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L. INTRODUCTION

A first observation of the double charmed baryon
E.,.(3519) by the SELEX Collaboration at Fermilab [1]
stimulated theoretical studies of double-heavy baryons
(DHBs). Up to now the study of DHBs has mainly focused
on their mass spectra and their semileptonic decays (for an
overview see e.g. Refs. [2,3]). In particular, significant
progress has been achieved in the analysis of the DHB
semileptonic weak decays. The current-induced flavor-
changing double-heavy baryon transitions have been ana-
lyzed in a number of model approaches. These include
effective field theories based on heavy quark spin symme-
try [4-7], three-quark models [8—11], quark-diquark mod-
els [12,13], and nonrelativistic QCD sum rules [2,14].
Recently [3] we have presented a comprehensive analysis
of the semileptonic decays of DHBs using a manifestly
Lorentz covariant field theory approach termed the relativ-
istic constituent three-quark model (RTQM) [3,8,15]. We
considered all possible current-induced spin transitions
between double-heavy baryons containing both types of
light quarks—nonstrange ¢ = u, d and strange s. These
involved the flavor-changing transitions bc — cc and
bb — bc. Form factors and decay rates have been calcu-
lated and have been compared to each other in the full
theory with all masses finite and also in the heavy quark
limit (HQL). Such an analysis is important because the
semileptonic decays of DHBs provide yet another oppor-
tunity to measure the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element V. This is particularly true since
the transition matrix elements between double-heavy bary-
ons obey spin symmetry relations in the heavy quark limit
in addition to a model-independent zero recoil normaliza-
tion of the relevant transition matrix elements.

In this paper we continue the study of DHB properties in
the RTQM [3,15]. In particular, we analyze flavor-
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conserving radiative transitions between ground state
DHBs: 1/2% — 1/2% and 3/2" — 1/2". The first esti-
mate of the radiative decay widths of the DHBs in the
heavy quark limit including hyperfine mixing effects has
been done in Ref. [11] (for radiative transitions between
DHBs see also the early paper [16]). A detailed analysis of
DHB decays containing only the (bc) heavy quark con-
figuration has been considered recently in Ref. [17]. As in
our recent paper [3], we take the DHBs to be bound states
of a light quark and a double-heavy (Q;Q,) diquark.

The origin of the hyperfine mixing for double-heavy
baryons is the one-gluon exchange interaction between
the light and heavy quarks in the DHB states containing
two different heavy quarks—>b and c. It leads to mixing of
the states containing spin-0 and spin-1 heavy quark con-
figurations. As shown in Refs. [10,11,17] hyperfine mixing
has a big impact on the decay properties of double-heavy
baryons. Both the weak semileptonic and the electromag-
netic decay rates involving mixed DHB states are signifi-
cantly enhanced or reduced relative to the rates involving
unmixed states.

The RTQM can be viewed as an effective quantum field
theory approach based on an interaction Lagrangian of
hadrons interacting with their constituent quarks. From
such an approach one can derive universal and reliable
predictions for exclusive processes involving both mesons
composed of a quark and antiquark and baryons composed
of three quarks. The coupling strength of a hadron H to its
constituent quarks is determined by the compositeness
condition Zy; = 0 [18,19], where Zy is the wave function
renormalization constant of the hadron H. The quantity
Z}i/z is the matrix element between the physical particle
state and the corresponding bare state. The compositeness
condition Zy = 0 enables one to represent a bound state by
introducing a hadronic field interacting with its constitu-
ents so that the renormalization factor is equal to zero.
This does not mean that we can solve the QCD bound
state equations but we are able to show that the condition
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Zy = 0 provides an effective and self-consistent way to
describe the coupling of a hadron to its constituents. One
starts with an effective interaction Lagrangian written
down in terms of quark and hadron variables. Then, by
using Feynman rules, the S-matrix elements describing
hadron-hadron interactions are given in terms of a set of
quark level Feynman diagrams. In particular, the compo-
siteness condition enables one to avoid the problem of
double counting of quark and hadronic degrees of freedom.
The approach is self-consistent and all calculations of
physical observables are straightforward. There is a small
set of model parameters: the values of the constituent quark
masses and the scale parameters that define the size of the
distribution of the constituent quarks inside a given hadron.

The main objective of the present paper is to present an
analysis of all possible electromagnetic transitions be-
tween ground state DHBs containing both types of light
quarks—nonstrange ¢ = u, d and strange s. The paper is
structured as follows. First, in Sec. I we review our
relativistic constituent three-quark model approach (for
more details see e.g. [3]) including a discussion on how
to obtain a gauge-invariant coupling of the photon in our
model. In Sec. III we discuss in more detail various aspects
of the radiative decays of DHBs. We discuss the calcula-
tion of the relevant radiative transition matrix elements and
analyze the consequences of taking the heavy quark limit
for the radiative transitions. In Sec. IV we discuss in some
detail hyperfine mixing effects in the radiative decays of
DHBs. Section V contains our numerical results, which are
compared to the predictions of a naive nonrelativistic quark
model that has the same spin-flavor symmetry group as our
DHB currents in the nonrelativistic limit. We also compare
the results of the full finite mass calculation with results
derived in the HQL. In addition we compare our results for
bc — bc radiative transitions with recent quark model
results [17]. Finally, in Sec. VI we present a brief summary
of our results.

II. FRAMEWORK
A. Lagrangian

For the evaluation of the radiative decays of DHBs we
will consistently employ the RTQM [3,15]. The model is
based on an interaction Lagrangian describing the coupling
between a baryon B(g;¢,q3) and its constituent quarks ¢,
¢», and ¢3. For J® = ] + and 3 + baryons the Lagrangians
read

LM(x) = gBB(x)fdxl [dxzjdx3F(x, X[, X3, X3)

X Jp(x1, X2, X3)

+ gB*BZ(x)fdxl fdxzfdx3F(x,x1,x2, x3)

X Jp.(x1, x5, x3) + Hee, (1)
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where Jp and Jp- are interpolating three-quark currents
with the quantum numbers of the relevant baryon B(%*)
and B*(%*). Note that the spin 3/2 spinor corresponding to
the B*(%J“) field satisfies subsidiary Rarita-Schwinger con-
ditions (see further details in Appendix A).

One has

Jp(xy, xg, x3) = £496T g% (x3) 07 (x1)CTL, 05 (x2), (2)

T (x1, X0, X3) = £99%4T g% (x3) Q7' (x1)CTy 05 (x,),

3)

where the I'| , are strings of Dirac matrices, C is the charge

conjugation matrix C = y°y?, and the a; (i = 1,2, 3) are

color indices. F(x, x|, x5, x3) is a nonlocal scalar vertex

function which characterizes the finite size of the baryons.
The full Lagrangian

Lin(x) = Leex) + LWV (x) + L5 () (4)

nt nt

needed for the calculation of the radiative decays of DHBs
includes the free parts of the baryons and the constituent
quarks

L e (x) = B(x)DyB(x) — B}, (x) DB},

+ ) G0)Dy(x), (5)
¥=q,0
where
Dy = if — mp,

Dy = g (iff — mp) = i(y*9” + y"o#) + y ify”
—mpyHy”. (6)

The baryon and constituent quark masses are denoted by
mpg+) and m, respectively.
The electromagnetic interaction Lagrangian contains
two pieces given by
L= Lo 4 pom® (7

nt nt int

which are generated after the inclusion of photons. The first
term LMY is generated via minimal substitution in the

free Lagrangian L..:

