ ¼ ðm2 þ ~pÞ1=2. By expanding the brackets, because
of the sum over the center elements, only states with
vanishing N-ality contribute to the partition function as-
serting confinement. We here focus on the Bose-Einstein
condensation instability. We consider temperatures T
which are small compared to the mass gap implying that
we may neglect the contribution of antiquarks to the free
energy for � * m. The free energy is then given by lnZ �
ln
P

npn�n, with

�n ¼ exp

�
V

�2

Z 1

m
dEE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
lnð1þ zne

�ððE��Þ=TÞÞ
�
;

where V is the spatial volume. Because of the spin of the
quarks, we have used two states per Matsubara mode. For
the search for Fermi surface effects, it is most instructive to
study the baryon number density:

b ¼ T

V

@ lnZ

@�
¼ 1

�2

Z 1

m
dEE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
�ðE; T;�Þ;

where � is defined by

�ðE; T;�Þ ¼ X
n

zn

e½E���=T þ zn
wn; (18)

with the weights wn ¼ pn�n=
P

ipi�i. In the deconfined
phase, tunneling between center sectors stops because of
spontaneous symmetry breaking (on top of the explicit
breaking by the quark determinant). The sum over the
center elements collapses to the trivial center element p0 ¼
1, pn�0 ¼ 0 implying w0 ¼ 1, wn�0 ¼ 0. In this case,
�ðE; T;�Þ can be interpreted as the spectral density. This

is given by the familiar Fermi function �deconðE; T;�Þ ¼
½e½E���=T þ 1��1, which features a Fermi surface for
E � �.
Let us now consider the confinement phase of a SU(2)

gauge theory. Despite the bias towards the trivial center
sector, we have p0 < 1 because of center sector tunneling.
The crucial observation is that while increasing the chemi-
cal potential � to approach the mass m from below, �1

develops a singularity while �0 is perfectly finite. This
implies that the weights are given by w0 ¼ 0, w1 ¼ 1 for
� ! m. Thus, �ðE; T;�Þ is approximately given by

�ðE; T;�Þ � � 1

e½E���=T � 1

and, hence, signals the Bose-Einstein condensation insta-
bility for � ! m. Note that the sign of � is dictated by the
center element z1 ¼ �1. Because of this sign, the contri-
bution to the baryon number density is negative and arises
from center-dressed quarks. This contribution is genuinely
different from the contribution from bare antiquarks which
can be neglected for the present choice of parameters.
In conclusion, we have shown that the gluonic average

of the quark determinant of SUð2NÞ gauge theories does
not depend on the type of boundary conditions for the
quark fields as long as the center symmetry is realized.
Lattice gauge simulations for the gauge groups SUð2–5Þ
corroborate these findings. Our results supplement the
recent findings of Ref. [18], where SU(2) deconfinement
was brought in line with the sensitivity of the quark deter-
minant to the boundary conditions. Our results may have
far-reaching phenomenological implications: (i) They ex-
clude the (pre)formation of a quark Fermi sphere at finite
densities in the confinement phase; (ii) since quarks are
dressed with center fields of the gluonic background, they
escape the spin-statistics connection. This is in analogy to
the anyons in solid state physics [19]. While anyons only
occur in 2þ 1 dimensions, our model is the first one of its
kind which evades the spin-statistics connection in 3þ 1
dimensions. (iii) Exotic states of matter, such as a Bose-
Einstein condensate of quarks, might exist prior to decon-
finement induced by density.

Helpful discussions with G. Dunne, H. Gies, K.Ya.
Glozman, and M. Rho are gratefully acknowledged.
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