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We investigate the causality and stability of relativistic dissipative fluid dynamics in the absence of

conserved charges. We perform a linear stability analysis in the rest frame of the fluid and find that the

equations of relativistic dissipative fluid dynamics are always stable. We then perform a linear stability

analysis in a Lorentz-boosted frame. Provided that the ratio of the relaxation time for the shear stress

tensor �� to the sound attenuation length �s ¼ 4�=3ð"þ PÞ fulfills a certain asymptotic causality

condition, the equations of motion give rise to stable solutions. Although the group velocity associated

with perturbations may exceed the velocity of light in a certain finite range of wave numbers, we

demonstrate that this does not violate causality, as long as the asymptotic causality condition is fulfilled.

Finally, we compute the characteristic velocities and show that they remain below the velocity of light if

the ratio ��=�s fulfills the asymptotic causality condition.
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I. INTRODUCTION

Data from the Relativistic Heavy-Ion Collider (RHIC)
on the collective flow of matter in nucleus-nucleus colli-
sions have delivered a surprising result: the elliptic flow
coefficient v2 is sufficiently large [1–4] to be compatible
with calculations performed in the framework of ideal fluid
dynamics [5]. This has given rise to the notion that ‘‘RHIC
physicists serve up the perfect liquid’’ [6–8].

Of course, no real liquid can have zero viscosity: for all
weakly coupled theories, i.e., theories with well-defined
quasiparticles, in the dilute limit there is a lower bound
which one can derive from the uncertainty principle [9]:
the ratio of shear viscosity-to-entropy density�=s * 1=12.
For certain strongly coupled theories without quasipar-
ticles, there is also a lower bound which can be obtained
from the AdS/CFT conjecture [10], �=s � 1=ð4�Þ, i.e.,
surprisingly close to the bound for dilute, weakly coupled
systems.

In order to see whether the shear viscosity of the hot and
dense matter created in nuclear collisions at RHIC is close
to the lower bound, one has to perform calculations in the
framework of relativistic dissipative fluid dynamics. This
program has only been recently initiated, but has already
led to an enormous activity in the literature [11–30].

Fluid dynamics is an effective theory for the long-
wavelength, small-frequency modes of a given theory. In
order to see this, let us introduce three length scales: (a) a
microscopic length scale ‘micro. In all theories, at suffi-
ciently large temperatures this length scale can be defined
as the thermal wavelength �th � 1=T. In weakly coupled
theories with well-defined quasiparticles, this can be inter-
preted as the interparticle distance. (b) A mesoscopic
length scale ‘meso. In weakly coupled theories and in the
dilute limit, this can be identified with the mean-free path

of particles between collisions. In strongly coupled theo-
ries, such a scale is not known and should be identified with
‘micro. (c) A macroscopic length scale ‘macro. This is the
scale over which the conserved densities (e.g., the charge
density n or the energy density ") of the theory vary. Thus,
‘�1
macro � j@"j="; i.e., ‘�1

macro is proportional to the gradients
of the conserved quantities.
We now define the quantity K � ‘meso=‘macro. For dilute

systems, this quantity is identical to the so-called Knudsen
number. If K is sufficiently small, fluid dynamics as an
effective theory can be derived in a controlled way as a
power series in terms K. Since K � ‘�1

macro, this series
expansion is equivalent to a gradient expansion.
To zeroth order in K, one obtains the equations of ideal

fluid dynamics. To first order in K, one obtains the Navier-
Stokes (NS) equations. So-called second-order theories
contain terms of second order in K. Examples for the latter
are the Burnett equations [31], the Israel-Stewart equations
for relativistic dissipative fluid dynamics [32], the memory
function theory [25,28], extended thermodynamics
[28,33], and others [34]. The main difference between first-
and second-order theories is the velocity of signal propa-
gation. The relativistic NS equations allow for infinite
signal propagation speeds and are therefore acausal. On
the other hand, all second-order theories are considered to
be causal in the sense that all signal velocities are smaller
than the speed of light, provided that the parameters of the
theory are suitably chosen.
The stability and causality of fluid-dynamical theories

are usually studied around a hydrostatic state (i.e., for
vanishing macroscopic flow velocity) which is in thermo-
dynamical equilibrium. However, if a theory is stable
around a hydrostatic state, it does not necessarily imply
that it is stable in a state of nonzero flow velocity.
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Following this idea, the stability and causality of first- and
second-order fluid dynamics for a state with nonzero back-
ground flow velocity (mathematically realized by a
Lorentz boost) were studied for the case of nonzero bulk
viscosity, but for vanishing shear stress and heat flow in
Ref. [27]. There it was found that causality and stability are
intimately related: for all parameters considered, the theory
becomes unstable if and only if there is a mode which
propagates faster than the speed of light.

In this paper, we extend this analysis to the case of
nonvanishing shear viscosity in second-order theories of
relativistic dissipative fluid dynamics. A similar analysis
for a hydrostatic background has already been done by
Hiscock, Lindblom, and Olson [35,36], but they discussed
exclusively the low- and high-wave-number limits [36]. As
we shall show in this paper, their analysis missed a diver-
gence of the group velocity of a shear mode at intermediate
wave numbers. This anomalous behavior is generic; i.e., it
cannot be removed by tuning the parameters of the theory,
e.g., the relaxation time for the shear stress tensor �� and
the shear viscosity �. However, if the ratio ��=�s, where
�s ¼ 2ðD� 2Þ�=½ðD� 1Þð"þ PÞ� is the sound attenu-
ation length in D space-time dimensions, is chosen such
that the large-momentum limit of the group velocity asso-
ciated with the perturbation remains below the velocity of
light (the so-called asymptotic causality condition), one
can ensure that the divergence is restricted to a finite range
of momenta. It will be demonstrated that in this case, the
causality of the theory is not compromised. On the other
hand, second-order fluid dynamics is always stable in the
rest frame of the fluid, even if we use a parameter set which
violates the asymptotic causality condition.

We also study the causality and stability for a state with
nonzero background flow velocity, i.e., in a Lorentz-
boosted frame. We find that the divergence of the group
velocity is removed. However, depending on the boost
velocity the group velocity of either the shear or the sound
mode may still exceed the speed of light in a certain range
of wave numbers. Nevertheless, provided that the ratio
��=�s fulfills the asymptotic causality condition, we can
show that the equations are stable. In contrast to the
analysis in the rest frame, however, they become unstable
if the asymptotic causality condition is violated. We shall
demonstrate that if the asymptotic causality condition is
fulfilled, the causality of the theory as a whole is not
compromised. In this sense, causality and stability are
intimately related.

