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Chiral perturbation theory predicts that in quantum chromodynamics (QCD), light dynamical quarks

suppress the gauge-field topological susceptibility of the vacuum. The degree of suppression depends on

quark multiplicity and masses. It provides a strong consistency test for fermion formulations in lattice

QCD. Such tests are especially important for staggered fermion formulations that lack a full chiral

symmetry and use the ‘‘fourth-root’’ procedure to achieve the desired number of sea quarks. Over the past

few years we have measured the topological susceptibility on a large database of 18 gauge-field

ensembles, generated in the presence of 2þ 1 flavors of dynamical asqtad quarks with up and down

quark masses ranging from 0.05 to 1 in units of the strange quark mass and lattice spacings ranging from

0.045 fm to 0.12 fm. Our study also includes three quenched ensembles with lattice spacings ranging from

0.06 to 0.12 fm. We construct the topological susceptibility from the integrated point-to-point correlator of

the discretized topological charge density F ~F. To reduce its variance, we model the asymptotic tail of the

correlator. The continuum extrapolation of our results for the topological susceptibility agrees nicely at

small quark mass with the predictions of lowest-order SU(3) chiral perturbation theory, thus lending

support to the validity of the fourth-root procedure.
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I. INTRODUCTION

The rich topological structure of the QCD vacuum is
known to be responsible for many interesting nonperturba-
tive effects, such as the chiral anomaly and chiral symme-
try breaking, instantons, and the large mass of the �0
meson. Among the wide variety of ways of looking at these
phenomena, one may consider the effect that topological
charge has on the kernel of the Dirac operator. It has broad
implications. For example, it is intimately connected with
the value of the chiral condensate [1].

The topological susceptibility �t characterizes the tun-
neling rate between topologically distinct vacua by instan-
tons and shows up in low energy phenomenology through
the Witten-Veneziano formula [2,3] and in chiral perturba-
tion theory. A gauge configuration with topological charge
� requires at least � fermionic zero-modes of the Dirac
operator. The effect of quark mass on the topological

susceptibility can be seen by separating the fermion deter-
minant for a particular gauge-field configuration into zero
and nonzero modes. For Nf flavors we have [1,4]

YNf

f¼1

detð 6DþmfÞ ¼
YNf

f¼1

�
mj�j

f

Y
�>0

ð�2 þm2
fÞ
�
; (1)

where � is the imaginary part of the eigenvalue of 6D. Thus
gauge configurations of nontrivial topology tend to be
suppressed as any one of the quark masses approaches
zero. However, this effect is compensated at increasing
volume by a growing tendency of gauge-field fluctuations
to produce nontrivial topology. Chiral perturbation theory
tells us [1] that the outcome of the competition is con-
trolled by the parameter x ¼ V�m0, where � is the chiral
condensate, V is the Euclidean space-time volume, and m0
is the reduced mass

1=m0 ¼ 1=m1 þ 1=m2 þ . . . : (2)

When at least one quark mass gets small at fixed volume
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(the ‘‘epsilon’’ regime, x � 1), gauge configurations with
nontrivial topological charge are strongly suppressed, as
implied by Eq. (1). In the physical regime, in which x � 1,
which is the case for our study, topologically nontrivial
configurations are not suppressed. Instead, leading order
chiral perturbation theory requires that the mean squared
topological charge be equal to the parameter x:

h�2i ¼ V�m0; (3)

where the angle brackets represent an average over gauge
fields. Thus the topological susceptibility,

�t ¼ h�2i=V ¼ �m0; (4)

remains finite in the large-volume limit. Even so, it is still
suppressed as m0 ! 0.

While lattice simulations of QCD have enjoyed consid-
erable success in recent years, with errors on hadronic
spectroscopy computations at the 1%–2% level, simula-
tions have struggled to reproduce this dependence of �t on
both mf and Nf, until recently. This progress has come

with improvements in lattice fermion technology, which
has given much more control over chiral symmetry and
lattice artifacts.

In this article we present results for the dependence of �t

on the quark mass (through the taste-singlet pion mass)
using improved staggered fermions (asqtad formulation).
Descriptions of the asqtad formulation have been given
elsewhere [5]. To eliminate contributions from unwanted
fermion doublers, the staggered formulation takes the

fourth root of the fermion determinant
ffiffi½p 4� det½ 6Dþmf�

for each quark (‘‘fourth-root procedure’’), which may raise
questions about flavor counting. For a discussion of the
issues, please see [5] and references therein. The primary
purpose of our study, then, is to test the ability of the
fourth-root procedure to produce the correct number of
sea quarks. Since the topological susceptibility is measured
directly on the gauge-field configuration without the in-
volvement of valence quarks, it is directly sensitive to sea
quark effects. We will show that the continuum extrapola-
tion of our results agrees well with lowest-order SU(3)
chiral perturbation theory.

This article summarizes results of calculations carried
out over the past few years on ensembles with (2þ 1)
flavors of asqtad quarks as they were being generated
(see the appendix). We continue to use the methodology
of our previous work at larger lattice spacing and quark
mass [6–8] with some refinements which appear here. The
key features of our approach are these:

(1) obtaining the square of the topological charge from
the integral of the two-point correlator of the topo-
logical charge density.