W — (I — ey AM)W,  9HT — (4 + iegAR)T,

®)

where WV stands for B, B*, ¢, and Q and ey is the electric
em(1)
int

charge of the field V. The interaction Lagrangian £
reads
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£?;?<1>(x) = eB(X)AB(x) — egBL (x)(Ag"” + y Ay
— y*A” — y"A*)B;(x)
+ Z €y 'Z’(x)lf(l/’(x) 9)

¥=q,0

The second electromagnetic interaction term £§ﬁ‘(2) is
|
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generated when one gauges the nonlocal Lagrangian
Eq. (1). The gauging proceeds in a way suggested and
extensively used in Refs. [15,20,21]. In order to guarantee
local electromagnetic gauge invariance of the strong inter-
action Lagrangian one multiplies each quark field in L3
with a gauge field exponential. One then has

£i8;rt+em(2)(x) = ng(x)/dxl /dx2fdx3F(X,X1,X2, X3)€a‘aza3rlefie"’%’x'P)an(X3)€_ieQ‘I(x"X’P)Q?I(xl)

X Crzefiegzl(xz,x,P)QZZ(XZ)’ +gB*E;k.L(x)fdxl [dxzfdx3F(x,x1,x2, x3)6‘““2“3F1€_i841(x3’x’P)q”3(x3)

X e e ltixP) ot (x \CTH e~ e0r! 2P 9% () + H.c,, (10)

where
10 x, P) = f ¥ 2, AR (2). (11)

An expansion of the gauge exponential up to a certain
power of A% leads to the terms contained in £5"?.

The full Lagrangian consistently generates all the re-
quired matrix elements of the radiative decays of the
DHBs. The relevant transitions can be represented by a
set of quark loop diagrams. In the evaluation of the quark
loops we use the free fermion propagator for the constitu-
ent quarks as dictated by the free quark Lagrangian dis-
cussed above. One has

iSy(x = ) = OITPE FHI0)

d*k . -

where

1

13)

is the usual free fermion propagator in momentum space.
We avoid the appearance of unphysical imaginary parts in
Feynman diagrams by postulating that the baryon mass is
less than the sum of the constituent quark masses mp g+ <
mg, +mg + mg,, which is satisfied in our calculation. We
mention that we have recently introduced a further refine-
ment of our model in that we can now include quark
confinement effects [22].

The free propagators of the baryon fields in momentum
space are given by

1

S0 e

, (14)

v I 1 2kt k?
S (k) = ———— _%_Z.E<—g’”+—7“7”+
.

3 3mé*

Va, b — LAV

ey
3mB*

(15)

Next we consider in detail the required building blocks of
the strong interaction Lagrangian £}\—the vertex function
F, the interpolating three-quark currents Jz and J g*, and

the baryon-quark coupling constants gz and gp-.

B. Vertex function

The vertex function F' is related to the scalar part of the
Bethe-Salpeter amplitude and characterizes the finite size
of the baryon. In our approach we use a specific form for
the vertex function given by

3
F(x, x|, x5, X3) = N8(4)(x —

i)

i i<j

(16)

which is Poincaré-invariant. @ is a nonlocal correlation
function involving the three constituent quarks with masses
my, m,, and ms; N =9 is a normalization factor. The
variable w; is defined by w; = m;/(m; + m, + mj).

The Fourier transform of the correlation function
DY (x; — xj)z) can be calculated by using Jacobi coor-
dinates. One has

3
O(py, p2, p3) = Nfdxe’ipxnfdxieipixi
i=1

X 5(4)(x — iwixi)cb(Z(xi - xj)z)

i=1 i<j
3
= (277)45(4)([) - Zp,-)@(—l% -B), (a7
i=1

where the Jacobi coordinates are defined by
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1 1
X =x+ \/—§§1W3 - %52(2W2 + ws),
1 1
Xy =x+ \/—§§1W3 + %‘52(2‘4}1 + ws), (18)

1 1
X3 =X \/—551(W1 +wy) + 7652(“’1 — wy).
The corresponding Jacobi momenta read

p=p1tptps

1 1
Iy =—=w + ——=(w; + wy)ps,
1 \/f 3(p1 + p2) \/5( 1 2)P3

0 (19)

1
— \/6(2W1 + w3)ps

J6
(g — )
\/6W1 w2)P3,

L, = (2w, + w3)py +

where, according to Eq. (16), Y3, w;x; = x. Since the

function ®(F,;(x; — x;)?) is invariant under translations
its Fourier transform only depends on two four-momenta.
The function ®(—7 — 3) in Eq. (17) will be modeled by a
Gaussian form in our approach. The minus sign in the
argument is chosen to emphasize that we are working in
Minkowski space. Our choice is the Gaussian form

O(—5 — B) =exp(18( + B)/AY),  (20)

where the parameter A characterizes the size of the DHB.
Since /3 and /3 turn into —/% and —13 in Euclidean space
the form (20) has the appropriate falloff behavior in the
Euclidean region.

C. Three-quark currents

In the so-called QQ, basis the DHBs are classified by
the set of quantum numbers (J¥, S,), where J* is the spin
parity of the baryon state and S, is the spin of the heavy
diquark. There are two types of heavy diquarks—those
with S; = 0 (antisymmetric spin configuration [Q;0,])
and those with S; =1 (symmetric spin configuration
{0,0,}). Accordingly there are two J” = 1/2% DHB
states. We follow the standard convention and attach a
prime to the S; = O states whereas the S; = 1 states are
unprimed. The J? = 3/2% states are in the symmetric
heavy quark spin configuration. In Table I we list the
quantum numbers of the double-heavy baryons including
their mass spectrum as calculated in [13].

As we have discussed in our recent paper [3], there is a
mass inversion in the (1/2%) mixed flavor states (£, =/.)
and (Q,,, Q) ) in that M(Z) ) > M(E,.) and M(Q} ) >
M(Q,,) even though the heavy diquarks satisfy the con-
ventional hyperfine splitting pattern mc),_ > Mpe),_, -
This inversion is a feature of all models that have attempted
to calculate the mass spectrum of double-heavy baryons
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TABLE I. Classification and mass values of double-heavy
baryons. Mass values are based on [13] except for the =,
mass which is taken from [23].

Notation Content Jr Y Mass (GeV)
= glcc} 1/2* 1 3.5189
Epe gqi{bc} 1/2* 1 6.933
Ebe qlbc] 1/2* 0 6.963
Epb q{bb} 1/2* 1 10.202
=5 g{cc} 3/2F 1 3.727
Ehe qibc} 3/2* 1 6.980
Ehp q{bb} 3/2* 1 10.237
Q. s{ec} 1/2* 1 3.778
Qe stbc} 1/2* 1 7.088
O, s[bc] 1/2+ 0 7.116
Oy s{bb} 1/2F 1 10.359
Q. s{ec} 3/2* 1 3.872
Q. s{bc} 3/2+* 1 7.130
U s{bb} 3/2* 1 10.389

[2,9,13,24-26]. In particular, the inverted mass hierarchy
implies that one can only expect substantial flavor-
changing branching ratios for the two lowest-lying states
Epe and Q. whereas the rates of the higher lying states
B} Ej. and Q) . Q;  will be dominated by flavor-
preserving one-photon transitions to the lowest-lying states
Epe and .. One of the purposes of the present paper is to
analyze the strength of the one-photon transitions between
the S, = 0 and S; = 1 double-heavy baryon states. In the
HQL, the photon couples to the light quark only, and
therefore one-photon transitions between the S; = 0 and
S; = 1 double-heavy baryon states such as 2} — 5. +
v are forbidden in this limit. For finite heavy quark masses
one-photon transitions between the S, =0 and S,; =1
double-heavy baryon states will occur at a somewhat re-
duced rate which, however, is very likely to exceed the
flavor-changing weak decay rates of these states [16].
Following the suggestion of Ref. [10] (see also discus-
sion in [11]) we also consider hyperfine E, — E,. and
Q). — Q. mixing induced by one-gluon exchange inter-
actions. We define the mixed states through the unmixed
states using a unitary transformation [10,11] with the mix-

ing angles 0= or 6:

(BZC) _ ( cosfly  sinfg )(BZC> 1)

Bl —sinfy  cosfg J\ B,. )

where B = E or (). We treat the mixing angle 65 as a
quantity of order O(a,), where a; is the QCD coupling
constant. By B and B’ we denote the mixed states with the
mass hierarchy mp < mp < mpg < mp, . The masses of the
mixed states mp, and mp, differ from the masses of the
unmixed states by small hyperfine splitting corrections.
They are expressed through the unmixed masses and mix-
ing angle as
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sin’6
mBh = mp + (mB/ - mB)—Cosze’ (22)
B sin’6
mBl = mpg — (mB/ - mB) 00526.