So far, the discussion was limited to the fluid-dynamical
equations in the linear approximation. Therefore, we ex-
pect the results to be valid for all versions of second-order
theories presently discussed in the literature, since they
differ only by nonlinear terms. We also compute the char-
acteristic velocities for the so-called simplified Israel-
Stewart equations [15] without linearizing these equations.
Our analysis strongly indicates that the characteristic ve-

locities remain below the velocity of light if the ratio ��=�s

is chosen such that the asymptotic causality condition is
fulfilled.
The asymptotic causality condition implies that, for a

given �s � �, �� must not be arbitrarily small. This ex-
plains why relativistic NS theory is acausal, because there
�� ! 0, while � is nonzero. It also implies that second-
order theories are not per se causal; they can violate
causality (and become unstable) if a too small value for
�� is chosen. The statement that second-order theories
automatically cure the shortcomings of NS theory is there-
fore not true.
This paper is organized as follows. In Sec. II, we discuss

the causality and stability of the linearized second-order
fluid-dynamical equations in the local rest frame. We also
extend this analysis to nonzero bulk viscosity and show
that the divergence of the group velocity still exists in this
case. In Sec. III, this discussion is generalized to a Lorentz-
boosted frame. We discuss Lorentz boosts both in and
orthogonal to the direction of propagation of the perturba-
tion. It will be demonstrated that superluminal group ve-
locities will not compromise the causality of the theory as
long as the asymptotic causality condition is fulfilled. In
Sec. IV, we compute the characteristic velocities in the
nonlinear case. A summary of our results concludes this
work in Sec. V. An appendix contains details of our calcu-
lations in Sec. IV. The metric tensor is g�� ¼
diagðþ;�;�;�Þ; our units are @ ¼ c ¼ kB ¼ 1.

II. STABILITY IN THE REST FRAME

As mentioned in the introduction, there are several
approaches to formulate a second-order theory of relativ-
istic dissipative fluids [25,27,28,32–34]. These approaches
differ only by nonlinear (second-order) terms. However,
since we shall apply a linear stability analysis in the
following, these differences vanish and all approaches
lead to the same set of linearized fluid-dynamical equa-
tions. In this work, we do not consider any conserved
charges and thus are left with energy-momentum conser-
vation:

@�T
�� ¼ 0; (1)

where

T�� ¼ "u�u� � ðPþ�Þ��� þ ��� (2)

is the energy-momentum tensor. Here, " and P are the
energy density and the pressure, respectively, while u�,�,
and ��� are the fluid velocity, the bulk viscous pressure,
and the shear stress tensor, respectively. We also intro-
duced the projection operator

��� ¼ g�� � u�u�; (3)

which projects onto the (D� 1)-dimensional subspace
orthogonal to the fluid velocity. We compute in the
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Landau frame [37], where there is no energy flow in the
local rest frame.

In second-order theories of relativistic dissipative fluid
dynamics, the bulk viscous pressure and the shear stress
tensor are determined from evolution equations. In D
space-time dimensions (D � 3), these equations are given
by

��
d

d�
�þ� ¼ ��@�u

�; (4a)

��P
���	 d

d�
��	 þ ��� ¼ 2�P���	@�u	; (4b)

possible other second-order terms [23] can be neglected for
the purpose of a linear stability analysis. In Eqs. (4), the
comoving derivative is denoted by u�@� � d=d�. The

relaxation times for the bulk viscous pressure and the shear
stress tensor are denoted by �� and ��, respectively. The
coefficients � and � are the bulk and shear viscosities,
respectively. We also introduced the symmetric rank-four
projection operator

P���	 ¼ 1

2
ð�����	 þ�����	Þ � 1

D� 1
�����	:

(5)

The shear stress tensor is traceless ��
� ¼ 0 and orthogonal

to the fluid velocity u��
�� ¼ 0.

The stability and causality of a relativistic dissipative
fluid with bulk viscous pressure only have been investi-
gated in Ref. [27]. Thus, for the sake of simplicity, we shall
first ignore the effects from bulk viscous pressure and
discuss the properties of the fluid-dynamical equations of
motion including only shear viscosity. The interplay be-
tween shear and bulk viscosity will be discussed
afterwards.

A. Shear viscosity only

For convenience, we introduce the following parame-
terization:

� ¼ as; (6a)

�� ¼ �

"þ P
b ¼ ab

T
; (6b)

where s and T are the entropy density and the temperature,
respectively. From the second equation we obtain ��ð"þ
PÞ=� ¼ b. The parametrization (6) is motivated by the
leading-order results for the causal shear viscosity coeffi-
cient and the relaxation time obtained in Ref. [30], where
the relation �� ¼ �=P was found. For a massless ideal gas
equation of state " ¼ ðD� 1ÞP, this result is reproduced
by choosing b ¼ D.

In this section, we discuss the stability of second-order
relativistic fluid dynamics in the local rest frame.
Following Refs. [27,35], let us introduce a perturbation
�ei!t�ikx around the hydrostatic equilibrium state:

" ¼ "0 þ 
"ei!t�ikx; (7a)

��� ¼ ���
0 þ 
���ei!t�ikx; (7b)

u� ¼ u�0 þ 
u�ei!t�ikx; (7c)

where "0 ¼ const, �
��
0 ¼ 0, and u

�
0 ¼ ð1; 0; 0; . . .Þ, re-

spectively. In the linear approximation, the velocity per-
turbation has no zeroth component,


u� ¼ ð0; 
u1; 
u2; . . . ; 
uD�1Þ; (8)

because u�u� ¼ 1. Moreover, in the local rest frame,


�0� � 0 on account of the orthogonality condition

u��
�� ¼ 0. Since ��� is traceless, 
�ðD�1ÞðD�1Þ is not

an independent variable. Taking all of this into account, the
linearized fluid-dynamical equations can be written as

AX ¼ 0; (9)

where

X ¼ ð
"; 
u1; 
�11; 
u2; 
�12; . . . ; 
uD�1; 
�1ðD�1Þ;


�22; 
�33; . . . ; 
�ðD�2ÞðD�2Þ; 
�23; 
�24; . . . ;


�2ðD�1Þ; 
�34; . . . ; 
�ðD�2ÞðD�1ÞÞT:
The matrix A is expressed as

A ¼
T 0 0 0
0 B 0 0
G 0 C 0
0 0 0 E

0BBB@
1CCCA; (10)

with

T ¼
i! f1 0

�ikc2s f2 �ik

0 � f

0BB@
1CCA; (11a)

B ¼ diagðB0; . . . ; B0ÞðD�2Þ�ðD�2Þ;

B0 ¼
f2 �ik

�1 f

 !
; (11b)

G ¼
0 �2 0

. . .

0 �2 0

0BB@
1CCA

ðD�3Þ�3

; (11c)

C ¼ diagðf; . . . ; fÞðD�3Þ�ðD�3Þ; (11d)

E ¼ diagðf; . . . ; fÞð1=2ÞðD�2ÞðD�3Þ�ð1=2ÞðD�2ÞðD�3Þ; (11e)

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@P=@"

p
is the velocity of sound. Here, we

introduced the abbreviations

f ¼ i!�� þ 1; f1 ¼ �ikð"þ PÞ;

f2 ¼ i!ð"þ PÞ; � ¼ �ik
2ðD� 2Þ
D� 1

�;

�1 ¼ �ik�; �2 ¼ ik
2

D� 1
�:
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For nontrivial solutions of Eq. (9), the determinant of the
matrix A should vanish. This leads to the following con-
ditions for the dispersion relations !ðkÞ:

f ¼ 0; (12a)

detB ¼ ðdetB0ÞD�2 ¼ 0; (12b)

detT ¼ det

i! f1 0

�ikc2s f2 �ik

0 � f

0BB@
1CCA ¼ 0: (12c)

Equation (12a) gives a purely imaginary frequency

! ¼ i

��
; (13)

which corresponds to a nonpropagating mode. The degen-
eracy of this mode is ðD� 3Þ½1þ ðD� 2Þ=2�.