(2) reducing the variance of the integral by modeling
the asymptotic form of the correlator in terms of
known hadronic contributions, and

(3) analyzing the quark-mass and lattice-spacing depen-
dence of the resulting susceptibility in terms of
predictions from rooted staggered chiral perturba-
tion theory.

In the following section, we discuss the details of our
method for calculating the topological susceptibility on the
lattice. We present our results and analysis in Sec. III.
Finally, we comment on our results in the Conclusions,
Sec. IV. The appendix lists the parameters of the gauge-
field ensembles used in this study.

II. METHODOLOGY

A. Definition of the topological susceptibility

We introduced the topological susceptibility in Eq. (4) as
the mean squared charge per unit volume: �t ¼ h�2i=V.
The net topological charge � is the integral over Euclidean
space-time of the topological charge density,

�ðxÞ ¼ 1

32�2
Fa
��

~Fa
��: (5)

The susceptibility is then given by the integral of the
correlator of the charge density, provided the integral is
well defined.

�t ¼
Z

d4xCðrÞ with CðrÞ ¼ h�ðxÞ�ð0Þi; (6)

where r ¼ jxj. Because the exponential decay of the cor-
relator at large r is set by nonzero hadron masses, we see
that the susceptibility is properly regarded as a local ob-
servable, i.e., it can be defined in terms of a correlator that
has finite physical range. We use this definition of the
susceptibility, coupled with a smeared lattice discretization
of F ~F.
In the continuum limit the integral definition above is

problematic. The unregulated correlator CðrÞ is nonintegr-
able: it has a positive, divergent contact term (at the origin)
and, close to the origin, a compensating negative ultravio-
let singularity of order (up to possible logarithms) r�8 [9–
12]. Cancellation is required in order to produce the ex-
pected finite integral Eq. (4). To circumvent this mathe-
matical difficulty Lüscher formulated a definition of the
topological susceptibility in terms of a product of pseudo-
scalar and scalar densities of Ginsparg-Wilson quarks [13].
Since the definition requires computing all-to-all quark-
line disconnected correlators, it is more difficult to imple-
ment, and, to our knowledge, it has not yet been put into
practice.
For present purposes we resort to the naive definition in

Eq. (6) and trust that the lattice cutoff and a smoothed
definition of �ðxÞ regulate the compensating singularities
enough over a range of reasonably small lattice spacings
that we can test the expected suppression of the topological
susceptibility. In our present scheme we fix the smoothing
scale in lattice units as we take the lattice spacing to zero.
Our numerical simulation provides a practical test of the
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limitations of such a scheme. If it fails, as the lattice
spacing is decreased, we would expect to encounter a
growing variance from contributions to the integral near
the origin. This would not invalidate the method: The
central value in the continuum limit is finite even if the
variance is unbounded. It could, however, require an im-
practically large computational effort to achieve a desired
accuracy as we make the lattice spacing smaller. We return
to this question after presenting our results.

There are a variety of lattice methods for obtaining the
topological charge. The traditional ‘‘algebraic’’ method
uses a lattice discretization of the density F ~F, constructed
at each lattice site from appropriate closed loops of gauge
links. To suppress ultraviolet noise at the cutoff scale,
smoothing is required [14]. The Boulder discretization
[15,16], which we use in the present study, is a refinement
of the traditional definition. It is fattened (smoothed) by
first performing some number (we use three) of HYP
smoothing sweeps [17] on the gauge field and then con-
structing the operator from the smoothed links.

A more elegant method defines the topological charge
density in terms of a chiral (e.g. overlap) Dirac operatorD,
as �ðxÞ / Tr½�5D�x;x [18,19] (the trace is over color and

spin), but using it directly in Eq. (6) is computationally
expensive [20,21]. For the overlap operator a more trac-
table method uses the Atiyah-Singer index theorem to
relate the topological charge � to the net number of zero
crossings of the low-lying eigenvalues of a Hermitian
Dirac kernel from which the chiral operator is built [22].
This method was implemented in [23]. For the overlap
operator, smoothing is inherent in the choice of the Dirac
kernel from which the overlap action is built.

Another promising method works with gauge configu-
rations of fixed topology [24,25]. In this case, at large
distance the correlator of the topological charge density
approaches a constant �t=V plus other known constants
that depend on the fixed topological charge. One can also
use a hadronic flavor-singlet interpolating operator with
JPC ¼ 0�þ as a proxy for F ~F. This method has been tested
at one lattice spacing in the two-flavor case on configura-
tions generated with the overlap action [26].