When diagonalizing the mass matrix of the unmixed states
the diagonal elements are driven apart such that the mass
difference of the mixed states is larger than that of the
unmixed states. One has

mpgr — Mg

23
cos26 (23)

mg, — mg,
This leads to a further enhancement of the widths of the
radiative transitions B}, — B._+ y between mixed states,
because the photon transition rate is proportional to (M| —
M,)? (see Appendix A).

The mixing angle #p corresponds to the combination
6 + 30° in [11]: 85 = 6 + 30°. Here 6 is the angle that
rotates the mixed B", B! states into the B, B’ states—bound
states of the b quark and the heavy-light cq diquark (so-
called gc basis). The angle 30° corresponds to a further
rotation of the é, B’ states into the unmixed B’, B states
defined in the bc basis (i.e. bound states of the light quark
and heavy bc diquark). In the quark model calculation of
[11] one obtains sinfz = 0.431 (0= = 25.5°) and
sinfg = 0.437 (0 = 25.9°). Using these values of the
mixing angle # and the masses of unmixed states we
deduce the following values for the masses of the mixed
states:

mgn = 6.972 MeV, mg = 6.924 MeV,

(24)

mqr =7.125MeV,  mg = 7.079 MeV.
be be

The interpolating currents of the DHB states B ¢, are
constructed in the form of a light quark ¢g“* coupled to a
heavy diquark D”Q3] 0,- One obtains

as

— T4 as
40,0, =1'0,0,95' Do, 0, (25)
Dg,g, = 8%*(Q]'CTG o,05).

For the (}*,0), 1", 1), and (37, 1) states we use the sim-
plest currents—the pseudoscalar J*, the vector JV, and J},
currents, respectively:

Tho,0, = € q (07 Cy505), (26a)
o0, = €19y Y ¢ (0] Cya05),  (26b)
J40,0u = €124 q(Q' Cy . 05). (26¢)

In the heavy quark limit the above currents reduce to

ij)Qle = en®® "ﬁgg(lﬂgl ) lr/f(ézz)’ (27a)
Yoo, = EMCNGYG (WY 25 UG),  (2Tb)
Teoio = M9 YO (G raYE), (270
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TABLE II. DHB wave functions.
Baryon Wave function Baryon Wave function
Ecc qgce XS(A) Qcc sce /\/S()‘)
b gbb xs(A) Qpp sbb xs(A)

=7 71561(190 + Cb) XS()\) ch

=

B albe —cb) xa(d)  Qp,

jis(bc + ¢b) xs(A)
Js(be = cb) xa(d)

Eic —qgcc Xj;(/\) Qjc —scc X;'()\)
Ebb —gbb x5(A) Q, —sbb x5(A)
S —halbe+ch) ;) Q5 —Js(be + cb) x;(A)

where ¢, o, are the upper components of the Dirac
quark spinors and the o; are the Pauli spin matrices.
Note that the spin-flavor wave function coincides with
the nonrelativistic limit in the HQL. In the nonrelativistic
limit our DHB currents have a one-to-one correspondence
to the naive quark model baryon spin-flavor functions (up
to overall factors) which are displayed in Table II. Further
details on the naive quark model and how to evaluate the
radiative transition amplitudes in this framework can be
found in Appendix B.

According to the definition (21) the interpolating cur-
rents of the mixed B" and B states are given by

gBthZC :( COSHB sinHB) gB/‘]{ibc (28)
gpJB, —sinfg cosfp J\ gt}

gbc

D. Baryon-quark coupling constant
The coupling constants g, (¢ = B, B*) are determined
by the compositeness condition [3,15,18,19]. The compo-

siteness condition implies that the renormalization con-
stant of the hadron wave function is set equal to zero, i.e.

Zy=1- gZBE’l/,(md,) = (. (29)

Eﬁp(md,) is the derivative of the baryon mass operator

shown in Fig. 1.
In the case of the 3/27 states the function Xz (p) is
subtracted from the nonvanishing part of the mass operator
& (p) proportional to the Minkowski metric tensor g*”:

i, (p, s)28(phu,(p, ) = i, (p, s) 25 (p)g*" u,(p, 5¥),
(30)

where u#(p, s*) is the % spinor. Other possible Lorentz
structure on the right-hand side of Eq. (30) vanish due to

q
=
0,
FIG. 1. Diagram describing the double-heavy baryon mass
operator.
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the Rarita-Schwinger conditions. Note that the composite-
ness condition is equivalent to a Ward identity relating the
electromagnetic vertex function at zero momentum trans-
fer to the derivative of the mass operator (see details e.g. in
[3D). Explicit expressions for the baryon mass operators are
given in Appendix C.

II1. RADIATIVE DECAYS OF DOUBLE-HEAVY
BARYONS

A. Matrix elements

In our approach the radiative decays of DHBs are de-
scribed by the set of Feynman diagrams shown in Fig. 2.
The three “triangle” diagrams [Fig. 2(a)-2(c)] are gener-
ated by the coupling of the constituent quarks with the
photon. The two “bubble’” diagrams in Fig. 2(d) and 2(e)
are generated by gauging the nonlocal strong Lagrangian
(see discussion in Sec. II). Finally the two “pole’” diagrams
in Fig. 2(f) and 2(g) are generated by the direct coupling of
the initial/final baryon with the photon. Because of our
explicit construction the DHB radiative matrix elements
are explicitly gauge-invariant. The pole diagrams vanish
for the radiative transitions (}*,0) — (*, 1) and 3%, 1) —
(3*,0) due to the orthogonality of the heavy diquark spin
wave functions. For the same reason the photon does not
couple to the light quarks in these modes implying that the
corresponding triangle and bubble graphs vanish. For the
(3*,1) — (%, 1) transitions the pole diagram in Fig. 2(g)
vanishes due to the Rarita-Schwinger conditions for the %
spinor. All these statements are true for photon transitions
between unmixed states. Photon transitions between mixed
DHB states will be discussed in Sec. IV.

ol ol ol
2

(a) (b) (©)

q q

By o NB B/ o B
(&) Q>
(d) (e)

Y v
q q

B, % B, 0, B> B, 0 B, ¢ B,

&) Q>

() (2

FIG. 2. Diagrams contributing to the radiative transitions of
double-heavy baryons.
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We continue with a summary of some useful analytical

results. The on-shell matrix elements for the radiative

el 3,1 :
transitions 5 — 5 and 5 — 5 are given by

M, (1/2—1/2) = iig,(pa, 52)Au(p1, p2)ug, (py, 51),
M, (3/2 = 1/2) = iap,(p2, ) A s (pr, p2)ug(p1, %),
(31)

where ug(p, s) and u}.(p, s*) are the spin  and 3 spinors
with the normalization (see further details in Appendix A):

L_tB(p; S)MB(p) S) = sz»

ity (p, S*)MB;(‘D, §*) = —2mp-.