Equation (12b) leads to a complex frequency

! ¼ 1

2��

�
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4���
"þ P

k2 � 1

s �
; (14)

corresponding to two propagating modes, if k is larger than
the critical wave number

kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
"þ P

4���

s
�

ffiffiffi
b

p
2��

: (15)

Following Ref. [38], we shall call these modes shear
modes. There are in total 2ðD� 2Þ shear modes.

Equation (12c) gives the same dispersion relation as
Eq. (16) of Ref. [27], after replacing 2ðD� 2Þ�=ðD� 1Þ
with �0. Introducing the sound attenuation length in D
space-time dimensions

�s � 2ðD� 2Þ
D� 1

�

"þ P
� 2ðD� 2Þ

D� 1

��
b
; (16)

the analytic solution in the limit of small wave number k is

! ¼
� i
��
;

�kcs þ i �s

2 k
2;

(17)

while for a large wave number we obtain

! ¼

8>><>>:
i
��

�
1þ �s

��c
2
s

��1
;

�kcs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �s

��c
2
s

q
þ i

2��

�
1þ ��c

2
s

�s

��1
:

(18)

This corresponds to another nonpropagating mode and two
propagating modes which we call sound modes in accor-
dance with Ref. [38]. All imaginary parts are positive and
therefore the nonpropagating as well as the shear and
sound modes are stable around the hydrostatic equilibrium
state. This fact is already known from the study of Hiscock
and Lindblom [35].
In order to discuss the issue of causality, we follow

Refs. [27,35] and study the group velocity defined as

vg ¼ @Re!

@k
: (19)

For the two nonpropagating modes, Re! ¼ 0.
Consequently, in order to discuss causality, we have to
consider the behavior of the imaginary part [27]. Let us
digress for the moment and consider the diffusion equation
with diffusion constant D0. There is a nonpropagating
mode with dispersion relation ! ¼ iD0k

2. Moreover, it is
known that the diffusion equation is acausal. Therefore, we
conjecture that a k2 dependence of any nonpropagating
mode can be considered a sign of acausality. In our case,
the nonpropagating modes either are independent of k or
have a weak k dependence (cf. Fig. 1). According to our
conjecture, we conclude that the nonpropagating modes do
not violate causality.
The dispersion relations resulting from Eq. (12c) are

shown in Fig. 1, and the corresponding group velocity
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FIG. 1. The real parts (left panel) and the imaginary parts (right panel) of the dispersion relations for the sound modes (full lines) and
the nonpropagating mode (dashed line) obtained from Eq. (12c). The parameters are a ¼ 1

4� , b ¼ 6, and c2s ¼ 1
3 for the 3þ

1-dimensional case D ¼ 4.
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resulting from Eq. (19) in Fig. 2. The group velocity has a
maximum for a finite value of k=T and approaches its
asymptotic value (k ! 1) from above. For small values
of b, it may thus happen that the group velocity becomes
superluminal. Nevertheless, in Sec. III C we shall show that
only the asymptotic value determines whether the theory as
a whole is causal or not. The asymptotic value of the group
velocity is

vas
g;sound ¼ lim

k!1
@Re!

@k
¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �s

��c
2
s

s
: (20)

Consequently, for the asymptotic group velocity of sound
waves to be less than the speed of light, �� and �s should
satisfy the following, so-called asymptotic causality con-
dition:

�s

��
� 1� c2s , 1

b
� �

��ð"þ PÞ �
D� 1

2ðD� 2Þ ð1� c2sÞ:
(21)

This is similar to the causality condition for the group

velocity in the case of bulk viscosity, Eq. (21) of
Ref. [27]. For conformal fluids, where c2s ¼ 1=ðD� 1Þ,
the condition (21) simplifies to �s � ðD� 2Þ��=ðD� 1Þ
or, equivalently, b � 2. For example, for the values of �
and �� deduced from the AdS/CFT correspondence [38–
40], � ¼ s=ð4�Þ and �� ¼ ð2� ln2Þ=ð2�TÞ, the condition
(21) is always satisfied because b ¼ 2ð2� ln2Þ ’ 2:614>
2.
The dispersion relations for the shear modes resulting

from Eq. (12b) change their behavior from nonpropagating
to propagating at the critical wave number (15), as shown
in Fig. 3. It should be noted that a similar behavior is
observed in the case of bulk viscosity; cf. Fig. 1 in
Ref. [27]. For wave numbers larger than kc, the (modulus
of the) group velocity of the propagating mode is

vg ¼ vas
g;shear

k=kcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk=kcÞ2 � 1
p ; (22)

where

vas
g;shear �

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��kc

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

��ð"þ PÞ
s

� 1ffiffiffi
b

p (23)

is the asymptotic value of vg in the large-wave-number

limit. If the asymptotic causality condition (21) is satisfied,

vas
g;shear �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� 1Þð1� c2sÞ=2ðD� 2Þp
. This is smaller

than 1 for any value of cs and D � 3. However, near the
critical wave number kc the group velocity diverges, as
shown in Fig. 4. From the definitions of kc [Eq. (15)] and

the parameters a and b [Eqs. (6)], we observe that kc=T ¼
ð2a ffiffiffi

b
p Þ�1. The 1=a scaling of kc=T for fixed b can be

nicely observed in Fig. 4.
In Sec. III C we shall show that the apparent violation of

causality of the group velocity does not cause the theory as
a whole to become acausal. The important issue is whether
the asymptotic causality condition is fulfilled. If yes, the
theory is causal.
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FIG. 3. The real parts (left panel) and the imaginary parts (right panel) of the dispersion relations for the shear modes obtained from
Eq. (12b). The parameters are a ¼ 1

4� , b ¼ 6, and c2s ¼ 1
3 for the 3þ 1-dimensional case D ¼ 4.
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FIG. 2. The group velocity (22) for a ¼ 1=ð4�Þ, D ¼ 4, c2s ¼
1
3 , and b ¼ 6 (full line), b ¼ 2 (dashed line), as well as b ¼ 1:5

(dotted line).
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We remark that, in the local rest frame, the stability of
the system of fluid-dynamical equations is not affected if
we choose a parameter set which violates the asymptotic

causality condition (21), for instance, a conformal fluid in
D ¼ 4 dimensions and b ¼ 1. This is demonstrated for the
sound modes in Fig. 5 and for the shear modes in Fig. 6.