The Lüscher definition [13], based on a chiral Dirac
operator, replaces the integral of F ~F with the integral of
a quark pseudoscalar density. The quark field from which
that density is constructed can have arbitrary mass, which
sets the localization scale of the operator. The expectation
value of that density is regulated with a suitable number of
zero-momentum scalar-density insertions on the quark
line. At large mass in the hopping parameter expansion,
the operator can be expressed as a sum of gauge-link loops
analogous to those in the Boulder discretization, which
regulates the construction of F ~F through an extended
discretization and HYP-smeared gauge-links. In the
Boulder case the localization of the gauge paths is con-
trolled by the number of smearing steps, whereas localiza-

tion of the Lüscher operator is controlled by the quark
mass. Of course, the chiral properties of the underlying
action in that case allows an arbitrary choice of scale.
Whatever the definition, the resulting susceptibility is

subject in general to multiplicative and additive corrections
at nonzero lattice spacing [27]:

�̂ tða;mqÞ ¼ Mða;mqÞ2�tðmqÞ þ Aða;mqÞ: (7)

An additive renormalization is not required for chiral
actions that use the same operator in the fermion determi-
nant and the measurement of the topological charge [28].
In our case an additive renormalization is expected. We
assume that in the continuum limit M approaches one and
A approaches zero. Since with our actions lattice artifacts
appear at Oða2Þ (up to logarithms), we expect that the
approach to these limits is as a2 [6]. With the overlap
method one can use the same Dirac operator for the
Monte Carlo evolution and the measurement of topological
charge. In this case the small instantons and dislocations
that are not seen by the overlap operator, so not suppressed
by a small quark mass, are then also not seen by the
topological charge operator. In our case the Monte Carlo
Dirac operator and topological charge operators are unre-
lated, so we might expect larger lattice artifacts.

B. Predictions from chiral perturbation theory

Our computed topological susceptibility is a function of
the quark masses and the lattice spacing. As we have
already recalled in Sec. I, in chiral perturbation theory
the susceptibility �t depends on the number of light quarks
and their masses in leading order through

�=�t ¼ 1=mu þ 1=md þ 1=ms þ . . . : (8)

where � is the chiral condensate to this order, mu, md, and
ms are the masses of the up, down, and strange quarks, and
the ellipsis represents contributions beyond the cutoff from
higher quark masses and the axial anomaly [1]. We see that
as quark masses vanish, the susceptibility must vanish. The
rate at which it vanishes depends on the number of light
flavors.
For equal up and down quark masses we may use the

Gell-Mann-Oakes-Renner relation, also from leading order
chiral perturbation theory, to rewrite this expression as

f2�=ð4�tÞ ¼ 2=m2
� þ 1=m2

ss þ . . . ; (9)

where m2
ss ¼ 2m2

K �m2
� is the squared mass of the ficti-

tious pseudoscalar meson containing two nonannihilating
quarks with masses equal to the strange quark, and in our
normalization the pion decay constant f� is approximately
130 MeV.
With nonchiral lattice fermions, at nonzero lattice spac-

ing one should instead use a version of chiral perturbation
theory appropriate to the lattice fermion formulation. In
this way some of the lattice discretization errors can be
modeled. For staggered fermions using the fourth-root
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procedure, we use rooted staggered chiral perturbation
theory (rS�PT) [29]. This theory has a taste multiplet of
16 pions. Among them, only the taste singlet pion is
sensitive to the anomaly and so enters the expression for
the topological susceptibility at leading order. At tree level
the continuum expression is modified by replacing the
pseudoscalar meson masses by their taste-singlet counter-
parts [30]:

1=�t ¼ ð4=f2�Þð2=m2
�;I þ 1=m2

ss;I þ 3=m2
0Þ; (10)

where the subscript I identifies the taste singlet, and
through the term in m0, which is proportional to the �0
mass at lowest order, we have introduced an explicit anom-
aly contribution. The standard chiral perturbation theory
expression corresponds to m0 ! 1 (and a ! 0); introduc-
ing m0 in Eq. (10) is phenomenological because m0 is
beyond the physical cutoff scale of chiral perturbation
theory. At infinite quark mass we get the quenched topo-
logical susceptibility �tq, which suggests an alternative

phenomenological form [31],

1=�t ¼ ð4=f2�Þð2=m2
�;I þ 1=m2

ss;IÞ þ 1=�tq: (11)

C. Topological charge density operator

As before [6], we use the topological charge operator
of DeGrand, Hasenfratz, and Kovacs [15] optimized for
SU(3) by Hasenfratz and Nieter [16]. The operator is
constructed from closed ten-link paths of gauge matrices
as follows:

�ðxÞ ¼ X2
j¼1

c1jTrð1�UjÞ þ c2j ½Trð1�UjÞ�2: (12)

Specifically, the operator U1 is constructed from a product
along a path from site x in the sequence of directions
ðx; y; z;�y;�x; t; x;�t;�x;�zÞ, summed over rotations
and reflections, and the operator U2, from the directions
ðx; y; z;�x; t;�z; x;�t;�x;�yÞ. Both paths lie inside a
24 hypercube. The coefficients are c11 ¼ 0:078 725 07,
c12 ¼ 0:317 363 0, c21 ¼ �0:188 838 3, and c22 ¼
0:285 457 7. Hasenfratz et al. devised this operator to
optimize a match with a geometric definition of topological
charge on a ‘‘typical’’ set of gauge configurations. The
operator also reproduces accurately the charge of an in-
stanton, provided the instanton radius is larger than the
lattice spacing. The finer details of the construction of this
operator are unimportant for our purposes, since in the end
we take the continuum limit.