(32)

The momenta of the final state photon and the initial and
final state baryon are denoted by ¢, p,, and p,, respec-
tively, where ¢ = p, — p, and where s and s* are spin
indices. Because of gauge invariance the electromagnetic
vertex function A, (p, p,) is orthogonal to the photon
momentum g* A, (py, p») = 0. As aresult the vertex func-
tion A, (p, p,) is given by the sum of the gauge-invariant
pieces of the triangle (A), the bubble (bub), and the pole
(pol) diagrams, while the nongauge-invariant parts of these
diagrams cancel in the sum:

Aulprp2) = A;JZ,A(pl’ p2) + A/J;,bub(pl’ P2)
+ A (P p2). 33)

The contribution of each diagram can be split into gauge-
invariant and gauge-variant pieces by introducing the de-
composition

q Piq

Yo =Yi+td,—.  Pi=ptta.—5,
_ 1 qudv
Suv = 8uv q2 ’

such that 'yﬁq“ =0, pilq“ = 0, and gt,,q” = 0, where p;
is p; or p,. The vertex function Af;(pl, p») can then be
expressed in terms of yt, p,-lM, and gliw. Note that all
matrix elements are finite for real photons (g*> = 0).
Doing our calculations we start with ¢g> # 0 and then
take the limit g> — 0. Explicit expressions of the electro-
magnetic vertex functions can be found in Appendix C.

B. Heavy quark limit

In the HQL the masses of the heavy quarks are taken to
infinity (mg — 00). In this limit the spins of the double-
heavy diquark and the light quark in the DHB states
decouple leading to a much simplified transition structure.
In particular, the transition amplitudes (3*,0) — (G, 1)
and 3", 1) — (3", 0) vanish as O(1/my) since the photon
coupling to the heavy quarks involves a spin-flip factor
proportional to the magnetic moment of the heavy quark
given by wo = ey/(2my). This is in full agreement with
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the nonrelativistic quark model (for more details see the
discussion in Appendix B) where the corresponding am-
plitudes are found to be proportional to the difference of
the magnetic moments of the heavy quarks w,. — u;. The
transition amplitude (3*, 1) — (¥, 1) survives in the HQL
since the photon can now couple to the light quark. Again,
this is consistent with the nonrelativistic quark model. The
structure of the amplitude of the 3*, 1) — (*, 1) transition
significantly simplifies in the HQL. Only the triangle dia-
gram in Fig. 2(a) contributes to the transition amplitude
since Fig. 2(a) represents the direct coupling of the light
quark with the photon. The contribution of Fig. 2(a) scales
as O(1) in the inverse heavy quark mass expansion. The
other diagrams are suppressed in the HQL. In particular,
the triangle diagrams in Fig. 2(b) and 2(c) contribute only
at O(1/my) since they represent direct couplings of the
heavy quarks with the photon. The same holds true for the
bubble diagrams in Fig. 2(d) and 2(e) involving a nonlocal
photon-light quark coupling.

Following ideas developed in our paper [3], we choose
the momenta of the initial and final DHB as p}' = (mg, +
mg )v* and py = (mg, + mg Jv'* = (my, + mg,)v* +

J
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r#, where r is a small residual momentum in the sense that
r* ~ O(1) when mg, — 00. With these assumptions the
heavy quark propagators simplify in the HQL. One has

1*xy 1

2 IkiU - iE’

S,k + pm) — (35)

where n; = mg [(mg, + myp,).
In the HQL and at g> = 0 the explicitly gauge-invariant
transition amplitude (%*, 1) — (*, 1) is given by

A;Jlu = F;JZVIA’ Iy = 24NfquBTngR12(mq1 A),

(36)

where N, denotes a statistical flavor factor which is equal
to 1 or 2 for DHBs with two different or two identical
heavy quarks. I't, = (v,q, — g,.,4)Ys is the Lorentz
structure orthogonal to the photon momentum: q'“l—‘ll“, =
0. Note that only the Lorentz structure Ff;,, survives in the
HQL. As shown in Appendix A other possible structures
vanish. The function R,,(m,, A) reads

d4kl d k2 m, + (kz - kl)U
R ,A) = <1>2 ! , 37
om0 = [ 525 | G O i e - B e 7
f
where z = —2(k} — k;k, + k3) and where A and B denote D= 3 .
integer powers. The coupling constants 8B: and gp, are 4 @3 (41)
given by y Z(m?] 1+ ay)(a; — ay)* + a1a2>
1 ! A? A? 4D '
g BEr = 12N¢Ry (my, A). (38  For the (3*,1)— (3*, 1) transition the HQL helicity am-
! B, plitudes read
; 1 3
Using the Laplace transform Heoys) = E*“(il)ﬂ(v, + E)AIJ;VMV(U’ + E)
D(g) = f " dsdL(s)e ™, 39 M
@ = [~ dsdtis)e (39) U w)
M,
the integration over the virtual momenta k; and k, in ! !
R,p(mg, A) can be done. One obtains Ha ey = EH(= 1)ﬁ<v, + E)At,}w/(v, = 5)
=1 1 M
Ryy(my, A) = (167,2)2 f daydaydas D = 1‘/;M+M_"#IA. (43)
1
my apt ).,
X N + D D=(y), The ratio of the HQL helicity amplitudes is given by
(40)  Hxqpz1/Heqjy+1 = —/3; i.e. one has a pure M1 mag-

A3 00 @
Rlz(mq7 A) = m L daldazda?)ﬁ

m a + o
X (L + L= 2)c1>2
(A 4D )

where

netic dipole transition. This coincides with the predictions
of the nonrelativistic quark model (NQM) (see
Appendix B), where

2 M
Hiqyz1 = _\/?_’Ht(l/Z)il = iL;M+M—"ﬁ2~ (44)
1
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The function I, appearing in (42) and (43) is given by

2p
Iy =—2B, 45
where
Rlz(mq, A)
=2m,———. 46
ﬂ 1 RZl(mqr A) ( )

In the HQL the helicity amplitudes, the form factors F'; and
F,, and the decay rate of the 3*, 1) — (*, 1) transition
read

2p [M
Heypz1 = _“@Htu/z)il = i—;,BM+M, ﬁz’
1

2,LL M2
F,="2pBM ‘/—,
1 \/g ﬁ + Ml

(47)
du, M
F, = _TqﬁM—z M\ M,,
3 M,
4
Lopaps = 3KuiB
where
(M3 — M3)>
K=aM,——F— 48
ail 6M¢11 ( )

a = 1/137 is the fine-structure coupling constant and M,
and M, are the masses of the parent and daughter baryon,
respectively. The state %S corresponds to the baryon with
symmetric heavy quark spin configuration.

It is evident that our HQL rate results differ from the
predictions of the NQM by the factor 32 defined in (46). In
the NQM one has 8 = 1 while in our covariant approach
B = 0.5. It is for this reason that our HQL predictions for
the 3%, 1) — (3*,1) + y decay widths are down by a
factor of 4 compared to the predictions of the NQM.