B. Competition of bulk and shear

The question we would like to answer in this section is
whether the problem of the divergent group velocity can be
removed by adding bulk viscosity to the discussion. For the
sake of simplicity, we consider only the 2þ 1-dimensional
case, i.e., D ¼ 3. Similarly to Eqs. (6), we introduce the
parametrization

� ¼ a1s; �� ¼ �

"þ P
b1: (24)

As before, the equations of motion (4) have to be linear-
ized, yielding Eq. (9), where now

X ¼ ð
"; 
ux; 
�xx; 
uy; 
�xy; 
�ÞT; (25)

and

A ¼

i! �ikð"þ PÞ 0 0 0 0
�ikc2s i!ð"þ PÞ �ik 0 0 �ik

0 �ik� i!�� þ 1 0 0 0
0 0 0 i!ð"þ PÞ �ik 0
0 0 0 �ik� i!�� þ 1 0
0 �ik� 0 0 0 i!�� þ 1

0BBBBBBBB@

1CCCCCCCCA: (26)

Then, the dispersion relations are given by solving the following equations:

k2�þ i!ð1þ i!��Þð"þ PÞ ¼ 0; (27a)

i!k2ð1þ i!��Þ�þ ð1þ i!��Þ½i!k2� þ ð1þ i!��Þð"þ PÞðc2sk2 �!2Þ� ¼ 0: (27b)

The dispersion relations resulting from sound and bulk viscous modes [Eq. (27b)] are
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FIG. 5. The real parts (left panel) and the imaginary parts (right panel) of the dispersion relations for the sound modes obtained from
Eq. (12c). The parameters are a ¼ 1

4� , b ¼ 1, and c2s ¼ 1
3 for the 3þ 1-dimensional case D ¼ 4.
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k T
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FIG. 4. The group velocity (22) for D ¼ 4, b ¼ 6, c2s ¼ 1
3 , and

a ¼ 1=ð4�Þ (full line), a ¼ 1=4 (dashed line), as well as a ¼ 1
(dotted line).
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!¼
8<:

T
2aa1ðbþb1þbb1c

2
s Þ fiað1þbc2sÞþ ia1ð1þb1c

2
sÞ�½4aa1c2sðbþb1þbb1c

2
sÞ�ðaþa1þabc2s þa1b1c

2
sÞ2�1=2g;

�k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
bþ 1

b1
þc2s

q
þ iT

2ðbþb1þbb1c
2
s Þ

�
b

a1b1
þ b1

ab

�
;

(28)

for large k, and

! ¼
8><>:

i
��
;

i
��

;

�c2sk;

(29)

for small k.
Thus the asymptotic causality condition reads

1

b1
þ 1

b
� �

��ð"þ PÞ þ
�

��ð"þ PÞ � 1� c2s : (30)

On the other hand, the equation for the shear modes
[Eq. (27a)] is the same as Eq. (12b) and hence the corre-
sponding group velocity again shows a divergence. Thus,
the inclusion of bulk viscosity does not solve the problem
of the divergent group velocity.

III. STABILITY IN LORENTZ-BOOSTED FRAME

The discussion of causality and stability in the case of
nonzero bulk viscosity in a Lorentz-boosted frame in
Ref. [27] has shown that causality and stability are inti-
mately related. Relativistic dissipative fluid dynamics be-
comes unstable if the group velocity exceeds the speed of
light. If this is still true in the case of nonzero shear
viscosity, the divergence of the group velocity found in
the rest frame may induce an instability in a moving frame.
In order to investigate this question, we consider the
stability of the hydrostatic state observed from a Lorentz-
boosted frame, following Ref. [27]. In this section, we
restrict our investigations to the case D ¼ 4.

We consider a frame moving with a velocity ~V with
respect to the hydrostatic state. Then, the total fluid veloc-
ity u0� is given by

u0� ¼ �V V�V ~n
T

V�V ~n �VPk þQ?

� �
u�; (31)

where �V ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
, Pk ¼ ~n ~nT , and Q? ¼ 1� Pk,

with ~n ¼ ~V=j ~Vj. We consider the two cases where the
direction of the Lorentz boost is parallel and where it is
perpendicular to the direction of propagation of the per-
turbation; the latter we take to be the x direction.

A. Boost along the x direction

The perturbation of the fluid velocity is given by

u0� ¼ u0�0 þ 
u0�ei!t�ikx; (32)

where

u
0�
0 ¼ �Vð1; V; 0; 0Þ; (33a)


u0� ¼ ðV�V
u
x; �V
u

x; 
uy; 
uzÞ; (33b)

where 
u� is the velocity perturbation in the local rest
frame. The linearized fluid-dynamical equations are again
given by Eq. (9), with

X ¼ ð
"; 
ux; 
�xx; 
uy; 
�xy; 
uz; 
�xz; 
�yy; 
�yzÞT;
(34)

and
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FIG. 6. The real parts (left panel) and the imaginary parts (right panel) of the dispersion relations for the shear modes obtained from
Eq. (12b). The parameters are a ¼ 1

4� , b ¼ 1, and c2s ¼ 1
3 for the 3þ 1-dimensional case D ¼ 4.
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A ¼
T1 0 0 0
0 B1 0 0
G1 0 C1 0
0 0 0 E1

0BBB@
1CCCA: (35)

The submatrices are given by

T1 ¼ �2
V

i!ð1þ V2c2sÞ � ikVð1þ c2sÞ i½2!V � kð1þ V2Þ�ð"þ PÞ i��2
V Vð!V � kÞ

i!Vð1þ c2sÞ � ikðV2 þ c2sÞ i½!ð1þ V2Þ � 2kV�ð"þ PÞ i��2
V ð!V � kÞ

0 4
3 i��Vð!V � kÞ ��2

V F

0BB@
1CCA; (36a)

B1 ¼ diagðB01; B01Þ; B01 ¼
i�Vð!� kVÞð"þ PÞ ið!V � kÞ

i��2
Vð!V � kÞ F

 !
; (36b)

G1 ¼ 0 � 2
3 i��Vð!V � kÞ 0

� �
; (36c)

C1 ¼ E1 ¼ F: (36d)

Here we abbreviated

F ¼ i�Vð!� kVÞ�� þ 1: (36e)

Obviously,

detA ¼ detT1 � detB1 � F2: (37)

From F2 ¼ 0, we only obtain two trivial propagating
modes

! ¼ i

�V��
þ kV: (38)

The group velocity is vg ¼ V, which implies that these
modes correspond to the nonpropagating modes in the
local rest frame.

From detB1 ¼ 0, we obtain

½iT þ ab�VðkV �!Þ�ðkV �!Þ þ a�VðkV �!Þ2T ¼ 0;

(39)

corresponding to the shear modes. There are in total four
modes satisfying this relation. The solutions are given by

!� ¼ 1

2aðb� V2Þ�V

½iT � 2að1� bÞkV�V

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T2 þ 4iakTV��1

V þ 4a2bk2��2
V

q
�: (40)
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FIG. 7. The group velocity calculated for one of the shear modes (left panel) and one of the sound modes (right panel). We set
a ¼ 1=ð4�Þ, b ¼ 6, and c2s ¼ 1=3. The solid line is for a boost velocity V ¼ 0:05, the dashed line for V ¼ 0:4, and the dotted line for
V ¼ 0:99.