We applied this operator to gauge configurations
smoothed by three HYP steps [17]. From the point of
view of the unsmoothed gauge field, this operation, in
effect, enlarges the footprint of the topological charge
density operator by a small amount. We have shown in
[6] that the topological susceptibility on a coarse lattice

(a � 0:12 fm) is constant within statistical errors of 8% for
one to four HYP sweeps.

D. Variance reduction method

We calculate the topological susceptibility by integrat-
ing the topological charge density correlator in Eq. (6) over
the lattice four-volume. In the left panel of Fig. 1 we show
a typical correlator CðrÞ. It is expressed in units of the
Sommer parameter r0 � 0:454 fm [32]. As expected, it has
a positive peak at the origin next to a negative minimum,
and it rises to its asymptotic limit of zero from below as
required by CP symmetry. To give a better visual impres-
sion of contributions to the susceptibility, in the right panel
of Fig. 1 we multiply CðrÞ by the statistical weight factor
wðrÞ that counts the number of lattice points that, by
symmetry, have the same four-radius r, or, where the
plotted value is binned, have the same range of four-radii.
This is essentially a discretized version of r3CðrÞdr. The
irregular binning inherent in the discretized distance r
produces the ragged appearance of the weighted values at
small r. On the other hand, statistical fluctuations produce
the ragged appearance at large r. The topological suscep-
tibility in r0 units is simply proportional to the sum of the
weighted values.
In Fig. 1, right, the substantial cancellation of positive

and negative contributions at small r is more evident. We
also see that the large distance contribution to the suscep-
tibility is mostly noise. We have found that it is responsible
for the bulk of the variance in the integral. This is to be
expected. In a suitably large subvolume V0 of space-time,
we should be able to determine the topological suscepti-
bility reasonably well by measuring fluctuations of the
local topological charge �0. Consider putting together N
such volumes to create the total volume V. The overall
topological charge � is then obtained as a random walk of
local charges, so its variance grows with N. We can mea-
sure the susceptibility in two ways: (1) average the locally
determined h�2

0i=V0 over theN subvolumes or (2) calculate

h�2i=V over the full volume. With the former method the

error in the measured susceptibility decreases as 1=
ffiffiffiffi
N

p
with increasing N and fixed V0, whereas with the latter
method the error never improves.
In our case the integral of the correlatorCðrÞ replaces the

sum over subvolumes. But we still need to eliminate noise
from contributions at large r. To do so, several years ago
we introduced a variance-reduction method that fits the
large r part of the correlator to its asymptotic form in
Eq. (15) and then, for r > rc for a suitable cutoff rc,
replaces the numerical sum of the correlator with an in-
tegral over the fitted function as follows [7]:

�t ¼
Z
r<rc

CðrÞ þ
Z
r>rc

CfitðrÞ; (13)

where rc is chosen inside the fit range. In the present study
we chose rc � 1:2 fm for all ensembles. In Fig. 1, right, we
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illustrate the fit to the large r part of the correlator and
indicate rc. We continue to use this method in the present
work.

E. Asymptotic fit model

The topological charge density is a flavor-singlet opera-
tor with quantum numbers JPC ¼ 0�þ, so the asymptotic
behavior of the correlator is governed by the � and �0
mesons and, for sufficiently light sea quarks, by multipion
states. That is

CðrÞ ¼ h�ðxÞ�ð0Þi ! A�Sðm�; rÞ þ A�0Sðm�0 ; rÞ þ . . . ;

(14)

where the A’s are overlap constants and Sðm; rÞ is a scalar
propagator with asymptotic form

Sðm; rÞ � ½1þ 3=ð8mrÞ� expð�mrÞ=r3=2: (15)

The three-pion continuum is the lightest multimeson state
in this correlator. For our ensembles the �meson is always
lighter. Furthermore, the coupling of the topological charge
density operator to multimeson states is Zweig-rule sup-
pressed. Therefore, we ignore them in the present analysis.
Since the topological charge density operator is an SU(3)
flavor singlet, it couples to the flavor-singlet component of
the � and �0 mesons. In the usual representation of singlet-
octet mixing [33],

j�i ¼ cos	j�8i þ sin	j�0i
j�0i ¼ � sin	j�8i þ cos	j�0i;

(16)

so

A�=A�0 ¼ tan2	: (17)

Our statistics are insufficient for determining all the
parameters of the fit function reliably. Instead, we model
the masses of the � and �0 and the ratio A�=A�0 , leaving

only one fitting parameter A�0 , which simply sets the

normalization of the asymptotic form. We set m2
� ¼

2m2
�ss=3þm2

�=3 for our measured lattice values of m�ss

and m�, and we fix m�0 ¼ 958 MeV (its physical value)

since we have not calculated it for these ensembles.
Finally, we use a simple chiral model to fix the ratio of
couplings A�=A�0 or equivalently, the singlet-octet mixing

angle as a function of quark masses.
Our model is based on the mass matrix for the flavor-

neutral taste-singlet mesons in lowest order SU(3) chiral
perturbation theory [29]