IV. HYPERFINE MIXING AND RADIATIVE
DECAYS OF MIXED STATES

As mentioned in the introduction the origin of the hy-
perfine mixing in the double-heavy baryons is the one-
gluon exchange interaction between the light and heavy
quarks in the states containing two different heavy
quarks—>b and c. The one-gluon interaction leads to mix-
ing of the states containing spin-0 and spin-1 heavy quark
configurations. In this section we discuss in some detail the
calculations of DHB radiative decays involving mixed
states. We have three types of transitions: B — B! |
B;.— B!, and B;.— B! . All three modes are quite
interesting, because their study opens the opportunity to
determine the mixing angle 6 and to measure the masses of
the mixed states. In particular, the first mode B}, — B! _is
interesting since it is described by transitions between
baryon components with the same spin configuration of

PHYSICAL REVIEW D 81, 114036 (2010)

the heavy quarks (37, 1) — (37, 1) and (*,0)— (*,0).
Because now the photon can also couple to the light quark
one will have a corresponding enhancement of the decay
rates. The two other modes Bj, — Bl and B}, — B,
involve mixing of the leading (3*, 1) — (}*, 1) and sub-
leading (3%, 1) — (1", 0) amplitudes and are therefore also
important for an analysis of the mixing angle 6. The matrix
elements for transitions involving mixed states are derived
using the transition matrix elements of the unmixed states.
In Appendix B we present the results of the NQM for
transitions involving mixed states in terms of quark mag-
netic moments and the mixing angle 6. In our numerical
calculations we differentiate between the mixing angles for
the E states and the () states using the predictions of the
quark model [11]: =z = 25.5° and 0 = 25.9°.

The last issue which we would like to discuss in this
section is the HQL structure of transitions involving mixed
states. As we have discussed in the previous section the
leading contribution for the B;. — B! and Bj — B,
transitions comes from the 3*, 1) — (}*, 1) transition gen-
erated by the direct coupling of the photon with the light
quark [see diagram in Fig. 2(a)]. The corresponding am-
plitudes are multiplied by the factor cosé for the Bj, —
B! mode and by — siné for the B;. — B/ mode. In the
case of the B}, — B! _transition the leading contribution is
again generated by the direct light quark-photon coupling
[Fig. 2(a)]. In this case one has to sum the two transitions
involving a light quark spin flip (3*,0)— (G*,0) and
(%Jr, 1)— (%Jr, 1). The calculation of these leading matrix
elements follows the treatment in the previous section. In
particular, the leading contribution to the matrix element of
the B}, — Bl _ transition is expressed though the same
structure integral Ry,(m,, A) as in the case of the (%*, 1) —
(3*, 1) transition

L gL
2 + 2/
Iy = 24Nje,sin(20,) =50
where g and gj; are the coupling constants of the unmixed
states (%*, 1) and (%*, 0):
1 1
&y 3¢5
In the HQL the helicity amplitudes of the Bl — Bl
transition are given by

RIZ(mqr A)’

1

1
Hi(l/Z)il = E*'““(‘_"l)b_t(v, iE)AlJ;M<U, 15)

P,
=M_M_ [—=J\. 51
+ M, (51)

After some straightforward algebra one can express the
helicity amplitudes H.(j/5)+ in terms of the parameter 8
derived in Eq. (46). One has
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22 M,
Hoqp)+1 = T/.Lq sin20 BM M _ e (52)
1

For 8 = 1 our helicity amplitudes coincide with the pre-
dictions of the NQM. We can also deduce the form factor
F, [see the expression for the matrix element of the
1/2% — 1/2% transition (A2)]:

2. [M
Fy = =3 1q Sin20 BM, ﬁ? (53)

Note that the form factor F; defined in (A2) vanishes due
to gauge invariance. Finally the decay width for the B}, —
Bl _ transition in the HQL reads

4
(B}, — B! )= gK,u,gsin229, (54)

which again coincides with the prediction of the NQM [see
Eq. (B12)] when 8 = 1.

Note that in the HQL our model also reproduces the
model-independent results derived in [11] for the decay
rates involving mixed states 1 and 1':

Lopaymayoy ~ wgsin®260, Liaynqyoy ~ pgeos®o,

F — d
SO an2g, (55

Lapmapy ~ pgsin®d, &
(3/2—(1/2)
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V. RESULTS

We now proceed to present our numerical results. We
first present results on the radiative rates using finite heavy
quark masses; i.e. we do not take the HQL for the matrix
elements. Estimates for the decay widths are also given for
the nonrelativistic quark model, in which, as described
before, the wave functions have the same spin-flavor struc-
ture as our relativistic current considered in the nonrela-
tivistic limit. Then we consider the HQL in both
approaches. We choose the Gaussian form of Eq. (20) for
the correlation function of the double-heavy baryons. Our
results depend on the following set of parameters: the
constituent quark masses and the size parameter Ay. The
parameters have been taken from a fit to the properties of
light, single, and double-heavy baryons in previous analy-

ses [15]:
my(q) myg m. ny AB (56)
042 057 1.7 52 25-3.5 GeV’

All our analytical calculations have been done using the
computer program FORM [27].

In Table III we present detailed numerical results on the
radiative rates of double-heavy baryons using finite masses
for the heavy quarks (exact results, second column) and in
the HQL (third column). These are compared to the cor-
responding results of the NQM using finite masses for the
heavy quarks (fourth column). In column 5 we take the

TABLE III. Radiative decay widths of DHBs in keV.

Decay mode Exact results HQL NQM NQM + HQL
g.r — 8, (1.56 = 0.08) X 1072 0 1.35 X 1072 0

gy — 59, (1.56 £ 0.08) X 1072 0 1.35 X 1072 0

Q) — Q, (1.26 = 0.05) X 1072 0 1.10 X 1072 0
gir— gt 0.14 +0.03 ~0.17 0.34 0.53
gm0 — g2 0.31 = 0.04 =~ 0.04 0.26 0.13
Q- 0l 0.21 = 0.02 =0.02 0.15 0.06
E;;; — Bt (0.28 = 0.01) X 1072 0 0.25 X 1072 0

By — ER (0.28 = 0.01) X 1072 0 0.25 X 1072 0

Q5. — Q) (0.16 = 0.01) X 1072 0 0.14 X 1072 0
Hirt - BLY 23.46 + 3.33 20.53 = 0.79 36.22 63.88
s — B 28.79 = 2.51 5.13+0.20 35.65 15.97
QL — Q. 2.11+0.11 ~0.29 2.42 0.87
gyt — B 0.49 + 0.09 ~0.27 0.67 0.83
20— EY, 0.24 = 0.04 ~0.07 0.30 0.21
Qf, — Q. 0.12 + 0.02 ~0.03 0.13 0.08
Byt — Bt 0.46 = 0.10 ~0.37 0.69 1.14
pr —Bi (0.15+0.02) x 1072 =~0.03x 1072 016X 1072  0.08 X 1072
Fp— 80 0.51 = 0.06 ~0.10 0.59 0.28
B30 — B (0.02+0.02) X 107*  =0.06x 107> 0.01x107% 019X 1073
Q. —Ql (0.29 = 0.03) ~0.03 0.30 0.12
Q; — Qb (0.01 £0.01) X 107*  =~0.01 X107 001 x10™*  0.03x107?
g5 — 8), 0.31 +0.06 ~0.11 0.38 0.35
By — B (587 = 1.42) x 1072 =~28X 1072  7.34Xx1072  8.69x 1072
5, — Qy (2.26 + 0.45) X 1072 ~1.0X 1072 2.36 X 1072 2.97 X 1072
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heavy quark limit of the NQM results by setting the heavy
quark magnetic moments to zero. The dependence of our
results on the size parameter Ay is indicated by error bars
where the variation of Ay is given in Eq. (56). Note that a
smaller value of A gives bigger rates and vice versa. One
can see that our finite heavy quark mass predictions are
close to the results of the NQM. One has to keep in mind
that the rate predictions are very sensitive to the mass
difference AM = M, — M,. In fact, one has I' ~ (AM)?
(see Appendix B). The modes involving mixed states are
enhanced by factors = 4 and = 2 in the case of B!, — B._
and B, — Béc transitions, respectively, while in the case
of Bj, — B! transitions they are additionally suppressed
by a factor =~ 10 due to reduction of the mass difference
M, — M,. In Table IV we present results for the rates
involving mixed states in dependence on the mixing angle

PHYSICAL REVIEW D 81, 114036 (2010)

0y varied from 10° to 25°. In Table V we compare our
results with the results of a nonrelativistic quark model
calculation [17]. The approach [17] can be viewed as an
extension of the naive NQM discussed before by taking
into account baryon wave functions in configuration space.
One should emphasize that the results of nonrelativistic
quark models are in general frame-dependent. For ex-
ample, the results can depend on whether one works in
the parent baryon or daughter baryon rest frame. Also, it is
difficult to maintain gauge invariance in nonrelativistic
quark models.