SHI PU, TOMOI KOIDE, AND DIRK H. RISCHKE PHYSICAL REVIEW D 81, 114039 (2010)

114039-8



On the other hand, the sound modes result from

c2sð"þPÞ½1� i�V��ðkV�!Þ�fk2½V2þðV�1Þ2V�2
V þ1�

þ2kV!½ðV�1ÞV�2
V �1�þV2!2�c�2

s ð!�kVÞ2g
þ 4

3i�V�ðk�V!Þ2fkV½c2s�2
VVð1�VÞ�1�þ!g¼ 0:

(41)

In Fig. 7, the dependence of the group velocity on the
wave number is shown for various values of the boost
velocity V. The left panel shows the behavior of one of
the shear modes and the right panel one of the sound
modes. The parameter set used here is a ¼ 1

4� , b ¼ 6, c2s ¼
1
3 , which satisfies the asymptotic causality condition. We

observe that the divergence of the group velocity of the
shear mode in the rest frame is tempered by the Lorentz
boost to result in a peak of finite height. However, the
group velocity may still exceed the speed of light in a
certain range of wave numbers. As we increase the boost
velocity, the peak height diminishes, until the group veloc-
ity remains below the speed of light for all wave numbers.
However, further increasing the boost velocity leads to an
acausal group velocity in the sound mode.

Although the group velocity of the shear or the sound
mode may exceed the speed of light, as long as the asymp-
totic causality condition is fulfilled, the theory is still
stable. This is demonstrated in the left panel of Fig. 8,
where the imaginary parts of the modes are shown for the
parameter set a ¼ 1

4� , b ¼ 6, c2s ¼ 1
3 . We observe that all

imaginary parts are positive, indicating the stability of the
theory.

In contrast to the rest frame, where the theory is stable
even for parameters which violate the asymptotic causality
condition (21), this is no longer the case in a Lorentz-
boosted frame. In the right panel of Fig. 8, the imaginary
parts of the modes are calculated with the parameter set
a ¼ 1

4� , b ¼ 1, c2s ¼ 1
3 . Now one observes the appearance

of negative imaginary parts, indicating that the theory
becomes unstable.

B. Boost along the y direction

Now we consider a Lorentz boost along the y direction.
The perturbation of the fluid velocity is given by

u0� ¼ u
0�
0 þ 
u0�ei!t�ikx; (42)

where

u
0�
0 ¼ �Vð1; 0; V; 0Þ; (43a)


u0� ¼ ðV�V
u
y; 
ux; �V
u

y; 
uzÞ: (43b)

Similarly to the preceding discussion, the linearized fluid-
dynamical equations take the form (9), where the matrix A
is

A ¼
T2 H1 H2 0
H3 B2 H4 H5

G2 H6 C2 0
0 H7 0 E2

0BBB@
1CCCA; (44)

with
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FIG. 8. The imaginary parts of the dispersion relations for a boost in the x direction with velocity V ¼ 0:9. The left panel shows the
results for the parameter set a ¼ 1

4� , b ¼ 6, c2s ¼ 1
3 , which fulfills the asymptotic causality condition, while the right panel is for

a ¼ 1
4� , b ¼ 1, c2s ¼ 1

3 , which violates this condition. The dashed lines are for the shear modes, while the solid lines are for the sound

modes.
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T2 ¼
i!�2

Vð1þ c2sV
2Þ �ik�Vð"þ PÞ 0

�ikc2s i!�Vð"þ PÞ �ik

0 � 4
3 ik� F1

0BB@
1CCA; (45a)

H1 ¼
2i!Vð"þ PÞ�2

V �ikV 0 0

0 i!V 0 0

� 2
3 i!V��V 0 0 0

0BB@
1CCA: (45b)

H2 ¼ ð i!V2 0 0 ÞT; (45c)

H3 ¼
i!V�2

Vð1þ c2sÞ �ikV�Vð"þ PÞ 0

0 i!V�2
V� 0

0 0 0

0 0 0

0BBBBB@
1CCCCCA; (45d)

B2 ¼
i!�2

Vð1þ V2Þð"þ PÞ �ik 0 0

�ik�V� F1 0 0

0 0 i!�Vð"þ PÞ �ik

0 0 �ik� F1

0BBBBB@
1CCCCCA; (45e)

H4 ¼ i!V 0 0 0
	 


T; H5 ¼ 0 0 i!V 0
	 


T; (45f)

G2 ¼ 0 2
3 ik�

2
V� 0

� �
; H6 ¼ 4

3 i!V�3
V� 0 0 0

� �
; (45g)

H7 ¼ ð 0 0 i!V�2
V� 0 Þ; C2 ¼ E2 ¼ F1: (45h)

Here we abbreviated

F1 ¼ i!�V�� þ 1:

The condition detA ¼ 0 leads again to the following nine
modes: three nonpropagating modes, four shear modes,
and two sound modes.

The nonpropagating mode has almost the same form as
that in the local rest frame,

! ¼ i

�V��
: (46)

The shear modes are given by the solution of the following
equation:

k2�þ �V!½V2�V�!þ ð"þ PÞði� �V��!Þ� ¼ 0;

(47)

and the solutions are given by

!� ¼ 1

2aðb� V2Þ�V

½iT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T2 þ 4a2bk2 � 4a2k2V2

p
�:

(48)

We find that the critical wave number is now given by ~kc ¼
T=ð2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� V2

p
Þ, below which the shear modes become

nonpropagating modes.
On the other hand, the sound modes and another non-

propagating mode result from

3c2sð"þ PÞð�iþ �V��!Þðk2 þ V2�2
V!

2Þ
þ �V!f4k2�þ �V!½3ið"þ PÞ þ 4V2�V�!

� 3ð"þ PÞ�V��!�g ¼ 0: (49)

The real and imaginary parts of this dispersion relation are
calculated with a parameter set satisfying the asymptotic
causality condition. The results are shown in Fig. 9. One
observes that the real parts are symmetric around ! ¼ 0.
This symmetry is due to the fact that the direction of the
Lorentz boost is orthogonal to the direction of the pertur-

bation. The critical wave number ~kc where the shear mode
changes from nonpropagating to propagating mode can be
clearly seen. The imaginary parts are seen to be positive.
We confirmed that the imaginary parts become negative if
we use a parameter set which violates the asymptotic
causality condition.

C. Causality of wave propagation

In the preceding discussion we have seen that the theory
is stable if the asymptotic causality condition is fulfilled.
The reverse is in general not true, as the discussion in the
local rest frame has shown, since a stable theory may also
violate the asymptotic causality condition. However, the
discussion in the Lorentz-boosted frame has revealed that
the stability of a theory is contingent upon whether the
asymptotic causality condition is fulfilled.
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In this section, we shall show that the causality of the
theory as a whole is guaranteed if the asymptotic stability
condition is fulfilled. The group velocity may become
superluminal, or even diverge, as long as this apparent
violation of causality is restricted to a finite range of
momenta. The argument leading to this conclusion is
analogous to that of Sommerfeld and Brillouin in classical
electrodynamics [41,42]. For instance, in the case of
anomalous dispersion the group velocity may become
superluminal, but the causality of the theory as a whole
is not affected.