M ¼
M2

UI þm2
0 m2

0 m2
0

m2
0 M2

UI þm2
0 m2

0

m2
0 m2

0 M2
SI þm2

0

0
B@

1
CA; (18)

whereMUI andMSI are masses of unmixed �uu ( �dd) and �ss
meson states, and m2

0 parametrizes the anomaly. The iso-

singlet eigenvectors are

j�i ¼ vuj �uui þ vdj �ddi þ vsj�ssi
j�0i ¼ v0

uj �uui þ v0
dj �ddi þ v0

sj�ssi;
(19)

where

vu ¼ vd ¼ 1=N

vs ¼ �ðM2
UI �M2

SI þm2
0 þ

ffiffiffi
d

p Þ=ð2m2
0NÞ

v0
u ¼ v0

d ¼ 1=N0

v0
s ¼ �ðM2

UI �M2
SI þm2

0 �
ffiffiffi
d

p Þ=ð2m2
0N

0Þ
d ¼ ðM2

SI �M2
UIÞ2 � 2ðM2

SI �M2
UIÞm2

0 þ 9m4
0;

(20)

and N and N0 normalize the eigenvectors to 1. Since the

flavor-singlet state in this basis is just ð1; 1; 1Þ= ffiffiffi
3

p
, we

obtain the ratio

FIG. 1 (color online). Left: Topological charge density correlation function CðrÞ vs. separation in units of r0. Right: Correlation
function weighted by the volume measure. Errors are statistical and have not been corrected for autocorrelations. The red symbols
(crosses) indicate the fitted points. The black curve shows the fit, which we use to replace the measured points for r > rc, the cut
radius. (The lone symbol at the right bins all measurements for r=r0 > 10:7).
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A�=A�0 ¼ tan2	 ¼ ðvu þ vd þ vsÞ2=ðv0
u þ v0

d þ v0
sÞ2;
(21)

which we apply to the fit model of Eq. (14). To complete
the model, we need the value of the anomaly parameterm2

0.

We set it so that for physical values of M2
UI and M2

SI (i.e.,

values that give the physical masses m� and m�ss ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K �m2
�

q
), we get the standard phenomenological mix-

ing angle 	 � �20 degrees [33]. At this ‘‘physical’’ point
the mixing model also gives usm� ¼ 493 MeV andm�0 ¼
953 MeV, reasonably close to their physical values. Then
for unphysical masses we use the lattice values ofM2

UI and
M2

SI on each ensemble, always keeping m0 fixed. This

procedure assures that the � decouples as required in the
SU(3) flavor limit mu ¼ md ¼ ms, and it provides a
smooth interpolation between that limit and the physical
limit. The taste-singlet masses M2

UI and M2
SI are obtained

by adding measured or estimated taste splittings to the
masses of the lightest members of the taste multiplet.
Splittings are listed in Table V below.

The model is applied to all the dynamical ensembles in
this study, listed in the Appendix A. The resulting fit
parameters are listed in Table I. The mixing parameter
A�=A�0 is shown to three digits. Apart from systematic

errors in the model itself, in principle it inherits a statistical

error from our determination of the taste-singlet masses,
which, in turn depends on the error in the taste splitting.
The last error, however, is less than 5%, small enough to
have no effect on the mixing parameter to the number of
digits reported. The remaining fit parameters do not depend
on the taste-singlet masses. Consequently, statistical errors
in the determination of the taste-singlet masses have neg-
ligible effect on results for the topological susceptibility.

F. Asymptotic fit model for the quenched ensembles

For the three quenched ensembles we use the same
methodology, except that the fit model has only one
mass. We fix it to the mass of the JPC ¼ 0�þ ground state
lattice glueball from Chen et al. [34], namely, 2560 MeV.
The parameters are listed in Table II. We chose rc for the
quenched ensembles to match our choice for the dynamical
ensembles at the same lattice spacing. Since the quenched
correlators die so quickly at large r, the contribution to the
susceptibility for r > rc is negligible, and the asymptotic
model has no effect on the result.

III. RESULTS

We smooth the lattices with three HYP smoothing steps
[17] and measure the topological charge density with the
Boulder operator at each space-time point. We then con-
struct the point-to-point correlator CðrÞ for every pair of
points in the space-time volume. For r=a < 5 we keep
values for every displacement, and for larger r we bin
data over small intervals in r. The resulting data is then
fit to Eq. (14) over a range ½rmin; rmax�. We replace the raw
data with the fit model for r > rc. The fit range is chosen to
give an acceptable �2=df (corrected for autocorrelations)
and to vary smoothly as a function of sea quark mass and
lattice spacing.

A. Monte Carlo time histories and autocorrelations

To determine the confidence level of our fits and errors
in the fit parameters, we must first analyze autocorrelations
in Monte Carlo time. With our action and molecular dy-
namics algorithm, the total topological charge is moder-
ately persistent in Monte Carlo time. In Fig. 2, we show the
time histories for a range of lattice spacings for mud ¼
0:2ms ensembles. As we have noted, however, the topo-
logical susceptibility is a local observable. We can get a
graphical sense of the autocorrelation affecting the suscep-

TABLE I. Parameters used in asymptotic fits to the (2þ 1)-
flavor topological charge density correlator. The raw �2 is
uncorrected for autocorrelations. The last column includes the
correction as explained in Sec. III A.