One final remark concerns the comparison of radiative
and weak decays of DHBs. In [3] we have calculated the
b — ¢ semileptonic decays where we have shown that the
corresponding decay widths are of the order of 107 '* GeV.
The radiative decay widths calculated in the present paper

TABLE IV. 63 dependence of radiative decay widths involving mixed DHBs in eV.

0p Decay mode Exact results HQL NQM NQM + HQL
10° gir — Bt 0.2*02 =10 3 31
g — g 170 15 ~3 43 8
Q= Qb 130 = 10 ~ 1 28 3
By — B 0.07 = 0.01 =03 5 1
B30 — B ~0.1 =~0.1 0.7 0.3
;. — Q. ~0.03 ~0.02 0.5 0.1
By — B 687 = 132 276 + 11 626 859
B0 —ER 475 £ 65 69 =3 360 215
Q. — QL 263 26 ~ 28 164 84
15° iy — 8t 16 +7 27+ 1 27 84
10— B 224 * 24 =7 73 21
Q- 166 = 14 =3 44 9
gyr — gk 0.9 +0.1 ~0.6 6 2
g0 — B30 =~ (.05 ~0.1 0.2 0.5
Q;, — Q. ~0.02 ~0.1 0.2 0.1
Byr— B 619 + 122 289 + 12 619 900
g0 — 2D 493 = 66 72+3 404 225
Q;, — Q. 276 = 26 ~29 187 88
20° gt — Bit 63 = 19 64 =2 100 200
g1 — 5D 272 31 16+ 1 126 51
Q- Qb 195 + 17 =73 72 22
iy —8r 1.2 0.1 =15 5 2
B30 — B ~0.01 =~0.2 0.01 0.5
Q;, — Qb ~0.01 ~0.03 0.03 0.1
2yt — Hit 546 = 111 313+ 12 632 973
B0 —ER 504 = 65 78 +3 468 243
Q; — Q. 286 = 27 =32 223 96
25° ghr — Bt 135 + 34 91 *4 177 284
B0 — B0 306 * 37 223 + | 142 71
Qb — Q! 213 =20 =18 131 52
Byt — B 1.4+02 ~0.3 2 1
g0 — B30 0.001 = 0.001 ~0.08 0.004 0.2
Q;, — QL 0.001 = 0.001 =~0.02 0.002 0.04
Byr—EX 469 = 99 373+ 15 680 1115
B0 —EDR 507 * 64 90 +3 578 278
Q5 — Q. 291 = 26 =37 281 111
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TABLE V. Radiative decay widths
Comparison with the quark model [17].

of DHBs in keV.

Decay mode Quark model [17] Our results

B — B, 0.992 X 1072 (1.56 + 0.08) X 102
Ep. — EY, 0.992 X 1072 (1.56 + 0.08) X 1072
Q). — Qe 3.69 X 1072 (1.26 + 0.05) X 102
Eht — gt 124 X 1072 (14 = 4) x 1072
EN—-ED 20.9 X 102 (31 + 4) X 1072
Q. — Q) 8.52 X 1072 (21 +2) X 1072
Hye = B 4,04 X 1072 (0.28 = 0.01) X 102
= 50 4.04 X 1072 (0.28 + 0.01) X 1072
Q5. — Q. 3.69 X 102 (0.16 = 0.01) X 1072
Ehe — Eje 1.05 0.49 + 0.09

B0 — Ep, 0.505 0.24 + 0.04
Q)= Qpe 0.209 0.12 + 0.02

Eir — B 0.739 0.46 * 0.10
Ehr — Ept 6.05 X 1072 (0.15 + 0.02) X 1072
B —Ep 1.03 0.51 = 0.06
hel = 0.12 X 1072 (0.02 * 0.02) X 1072
Q. — Q) 0.502 0.29 + 0.03

0, — Qp, 0.31 X 1072 (0.01 = 0.01) X 1074

are much larger and lie in the range from 1078 to
10~* GeV. One would like to know how important the
weak decays of DHBs induced by the ¢; — ¢; (d — u or
s — u) light quark transitions are. For a precise analysis
one would need to know the precise values of the masses of
the DHBs including isospin-breaking corrections which
are not available at present. Instead using the general
formula for the semileptonic decay width one can obtain
a rough estimate for the decay rates induced by light quark
transitions where, for the sake of simplicity, we neglect the
contribution of form factors, spin, and flavor factors. For
example, for the 1/27 — 1/2™" transition one obtains (see
e.g. [28])

GE|Vexml?
I'g. — g.) = R CRMET
(qi— q;) 503

AM3, (57
where G = 1.16634 X 107> GeV 2 is the Fermi con-
stant, Vegy is CKM matrix element (|V,4]?> =1 and
|V,|> =0.051), and AM = M, — M, is the difference of
the masses of initial and final baryons. We know from data
on the mass differences of light and heavy-light baryons
that, approximately, the mass difference AM does not
exceed the mass difference of the corresponding light
quarks in these baryons. Therefore, in the expression for
I'(q; — g;) we substitute AM = m, — m,, for d — u tran-
sitions and AM = m, — m,, for s — u transitions and con-
sider this to be an approximation of the upper limit for the
corresponding decay rates. Using upper limits m,; — m,, <
10 MeV and m, — m,, <200 MeV we obtain

I'(d— u) <107?? GeV, (s — u) <1071 GeV.

(58)
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Based on this rough estimate one concludes that the semi-
leptonic decays of DHBs induced by the light quark tran-
sitions d — u and s — u are suppressed by more than
4 orders of magnitude in comparison to their b — ¢ coun-
terparts and are even more suppressed (more than 10 or-
ders) compared to their radiative decays.

VI. SUMMARY

We have analyzed the radiative decays of double-heavy
baryons using a manifestly Lorentz covariant and gauge-
invariant constituent quark model approach. Our main
results can be summarized as follows. We have derived
results for the radiative transition matrix elements of
double-heavy baryons for finite values of the heavy
quark/baryon masses and also in the HQL limit of infinitely
heavy quark masses. We have discussed in detail radiative
transitions involving DHB states subject to hyperfine mix-
ing. We have presented an extensive numerical analysis of
the decay rates for finite masses and in the HQL limit
including numerical results on mixing effects. Our results
were compared with the predictions of a nonrelativistic
quark model including again hyperfine mixing effects. We
find that the inclusion of hyperfine mixing effects has a
profound influence on the pattern of radiative decays of
DHBs. Since the calculated rates depend very sensitively
on the exact mass values of the mixed and unmixed DHB
states [I" ~ (M, — M,)] one must wait for an accurate
determination of the masses of the DHB states before
one can extract information on the mixing angles from
the decay data.
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APPENDIX A: SPIN KINEMATICS OF RADIATIVE
DECAYS

In this appendix we write down covariant expansions for
the current-induced electromagnetic transitions involving
the (1/2%) and (3/2%) baryon states. We thereby define
sets of invariant vector transition form factors. We then
define helicity amplitudes which are expressed in terms of
linear combinations of the invariant form factors. One of
the advantages of using helicity amplitudes is that one
obtains very compact expressions for the decay rates (see

114036-11



TANJA BRANZ et al.

e.g. [28,29]). In addition, the helicity amplitudes contain
the complete spin information of the process and are thus
well suited for the computation of spin observables.