The change in a fluid-dynamical variable induced by a
general perturbation is given by


Xðx; tÞ ¼X
j

Z
d!f
Xjð!Þei!t�ikjð!Þx; (50)

where 
Xðx; tÞ stands for 
", 
u�, and 
���. The index j
denotes the different modes, i.e., the shear modes, the
sound modes, etc. The function kjð!Þ is the inverted dis-

persion relation !jðkÞ of the respective mode. The Fourier

components are given byX
j

f
Xjð!Þ ¼ 1

2�

Z 1

�1
dt
Xð0; tÞe�i!t: (51)

We assume that the incident wave has a well-defined
front that reaches x ¼ 0 not before t ¼ 0. Thus 
Xð0; tÞ ¼
0 for t < 0. This condition on 
Xð0; tÞ ensures thatP

j
f
Xjð!Þ is analytic in the lower half of the complex !

plane [41]. On the other hand, in Sec. II A we have found
that the group velocity of the shear modes diverges for
certain values of k. These divergences correspond to sin-
gularities in the complex ! plane. However, if the asymp-
totic causality condition is fulfilled, the imaginary part of
the dispersion relation is always positive; i.e., the singu-
larities only appear in the upper half of the complex !
plane. In this case, the system is also stable. On the other

hand, if the asymptotic causality condition is violated, the
singularities may appear also in the lower half-plane, i.e.,
for the negative imaginary part of the dispersion relation,
and the system is unstable.
We shall now demonstrate that the divergences in the

group velocity do not violate causality as long as the
asymptotic causality condition is satisfied, i.e., as long as
the asymptotic group velocity remains subluminal. To this
end, we compute Eq. (50) by contour integration in the
complex ! plane. To close the contour, we have to know
the asymptotic behavior of the dispersion relations. In our
calculation, we found that the real part of the dispersion
relation at large k is proportional to k [see Eq. (18)], with a
coefficient which is the large-k limit of the group velocity,
i.e., vas

gj,

lim
k!1

Re!jðkÞ ¼ vas
gjk: (52)

Then, in the large-k limit, the exponential becomes

exp½i!t� ikjð!Þx� ! exp

�
�i

!

vas
gj

ðx� vas
gjtÞ

�
: (53)

In the case x > vas
gjt, we have to close the integral con-

tour in the lower half-plane. If the asymptotic causality
condition is fulfilled, there are no singularities in the lower
half-plane, and Eq. (50) vanishes. On the other hand, the
contour should be closed in the upper half-plane if x �
vas
gjt. Then, because of the singularities, Eq. (50) may have

a nonzero value. However, as long as we choose a parame-
ter set for which the asymptotic group velocity vas

gj is

smaller than the speed of light, i.e., for which the asymp-
totic causality condition is fulfilled, the signal propagation
does not violate causality, since the locations x where the
disturbance has travelled lie within the cone given by vas

gj

which, in turn, lies within the light cone, Q.E.D.
To conclude this section, we have shown that the asymp-

totic causality condition not only implies stability in a
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FIG. 9. The real and imaginary parts for the dispersion relations of the shear modes (dashed lines) and sound modes (solid lines), for
a Lorentz boost in the y direction. We use a ¼ 1

4� , b ¼ 6, c2s ¼ 1
3 , and V ¼ 0:9 in the 3þ 1-dimensional case.
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general (Lorentz-boosted) frame, but also causality of the
theory as a whole.

IV. CHARACTERISTIC VELOCITIES

So far, we have analyzed the causality and stability of
relativistic dissipative fluid dynamics with shear viscosity
using a linear stability analysis. However, there is another
possibility to analyze causality, namely, by studying the
characteristic velocities. For the sake of simplicity, we
consider the 2þ 1-dimensional case with shear viscosity
only. The fluid-dynamical equations can be written in the
following form:

ðAt
ab@t þ Ax

ab@x þ Ay
ab@yÞYb ¼ Ba; (54)

where YT
b ¼ ð"; ux; uy; �xx; �xyÞ and BT

a ¼
ð0; 0; 0; �xx; �xyÞ. The expressions for the components of
A are given in the appendix. Then, as discussed in
Ref. [35], the characteristic velocities are defined as the
roots of the following equations:

detðvxA
t � AxÞ ¼ 0; (55a)

detðvyA
t � AyÞ ¼ 0: (55b)

For the case of bulk viscosity, see Ref. [27].
For the sake of simplicity, we consider u� ¼ ð1; 0; 0Þ

and �xx ¼ �xy ¼ 0. Then, the characteristic velocities are
given by

vx ¼ vy ¼
� 0;
�

ffiffi
1
b

q
;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
b þ c2s

q
:

(56)

Interestingly, the second velocity is identical to the asymp-
totic group velocity (23) for the shear modes and the third
velocity is the same as the asymptotic group velocity (20)
for the sound modes (since D ¼ 3). As a matter of fact, if

the asymptotic causality condition (21) is satisfied, the
velocity (56) is smaller than the speed of light.
In Fig. 10, we show the b dependence of one of the five

characteristic velocities. We set u� ¼ ð ffiffiffi
5

p
=2; 1=2; 0Þ,

�xx ¼ �xy ¼ 0, and c2s ¼ 1=2. The velocity exhibits a
divergence at small values of b and thus exceeds the speed
of light. This divergence occurs also for at least one other
characteristic velocity. As far as we have checked numeri-
cally, in order to satisfy causality, one should use a value of
b which is larger than about 2. This condition is consistent
with the asymptotic causality condition (21).

V. CONCLUDING REMARKS

In this work, we have discussed the stability and cau-
sality of relativistic dissipative fluid dynamics, based on a
linear stability analysis around a hydrostatic state.
Following the usual argument, we calculated the group
velocity from the dispersion relation of the perturbation.
We found that the group velocity diverges at a critical wave
number kc. The appearance of the divergence is indepen-
dent of the dimensionality of space-time and can be re-
moved neither by tuning the parameters of the theory nor
by adding bulk viscosity to the discussion.
Nevertheless, in the rest frame of the background this

acausal group velocity does not cause the fluid to become
unstable. Moreover, investigating causality and stability in
a Lorentz-boosted frame, we found that the fluid-
dynamical equations of motion are stable, if we choose
parameters which satisfy a so-called asymptotic causality
condition. They become unstable if this condition is vio-
lated. In this sense, the problems of acausality and insta-
bility are still correlated even in the case of shear viscosity,
as was already found for the case of bulk viscosity [27].
We have then demonstrated that the causality of the

theory as a whole is guaranteed if the asymptotic causality
condition is fulfilled. Therefore, a superluminal group
velocity in a finite range of momenta can cause the theory
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FIG. 10. One of the five characteristic velocities determined from the roots of Eqs. (55). The left panel is for vx and the right panel is
for vy. We set u� ¼ ð ffiffiffi

5
p

=2; 1=2; 0Þ, �xx ¼ �xy ¼ 0, and c2s ¼ 1=2.
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to become neither acausal nor unstable. Finally, we studied
the characteristic velocities and found a violation of cau-
sality for small values of ��ð"þ PÞ=�, but not for values
which satisfy the asymptotic causality condition.