10=g2 mud=ms A�=A�0 am� am�0 �2
raw �2=df

coarse

6.85 0.05/0.05 0.000 0.485 0.573 6.6 3.9/11

6.83 0.04/0.05 0.010 0.470 0.578 7.6 4.5/11

6.79 0.02/0.05 0.095 0.439 0.583 17.0 10.0/11

6.76 0.01/0.05 0.166 0.424 0.588 8.8 5.2/11

6.76 0.007/0.05 0.194 0.417 0.584 11.1 6.5/11

6.76 0.005/0.05 0.215 0.413 0.582 11.8 6.9/11

fine

7.18 0.031/0.031 0.000 0.320 0.403 40.5 11.2/19

7.11 0.0124/0.031 0.072 0.292 0.415 43.6 12.1/19

7.09 0.0062/0.031 0.128 0.280 0.416 24.3 6.8/19

7.085 0.00465/0.031 0.144 0.277 0.416 33.7 9.3/19

7.08 0.0031/0.031 0.162 0.274 0.417 17.9 5.0/19

7.075 0.00155/0.031 0.181 0.271 0.416 26.3 7.3/19

superfine

7.48 0.0072/0.018 0.049 0.186 0.291 52.4 16.4/29

7.475 0.0054/0.018 0.066 0.182 0.291 29.8 9.3/27

7.47 0.0036/0.018 0.087 0.178 0.291 30.4 9.5/27

7.465 0.0025/0.018 0.101 0.175 0.291 26.5 8.2/26

7.46 0.0018/0.018 0.110 0.174 0.292 35.2 11.0/26

ultrafine

7.81 0.0028/0.014 0.097 0.136 0.216 29.1 14.6/30

TABLE II. Parameters used in asymptotic fits to the quenched
topological charge density correlator and resulting values of
�2=df.

10=g2 amG �2=df

8.00 1.55 16.0/12

8.40 1.11 9.8/11

8.80 0.816 10.0/13
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tibility by considering the time history of the integral of the
correlator

�tðrÞ ¼
Z r

0
Cðr0Þ2�2ðr0Þ3dr0: (22)

In Fig. 3 we show the time history of this variable for the
case r ¼ 2r0 for the same set of ensembles. Clearly the
fluctuations in this quantity decorrelate much more rapidly
than those of the total topological charge.

We estimate the autocorrelation correction, i.e., the
amount by which the naive (uncorrelated) variance should
be increased to compensate for autocorrelations. For this
purpose we consider the integral of the correlator over the
proposed fit range

Z rmax

rmin

Cðr0Þ2�2ðr0Þ3dr0: (23)

We block the data in Monte Carlo time and calculate the
variance of the mean as a function of block size, extrap-
olating to infinite block size. The ratio of the extrapolated
variance to the naive variance is the correction factor. We
also sum the autocorrelation coefficients to obtain another
estimate of the correction factor. These determinations
fluctuate as a function of sea quark mass. We averaged
them at fixed lattice spacing to obtain the correction factors
shown in Table III. We should emphasize that the determi-
nation of autocorrelation corrections is notoriously diffi-
cult. To develop more confidence in these estimates, we
should have considerably longer time histories.
Our fits to the data take into account correlations in r as

well. For all ensembles, measurements are taken every six
or sometimes every five molecular dynamics time units.
We do not bin data in Monte Carlo time before construct-
ing the covariance matrix in r and minimizing the corre-
lated �2 [35]. Uncorrected errors are derived from a
jackknife analysis. Thus the resulting �2, based on the
naive covariance, must be reduced by the factor in
Table III before estimating the confidence level. Further-
more, the naive single-elimination jackknife errors in the
fit parameters must be increased by the square root of this
factor. We use the same factor to adjust the error in the
contribution from the raw data for r < rc.

B. Topological charge density correlator

We expect the topological susceptibility to decrease with
decreasing light sea quark mass. It is interesting to see how
the topological charge density correlator itself varies with
the light sea quark mass at fixed lattice spacing. In Fig. 4
we examine this dependence for a series of fine lattice
ensembles (a � 0:09 fm) for which we have results for
four ratios of the light to strange quark mass, 0.05, 0.1,
0.15, and 0.2, corresponding to the range 0.601 to 1.074 in
m2

�Ir
2
0. In the upper panel any variation with light quark

FIG. 2. Total topological charge after three HYP sweeps as a
function of simulation time for four lattice spacings and fixed sea
quark masses with ratio mud=ms ¼ 0:2. Sections marked ‘‘a’’
and ‘‘b’’ come from different Markov chains. From top to
bottom, a ¼ 0:12, 0.09, 0.06, and 0.045 fm.

FIG. 3. Contribution to the topological susceptibility for r <
2r0 as a function of simulation time for the ensembles of Fig. 2.

TABLE III. Autocorrelation correction factors for the various
categories of lattice spacings in this study. The factor multiplies
the naive variance.

spacing correction

coarse 1.7

fine 3.6

superfine 3.2

ultrafine 2.0
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mass is evidently much smaller than the plot symbol size.
In fact the short distance part of the correlator shows very
little sea quark mass dependence. In the lower panel we
enlarge the region around the minimum where a small
variation is now apparent. In this region light meson states
begin to dominate the correlator of the gluonic operators.
As the light quark mass decreases, the minimum drops,
thus giving a larger negative contribution to the integral.
This effect leads to the suppression of the susceptibility.
According to the model, the correlator should also decay
more slowly at large r, but this effect is too subtle to be
visible with our statistics.