In the radiative decays of double-heavy baryons the
momenta and masses are denoted by

Bi(p1, My) — By(pa, M) + y(q),

where p; = p, + g. For the invariant form factor expan-
sion of the 1/27 — 1/2" matrix elements of the vector
current J,, one obtains the following.

Transition 1 — 1 + +:

(AD)

MM = <BZ|J;4|BI>

= i(po, Sz)l:VMFl (¢%) — iUMV%Fz(Qz)
1

q
2 By Jutpr s (A2)
1
Similarly one has
Transition 3* — 1*:
M, = (B,|J,|B})
- 2 P2a 2
= i(pa, )| LanF1(q°) + v, VFz(CI )
2
pZapl,u 2 p2aq,u, 2 o
+T%F3(CI ) +T§F4(CI ) |vsu®(py, s1),
(A3)

where o, = (i/2)(y,¥, — ¥»¥,) and all y matrices are
defined as in Bjorken-Drell. One should emphasize that the
above invariant form factors are constrained by gauge
invariance relations (see e.g. the detailed discussion in
[30D.

Next we express the vector helicity amplitudes H),, in
terms of the invariant form factors F;, where A,, = *1 and
Ay = *+1/2 and +3/2 are the helicity components of the
on-shell photon and the daughter baryon, respectively. The
pertinent relation is

Hy,p, = M, (A)EH (M) (A4)

Angular momentum conservation fixes the helicity A; of
the parent baryon according to A; = A, — A,. We shall
work in the rest frame of the parent baryon B; with the
daughter baryon B, moving in the positive z direction such
that p{" = (M,0), p5 =(E, 00 |p,)) and g+ =
(40, 0,0, =Ipsl), where go = Ipo| = (M7 — M3)/(2M))
and E; = M| — qo = (M? + M3)/(2M)).

The J = % baryon spinors are given by

_ 1 +Ip,l
Mz(l’zy iz) =JE, + Mz(/\/]L 2 ),

i’Ez-l-Mz = (A5)
1 X+
u1<p1,i§)= 2M1< 0 >,
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v
()

are two-component Pauli spinors.
The J = % baryon spinors are defined by

u,(p,s) = Z(l)\%s

As

where

and

3
5s*>eu(p, Nu(p,s).  (A6)

They satisfy the Rarita-Schwinger conditions
Y u,(p,s*) = p*u,(p, s*) =0, (A7)

where (111 5]3 s*) is the requisite Clebsch-Gordan coeffi-
cient, €,,(p, A) is the spin 1 polarization vector, and u(p, s)
are the usual J = J spinors defined above. In particular, the
J = 5 spinors with helicities A = =3/2, =1/2 read

+3 = +1 +1
uu p’—i _E,U,(p:— )u p’—i’
1 2 1
+_ ) = — + _
uM<p, B 2) \/;GM (P 0)u<p, B 2)
1 N _1
+ geﬂ(p, _1)u<p, +§>

The polarization vectors corresponding to the parent and
daughter J = % baryons are given by

(A8)

EM(plr 0) = (0’ Or Or 1);

1
e*(py, £1) = \/—i(oy *1,—4,0),

. 1 (A9)
€4 (py, 0) = ’ (Ip2l, 0,0, E),
2
1
€ (py 1) =—=(0,F1,40).
(p2, £1) J’z'( )
The polarization vectors of the on-shell photon read
1
eM(x1)=—=(0,%140), Al0
(=1 \/E( ) (A10)

where the “‘bar” on the polarization vector denotes the fact
that the photon is moving in the negative z direction. The
polarization vectors satisfy the Lorentz condition

q,€*(=1) =0. (A11)

Using above formulas for the spin wave functions with
definite helicities one can then express the helicity ampli-
tudes H, A through the invariant form factors by calculat-

ing Hy,,, = M, (A,)€%#(A,). One obtains the following.
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Transition 1* — 1*:
M_M_
Heqpyer = —FV2— ==, (A12)
1
where M+ = M| = M,.
Transition 3+ — 1*:
H =+ ! M (F + F M%— )
+(1/2)*1 _\/37 - 1 2M1M2 ) (A13)

Higps1 = EM_F,.

Note that one has an explicit factor of M _ in all the helicity
amplitudes which corresponds to the appropriate p-wave
threshold factor |p| ~ M_. The decay width is given by

_a M-
S P

M%H

r
aM;3

(A14)

51782

where the JH 5,—s, are bilinear combinations of the helicity
amplitudes:

H 1 j—~ay2) = [Hapon 1> + 1H_1/2)-11%
-7‘[(3/2)—»(1/2) = [HuaI* + 1H-_(1/2)-1
+ [Hajpy—11* + [H_1 o1~

(A1S5)

_ 1 3 _ ,M
u2<v, + 5)754”%(”’ 15) = FM, M_ ﬁ?eﬂ(v, *1),
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The overall dependence of the rate on the mass difference
M _ can be seen to be given by |p|**! ~ M3 for/ = 1.In
the HQL the baryon spinors simplify. For example, the
HQL J = 1 baryon spinors read

|

1
Z(U) ii) = V2M2(/\/T_F) 0):
2M1<X+ )
0

For the 3* — 1" transition in the HQL one has four pos-
sible Dirac strings in the matrix elements which are 7s,
ysd, vs£'(A,), and ysd£*(A,). It is easy to show that the
two Dirac strings ys and 7542*(/\y) vanish when sand-
wiched between the HQL baryon spinors:

(Al6)

ﬁZ(U) i%)(YS’ ’)/Séz*()‘y))u,u,(vy i%)

= iy (v, =) (ys, ysd W), (v, 7 = 0. (A17)

The remaining strings ys¢ and 75 Z* one has

_ 1 1 _ 1 M _
uz(v, iE)'ysduﬂ(v, ¥ E) = +‘/;M+M‘1’ﬁ?6”(v’ *1),

_ N - _ 3 _ 1\ _1 4
uz(v, = 5)75# (+1)M,u<v, + E) - 0, Mz(v, ii)')/sf (il)u’u(v, -+ 5) = i\/_g‘\’MlMZeM(U’ 0) (A18)
In the calculation of the helicity amplitudes H(;/5)+; and H~(; /55 one can make use of the HQL identities
1 3 1 1 M
ﬁ2<v, t—)yﬁé*ﬂ(:l)uﬂ(u, r—) = \/§ﬁ2<v, + —)y545*“(i1)uﬂ<v, T —) =M. M_ |2
2 2 2 2 M,
(A19)
— 1 I _ 1 2 M
M2<U, ii)')/sﬁ[ (il)q'“u,u(v, +§) = —3M+M, ﬁ?