The asymptotic causality condition requires that the
ratio ��=�s is sufficiently large, i.e., that the time scale
�� over which the shear viscous pressure relaxes towards
its NS value is not too small compared to the sound
attenuation length �s � �=ð"þ PÞ � �=ðTsÞ. This is an
important finding for practitioners of fluid dynamics, who
frequently consider �� and the shear viscosity-to-entropy
density ratio �=s to be independent from each other. We
have demonstrated that this is not the case if one wants the
theory to remain causal. Therefore, second-order theories
of relativistic dissipative fluid dynamics are not automati-
cally causal by construction. Our findings also illuminate
why NS theory violates causality from a different perspec-
tive, because there �� ! 0 while � remains nonzero.
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APPENDIX: MATRIX ELEMENTS IN EQ. (54)

The fluid-dynamical equations can be expressed in the
form (54). Let us parameterize the velocity of the fluid as
u� ¼ ðcosh�; sinh� cos
; sinh� sin
Þ. The matrix ele-
ments of Ax

ab are

Ax
11 ¼ ðc2s þ 1Þ sinh� cosh� cos
;

Ax
12 ¼ 1

2 sech
3�f2sinh2�½ð2wþ �xxÞsin2
þ 3wcos2


� �xy sin
 cos
� þ wsinh4�ðcosð2
Þ þ 3Þ þ w

þ �xxg;

Ax
13 ¼ sech3�fsinh2� cos
½ðw� �xxÞ sin
þ �xy cos
�

þ wsinh4� sin
 cos
þ �xyg;

Ax
14 ¼ tanh� cos
;

Ax
15 ¼ tanh� sin
;

Ax
21 ¼ ðc2s þ 1Þsinh2�cos2
þ c2s ;

Ax
22 ¼ 2w sinh� cos
;

Ax
24 ¼ Ax

35 ¼ 1;

Ax
31 ¼ ðc2s þ 1Þsinh2� sin
 cos
;

Ax
32 ¼ w sinh� sin
;

Ax
33 ¼ w sinh� cos
;

Ax
42 ¼ sech2�fsinh4�cos2
½�þ ���

xx cosð2
Þ � ���
xx

þ ���
xy sinð2
Þ� þ sinh2�½2ð�� ���

xxÞcos2

þ �sin2
� þ �g;

Ax
43 ¼ �2��tanh

2�cos2
½sinh2� cos
ð�xy cos


� �xx sin
Þ þ �xy�;

Ax
44 ¼ Ax

55 ¼ �� sinh� cos
;

Ax
52 ¼

tanh2� cos


2ðsinh2�cos2
þ 1Þ f�2sinh2�ð�xxsin3


þ 2�xx sin
cos2
þ �xycos3
Þ þ sinh4�sin2ð2
Þ
� ð�xy cos
� 2�xx sin
Þ � 2�xx sin


� 2�xy cos
g;

Ax
53 ¼ 1

2 sech
2�f2sinh4�cos2
½�� ���

xx cosð2
Þ
þ ���

xx � ���
xy sinð2
Þ� þ sinh2�½ð�þ ���

xxÞ
� cosð2
Þ þ 3�þ ���

xx � ���
xy sinð2
Þ�

þ 2�g:
The matrix elements of At

ab are given by

At
11 ¼ 1

2½ðc2s þ 1Þ coshð2�Þ � c2s þ 1�;

At
12 ¼

2 sinh�

ðsinh2�cos2
þ 1Þ2 fsinh
2� cos
ð2wcos2


þ �xxsin2
� �xy sin
 cos
Þ þ wsinh4�cos5


þ ðwþ �xxÞ cos
þ �xy sin
g;

At
13 ¼ 2 sinh�

�
w sin
þ �xy cos
� �xx sin


sinh2�cos2
þ 1

�
;

At
14 ¼

cosð2
Þ
csch2�þ cos2


;

At
15 ¼

sinð2
Þ
csch2�þ cos2


;

At
21 ¼ ðc2s þ 1Þ sinh� cosh� cos
;
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At
31 ¼ ðc2s þ 1Þ sinh� cosh� sin
;

At
22 ¼

sech3�

2
f2sinh2�½ð2wþ �xxÞsin2
þ 3wcos2


� �xy sin
 cos
� þ wsinh4�½cosð2
Þ þ 3� þ 2w

þ 2�xxg;

At
23 ¼ sech3�fsinh2� cos
½wsinh2� sin
þ ðw� �xxÞ

� sin
þ �xy cos
� þ �xyg;

At
24 ¼ tanh� cos
;

At
25 ¼ tanh� sin
;

At
32 ¼

sech3�

ðsinh2�cos2
þ 1Þ2 fsinh
2�½ðwþ 3�xxÞ sin
 cos


þ 3�xysin2
þ 2�xycos2
� þ sinh4�½3ðwþ �xxÞ
� sin
cos3
þ ðwþ 5�xxÞsin3
 cos


þ 2�xysin4
þ �xycos4
� þ 1

16
sinh6�½10 sinð2
Þ

þ sinð4
Þ�½ðw� �xxÞ cosð2
Þ þ wþ �xx

� �xy sinð2
Þ� þ wsinh8� sin
cos5
þ �xyg;

At
33 ¼

sech3�

8ðsinh2�cos2
þ 1Þ fsinh
4�½4ðwþ 2�xxÞ cosð2
Þ

þ ð�xx � wÞ cosð4
Þ þ 21w� 9�xx

þ 10�xy sinð2
Þ þ �xy sinð4
Þ� þ 4sinh2�½6w
þ 2�xx cosð2
Þ � 4�xx þ 3�xy sinð2
Þ�
� 4wsinh6�cos2
½cosð2
Þ � 3� þ 8w� 8�xxg;

At
34 ¼ � tanh� sin
ðsinh2�sin2
þ 1Þ

sinh2�cos2
þ 1
;

At
35 ¼

tanh� cos


2sinh2�cos2
þ 2
f2� sinh2�½cosð2
Þ � 3�g;

At
42 ¼ tanh� cos
fsinh2�f2 sin
½ð�� ���

xxÞ sin

þ ���

xy cos
� þ �cos2
g þ �� 2���
xxg;

At
43 ¼ � tanh�fsinh2�cos2
½ð�� 2���

xxÞ sin

þ 2���

xy cos
� þ � sin
þ 2���
xy cos
g;

At
44 ¼ At

55 ¼ �� cosh�;