We next examine the lattice-spacing dependence of the
correlator at fixed light quark mass ratio. Comparing the
local correlators CðrÞ obtained on ensembles at different
lattice spacing is complicated because sampling is natu-
rally done on a lattice scale. Rather than rebinning the data
to a common physical scale, we compute the partial inte-
gral �tðrÞ of Eq. (22) and plot it in physical (r0) units in
Fig. 5. As r increases from the origin, we see a peak at short
distance coming from the regulated contact term followed
by a decrease coming from the negative correlator. The
onset and width of the peak is determined by the effective

radius of the topological charge density operator, which is
fixed in lattice units. Thus as the lattice spacing decreases,
the expected negative 1=r8 singularity in the correlator is
exposed, and the peak increases in height and decreases in
width.
At large r the data approach the asymptotic value of the

full susceptibility. The figure shows both the integrated raw
data and the integral with the fit values for r > rc replacing
the raw data. The lower panel enlarges the asymptotic
region to show the variance reduction achieved by the fit.
The result also shows a plausible convergence of the
asymptotic value in the continuum limit.
Now we point out a practical issue relevant to future

extensions of this work, namely, whether the topological
susceptibility, defined by integrating the correlator of the
regulated topological charge density operator, has a feasi-
bly accessible continuum limit. This will be the case if the

FIG. 4 (color online). Topological charge density correlator vs.
r in units of r0 for a set of fine lattice ensembles (a � 0:09 fm)
with varying light sea quark masses mud. Upper: overview.
Lower: detail.

FIG. 5 (color online). Upper panel: integrated topological den-
sity correlator �tðrÞr40 vs. r=r0 at fixed light quark mass mud ¼
0:2ms for the lattice spacings indicated. Lower panel: detail of
the asymptotic behavior. The full topological susceptibility is the
value at the largest r. The plotted points give the result from the
raw data without variance reduction. Errors include the adjust-
ment for autocorrelations listed in Table III. The solid black
curves show the central value of the integrated contribution with
the fit values replacing the raw data for r > rc. (Values of rc and
fit ranges are given in Table VI.) The fit curves for a ¼ 0:06 and
0.045 fm are, accidentally, nearly coincident. Statistical errors on
the solid lines are shown on the right edge of the right panel.
They have also been corrected for autocorrelations. The fit error
for the smallest lattice spacing has the largest error bar. The
improvement in variance is evident.
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variance in the integral of the correlator for fixed physical
volume and statistical sample size does not diverge as the
lattice spacing decreases. We examine �tðrÞ at a fixed
physical distance r as the lattice spacing decreases. For r <
r0=2 we find that the variance actually decreases for a 2
½0:045; 0:12� fm. But for such a small range in r, the
behavior of the integrated correlator is strongly influenced
by the size of the topological charge density operator. The
larger radius r ¼ r0 is safely outside the width of the
operator and in a region where, for a 2 ½0:045; 0:12� fm,
the integrated correlator �tðrÞ is well past the peak, as we
can see from Fig. 5. We show the error in �tðr0Þ as a
function of lattice spacing in Table IV. This statistical error
is adjusted for autocorrelations, sample size (factor offfiffiffiffiffiffiffiffiffiffiffiffiffi
N=N0

p
), and lattice volume (factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
V=V0

p
) for N0 ¼

500 and V0 ¼ 100 fm4. We see that the adjusted error
grows approximately as 1=a over this range. This trend
suggests that it will be increasingly expensive to push to
smaller lattice spacing with our scheme. However, the
continuum limit is nonetheless finite, and our results dem-
onstrate that the method gives reasonable errors over the
range of lattice spacings considered.

C. Topological susceptibility

Our results are summarized in Table VI and Fig. 6. Since
chiral perturbation theory predicts the behavior as a func-
tion of the mass of the taste-singlet pion, we also list
estimates of that mass. Unlike the Goldstone pion mass,
the mass of the taste singlet is not measured directly on all
of our ensembles. However, to a good approximation,
splittings of the squared masses of the pion taste multiplet
are known to be independent of the light quark mass at
fixed lattice spacing [36]. So if the splitting is measured for
one light quark mass for a given lattice spacing, the taste-
singlet pion mass can be reconstructed from the Goldstone
pion mass for other light quark masses at the same spacing.
Table V lists the splittings for the categories of lattice
spacings in this study. They were used to obtain the values
in Table VI. The largest error in the estimated splittings is
less than 5%, which bounds the error in the abscissa of the
plot. We have chosen rc to lie within the fit range. We have
found that within this range our results vary by less than 1
standard deviation.