APPENDIX B: NONRELATIVISTIC QUARK MODEL: SPIN-FLAVOR WAVE FUNCTIONS, RADIATIVE
DECAY CONSTANTS, AND WIDTHS OF DOUBLE-HEAVY BARYONS

In this appendix we present results on the radiative decay amplitudes and widths of the DHBs in the nonrelativistic quark
model. As emphasized before the nonrelativistic quark model is based on the spin-flavor wave functions which arise in the

nonrelativistic limit of the relativistically covariant double-heavy three-quark currents with quantum numbers J? =

1+
3 and

%*. The corresponding quark model spin-flavor wave functions are given in Table II, where we use the following notation
for the antisymmetric y,(A) and symmetric ys(A), x5(A) spin wave functions where A is the helicity of the baryon state:
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XA(

o
)(fé(

) \/;T (1l — ),
) ‘E{z I =130+ 1),

) 11, X

N =

N =

| W

= ‘g{ﬂl + 1+ X'

In (B1) we use the ordering {gQ,Q,}. Next we relate the
DHB radiative decay amplitudes to the nonrelativistic
amplitudes G, A,» Where A, = *1] and A, = =1/2 and
+3/2 are the hehclty components of the on-shell photon
and the daughter baryon, respectively (see details in
Appendix A). In order to evaluate the spin-flip matrix
elements between the baryon states we make use of the
spin-flip (spin raising/lowering) operator

3
Sﬁ:ip = _\/EZ pilox);
i=1

where i runs over the three constituent quarks. The spin-
flip matrix elements are given by

Gys1 = <Bz(/\2)|5§ip|31()l1)>,

where A} = A, — A, is the helicity of the parent baryon
and o+ = o) * i0y. u; = e;/(2m;) is the ith quark mag-
netic moment and e; and m; are its charge and mass,
respectively.
For the amplitude G, A, One obtains the following.
Transition 14 — 15

G+ = \/7(,% Mp)-

(B2)

(B3)

(B4)
Transmon — i
Gi(]/z)Il = _\/gGi(l/Z)il = i(/_,(,c - /‘Lb) (BS)
Transition 3 — 15:
Gajz1 = _\/th(l/z)il = i\/—§<,uq — %).
(B6)
Transition 3 — %l .
242 NE
G = 3 smzﬂg(,uq - 7(,% - ,u,,)cotzaB)
(B7)

Transition 3 — 1

Gi(1/2)11 = _\@Gt(l/z)ﬂ

&tan+ - %tan )

2
=+ —=coslp| n, —
NG (w05
(B8)
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1 1
-35)= \g{i (- 10}

-3)= ‘[{2 1= 1L+ Iy
) 1l

\ﬁ{ﬂl + 1L+ UM

l\)|>—‘

(BI)

| W

Transition 3 — 1":

G:(1/2):1 = _\/§G+(1/2)t1

= s1n03(,u - &cot, - &cou),
\/_ 2 2

(B9)
where tan,. = 1 = tan@B\/g and cot. =1 £ cotﬁB\/g.
The states 34, 15, 1/ and 1" correspond to baryons with
antisymmetric, symmetric, and mixed heavy quark spin
configuration, respectively. In particular, 3* and {' corre-
spond to the mixed states B;, and B;. The index ¢ corre-
sponds to the light u, d, or s quark.
In terms of the nonrelativistic amplitude G, A, the he-
licity amplitudes H ), A, (see details in Appendix A) for the
1T — 1" and 3* — 1* radiative transitions are defined by

Hj,x, = IP2IWNINLG)

where N; = /2M; is the extra factor acquired in the non-
relativistic quark model due to different normalization of
states in the relativistic and the nonrelativistic theory.
Therefore, we have

’Mz
Hy, =M. M_ ﬁG/\zM
1

The radiative decay widths for the four possible s; — s,
spin transitions are given by

(B10)

(B11)

Mp
L opmayoys = Tammaon =K M3<1 - ;) :

4 2
Layoymijoy = —K%szzﬁg(l V3 e = cotZBB)
4 Mo, T+ Mo 2
Ty ==K 2(1 —b) ,
(3/2)—(1/2) 3 My 2,U«q
4 He Hb 2
I ., =_K 2 20 (1 _ c N t _) ’
(3/2)—(1/2) 3 My COS™Up 20, —2Mq an
4 ; M Mb 2
F = _K 2 20 (1 _ 4 _ t ) ,
(3/2)—(1/2)" 3 MgSIN~Up 2,“4 —2/-Lq cot,
(B12)

where
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o — 3y

K =
oM?

aM, (B13)
and « =~ 1/137 is the fine-structure constant.

It is evident that the widths of the subleading processes
14— 15 and 3 — 14 are suppressed by a factor of (m,/m,)*
compared to the widths of the leading process ; éS
APPENDIX C: MASS OPERATOR AND RADIATIVE

VERTEX FUNCTIONS OF DOUBLE-HEAVY

PHYSICAL REVIEW D 81, 114036 (2010)

Here and in the following N denotes a statistical flavor
factor, which is equal to 1 or 2 for DHBs with two different
or two identical heavy quarks, respectively, and T =
y°I'Ty°. We have introduced the abbreviations

d'k d*hod ks o,

dk123 (2 )8 9

(ky + ky + ks3),

1
20 = —g(k% + k2 + K3), ki = k; + pw;

2 3
BARYONS kit =k + p'w, Li= §<ki B Z kjo>’
The baryon mass operators 2 (p) and 25 (p) are given =1 (C3)
b 2
y z1(q) = Liqg — ng(W% + wows + w%),
S5(p) = 6V, [ dhins®GoRs (k] k5 kD), >
o } o 23(q) = Log — ng(w% +wiws + w3),
Ry (ry, rp,13) = IS, (r3)ly; e[ TS, (7)1, S o, (— 1)), N
(C1) z3(q) = L3q — ng(w% + wywy + w3),
and
5(p) = 6 [ dkin®G)RE G 1 1),
Rg”(rp ry, 13) = Flfgq(r3)F1itr[rngQz(rz)fgngl(_rl)]‘
(C2)
|
RMA (r1, 1o, 3, @) = =168, (r)T [T S, (1) TS, (= 1)y S, (=11 + @)1,
R: wn(rr s, q) = Flqu(rS)Flitr[FZfSQz(r2 C])V,LSQZ(”z)leSQ (=r)]
RMA (ri,ry 13, q) = Flfgq(r3 Q)VMS (r3)rlztr[r2fSQ2(r2)F2tSQ (=)l
~ C4
R,L,,A (r1, ra, 13, q) = =18, (r) [T S, (1T, S, (=) ¥ S, (=11 + @)1, €
RM,,AZ(Vp ra. 13,q) = U1 S, (r3) Tyt DS (ra — @)yt S, (r) T, S0, (= 1)1,
RMVA (7‘1,72, rs3, Q) 1—‘lfs;q(r?) q)’)/p,sq(r?a)rlltr[FZfSQZ(FZ)FZt VSQ]( rl)]
V,E(rl’ ry, 13) = Flfgq(rS)Flitr[FZfSQZ(rZ)FZi,VSQI(_rl)]-
In the following we present explicit expressions for the electromagnetic vertex function. In case of the ( 0 — ( , 1) and

( 1) — (2 , 0) transitions the expressions for the nonvanishing contribution of the triangle dlagrams in Fig. Z(a) 2(¢c)

(terms AL A and AL respectively) read

uv,A°

3
A,J;,A(Ply P2) = 6N;gp g5, [dkm Z e;P(z0) P (20 + z (Q))RJ'A (k. k3, k3, q),

i=1

M,,A(Pl’ P2) = ON;gp: &5, /dkm Z e;P(z0)P(zp + z; (Q))RM,,A (ki k3, kT, q),

=1

where ¢ = e, es =¢g, and e3 =¢,. For the G*

[F1g 2(d)] and AL

v, bubg

(C5a)

(C5b)

, 1) — (1+ 1) transition the electromagnetic vertex function
A, obtains contributions from the trlangle diagram A prd [Fig. 2(a)-2(c)], the left and right bubble diagrams A+

v, buby

[Fig. 2(e)], and the pole diagram AL 1w, pol, [Fig. 2(f)]. The corresponding contributions are given by
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