At
52 ¼

tanh�

4sinh2�cos2
þ 4
f�2sinh2�fsin
½�2�

þ ���
xx cosð2
Þ þ 3���

xx� þ 2���
xycos3
g

þ sinh4�sin2ð2
Þ½ð�� 2���
xxÞ sin


þ 2���
xy cos
� þ 4ð�� ���

xxÞ sin

� 4���

xy cos
g;

At
53 ¼ tanh�fsinh2�½�cos3
þ ���

xx sin
 sinð2
Þ
� 2���

xy sin
cos2
� þ ð�þ ���
xxÞ cos


� ���
xy sin
g:

The matrix elements of Ay
ab are

Ay
11 ¼ ðc2s þ 1Þ sinh� cosh� sin
;

Ay
21 ¼ ðc2s þ 1Þsinh2� sin
 cos
;

Ay
12 ¼

sech3�

ðsinh2�cos2
þ 1Þ2 fsinh
2�½ðwþ 3�xxÞ sin
 cos


þ 3�xysin2
þ 2�xycos2
� þ sinh4�½3ðwþ �xxÞ
� sin
cos3
þ ðwþ 5�xxÞsin3
 cos


þ 2�xysin4
þ �xycos4
� þ 1

16
sinh6�½10 sinð2
Þ

þ sinð4
Þ�½ðw� �xxÞ cosð2
Þ þ wþ �xx

� �xy sinð2
Þ� þ wsinh8� sin
cos5
þ �xyg;

Ay
13 ¼

sech3�

8ðsinh2�cos2
þ 1Þ fsinh
4�½4ðwþ 2�xxÞ cosð2
Þ

þ ð�xx � wÞ cosð4
Þ þ 21w� 9�xx

þ 10�xy sinð2
Þ þ �xy sinð4
Þ� þ 4sinh2�½6w
þ 2�xx cosð2
Þ � 4�xx þ 3�xy sinð2
Þ�
� 4wsinh6�cos2
½cosð2
Þ � 3� þ 8w� 8�xxg;

Ay
14 ¼ � tanh� sin
ðsinh2�sin2
þ 1Þ

sinh2�cos2
þ 1
;

Ay
15 ¼

tanh� cos


2sinh2�cos2
þ 2
f2� sinh2�½cosð2
Þ � 3�g;

Ay
22 ¼ w sinh� sin
;

Ay
23 ¼ w sinh� cos
;

Ay
25 ¼ 1;

Ay
31 ¼ ðc2s þ 1Þsinh2�sin2
þ c2s ;
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Ay
32 ¼

2 sinh�½sinh2� sin
 cos
ð�xx sin
� �xy cos
Þ þ �xx cos
þ �xy sin
�
ðsinh2�cos2
þ 1Þ2 ;

Ay
33 ¼ 2 sinh�

�
w sin
þ �xy cos
� �xx sin


sinh2�cos2
þ 1

�
;

Ay
34 ¼ � sinh2�sin2
þ 1

sinh2�cos2
þ 1
;

Ay
35 ¼

sinð2
Þ
csch2�þ cos2


;

Ay
42 ¼ tanh2� sin
 cos
fsinh2�½2�þ ���

xx cosð2
Þ
� ���

xx þ ���
xy sinð2
Þ� þ 2�� 2���

xxg;

Ay
43 ¼ � sech2�

2
f2sinh4�cos2
½�þ ���

xx cosð2
Þ
� ���

xx þ ���
xy sinð2
Þ� þ sinh2�f�½cosð2
Þ

þ 3� þ 2���
xy sinð2
Þg þ 2�g;

Ay
44 ¼ Ay

55 ¼ �� sinh� sin
;

Ay
52 ¼

tanh2�

8ðsinh2�cos2
þ 1Þ fsinh
2�½ð���xx � �Þ cosð4
Þ

þ 9�þ 4���
xx cosð2
Þ � 5���

xx

� 8���
xy sin
cos3
� þ 2sinh4�sin2ð2
Þ½�

þ ���
xx cosð2
Þ � ���

xx þ ���
xy sinð2
Þ�

þ 4½4�þ ���
xx cosð2
Þ � ���

xx

� ���
xy sinð2
Þ� þ 8�csch2�g;

Ay
53 ¼ ��tanh

2� sin
½sinh2� sinð2
Þð�xx sin


� �xy cos
Þ þ �xx cos
� �xy sin
�;
where we defined w ¼ "þ P. All other elements vanish.
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[34] M. Grmela and H. C. Öttinger, Phys. Rev. E 56, 6620

(1997); B. Carter, Proc. R. Soc. A 433, 45 (1991).
[35] W.A. Hiscock and L. Lindblom, Ann. Phys. (N.Y.) 151,

466 (1983); Phys. Rev. D 31, 725 (1985); 35, 3723 (1987);
Phys. Lett. A 131, 509 (1988); W.A. Hiscock and T. S.
Olson, Phys. Lett. A 141, 125 (1989).

[36] W.A. Hiscock and L. Lindblom, Phys. Rev. D 31, 725
(1985); 35, 3723 (1987).

[37] L. D. Landau and E.M. Lifshitz, Fluid Mechanics
(Pergamon Press, New York, 1959), Secs. 133–136.

[38] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and
M.A. Stephanov, J. High Energy Phys. 04 (2008) 100.

[39] M. P. Heller and R.A. Janik, Phys. Rev. D 76, 025027
(2007).

[40] S. Pu and Q. Wang, arXiv:0810.5271.
[41] J. D. Jackson, Classical Electrodynamics (Wiley, New

York, 1999).
[42] L. Brillouin, Wave Propagation and Group Velocity

(Academic Press, London, 1960).

SHI PU, TOMOI KOIDE, AND DIRK H. RISCHKE PHYSICAL REVIEW D 81, 114039 (2010)

114039-16

http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1088/0034-4885/51/8/002
http://dx.doi.org/10.1088/0034-4885/51/8/002
http://dx.doi.org/10.1088/0034-4885/62/7/201
http://dx.doi.org/10.1103/PhysRevE.56.6620
http://dx.doi.org/10.1103/PhysRevE.56.6620
http://dx.doi.org/10.1098/rspa.1991.0034
http://dx.doi.org/10.1016/0003-4916(83)90288-9
http://dx.doi.org/10.1016/0003-4916(83)90288-9
http://dx.doi.org/10.1103/PhysRevD.31.725
http://dx.doi.org/10.1103/PhysRevD.35.3723
http://dx.doi.org/10.1016/0375-9601(88)90679-2
http://dx.doi.org/10.1016/0375-9601(89)90772-X
http://dx.doi.org/10.1103/PhysRevD.31.725
http://dx.doi.org/10.1103/PhysRevD.31.725
http://dx.doi.org/10.1103/PhysRevD.35.3723
http://dx.doi.org/10.1088/1126-6708/2008/04/100
http://dx.doi.org/10.1103/PhysRevD.76.025027
http://dx.doi.org/10.1103/PhysRevD.76.025027
http://arXiv.org/abs/0810.5271