D. Continuum extrapolation

To model a continuum extrapolation, we fit our data to
the following form:

1=�t ¼ c0 þ c1ða=r0Þ2
þ ½c2 þ c3ða=r0Þ2 þ c4ða=r0Þ4�=ðm�;Ir0Þ2: (24)

This model assumes that lattice artifacts scale as a2. The fit
yields �2=df ¼ 8:8=13. In Fig. 6 the resulting fit curves
are shown, and three representative points in the continuum
extrapolation are also plotted. Also plotted is the prediction
of Eq. (11) using f�r0 ¼ 130� 0:454 MeV-fm with and
without our continuum-extrapolated asymptotic quenched
topological susceptibility �tr

4
0 ¼ 0:0523ð29Þ. From the fit

itself we obtain f� ¼ 132ð6Þ MeV, which is better than
expected for tree-level chiral perturbation theory.

TABLE V. Mass splittings (difference in squared masses) be-
tween Goldstone and taste-singlet pions

spacing a (fm) r20�M
2

coarse 0.12 1.136

fine 0.09 0.437

superfine 0.06 0.143

ultrafine 0.045 0.087

TABLE IV. Error 
corr in �tðr0Þ, the short-distance contribu-
tion to the topological susceptibility, at sea quark mass mud ¼
0:2ms for various lattice spacings. The error is adjusted to the
same sample size, autocorrelation, and lattice volume.

spacing a (fm) r0=a 
corr

coarse 0.12 3.82 1:8� 10�4

fine 0.09 5.40 2:5� 10�4

superfine 0.06 7.73 3:3� 10�4

ultrafine 0.045 10.39 4:4� 10�4

FIG. 6 (color online). Topological susceptibility vs. the
squared taste-singlet pion mass in units of the Sommer parameter
r0 � 0:454 fm [32]. The brown curve labeled ‘‘L.O. 2þ 1þm0

shows the prediction of tree-level continuum chiral perturbation
theory from Eq. (11) with f� ¼ 130 MeV, and the dashed brown
line labeled ‘‘L.O. 2þ 1’’ shows the same prediction without the
last term of Eq. (11). The remaining curves are fits to the model
of Eq. (24). The solid black line is the central value of the
continuum extrapolation of that model and three representative
points on the curve indicate the one sigma error.
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IV. CONCLUSIONS

We have presented an extensive study of the topological
susceptibility on 18 (2þ 1)-flavor asqtad lattice ensembles
and three quenched lattice ensembles. The susceptibility is
defined as the integral of the correlator of the topological
charge density. The topological charge density is con-
structed from a discretized version of F ~F with smearing
to help regulate ultraviolet fluctuations. To reduce the
variance from large distances, we replace the measured
values of the correlator at large r by a fit model that builds
in the expected spectral contribution.

Our method for determining the topological susceptibil-
ity through an integral of the topological charge density
correlator avoids singularities at zero separation by smear-
ing the charge density operator over a fixed local set of
lattice sites. A study of the variance in the small-distance
contribution suggests that as the lattice spacing is de-
creased the variance grows. At our level of statistics and
for the range of lattice spacings we consider in this study,
this growth is manageable.

Over the range of lattice spacings and masses in this
study, within statistical errors, we find good agreement
with tree-level staggered chiral perturbation theory and in
the continuum limit with tree-level continuum chiral per-
turbation theory, in both cases with the expected number of

flavors. This agreement supports the assertion that the
fourth-root procedure for staggered fermions results in
the correct number of sea quark species in the continuum
limit.
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10=g2 mud=ms range (a) rc=a r20m
2
�I ð�t<Þr40 ð�t>Þr40 �tr

4
0

coarse

6.85 0:05=0:05 [8.0,12] 10 4.746 0.0461(14) �0:0006ð2Þ 0.0455(14)

6.83 0:04=0:05 [8.0,12] 10 3.997 0.0422(13) �0:0008ð2Þ 0.0414(13)
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6.76 0:007=0:05 [8.0,12] 10 1.665 0.0309(09) �0:0015ð1Þ 0.0294(09)

6.76 0:005=0:05 [8.0,12] 10 1.517 0.0289(07) �0:0021ð1Þ 0.0267(07)

8.00 quenched [6.0, 10] 10 � � � 0.0733(08) 0:0000ð0Þ 0.0598(10)

fine

7.18 0:031=0:031 [10.0, 18] 13 3.626 0.0321(13) �0:0018ð6Þ 0.0303(15)

7.11 0:0124=0:031 [10.0, 18] 13 1.688 0.0247(09) �0:0017ð4Þ 0.0230(11)
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8.80 quenched [15.0, 21] 15 � � � 0.0680(06) �0:0001ð2Þ 0.0561(12)

ultrafine

7.81 0:0028=0:014 [16.0, 32] 27 0.634 0.0111(10) �0:0030ð1Þ 0.0080(10)
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APPENDIX A: ENSEMBLES STUDIED

We use gauge field ensembles generated by the MILC
collaboration [5,36,37] using 2þ 1 flavors of improved
(asqtad) staggered sea quarks with various light quark
masses. Relevant parameters of the gauge field ensembles
in this study are listed in Table VII. They fall into four
groups according to the approximate lattice spacing,
namely, coarse (0.12 fm), fine (0.09 fm), superfine
(0.06 fm), and ultrafine (0.045 fm). The table shows the
inverse lattice spacing in units of Sommer parameter r0.
The pion and �ss pseudoscalar meson masses are shown in
lattice units.
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