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The decay widths of top quark to S-wave b �c and b �b bound states are evaluated at the next-to-leading-

order accuracy in strong interaction. Numerical calculation shows that the next-to-leading-order correc-

tions to these processes are remarkable. The QCD renormalization scale dependence of the results is

obviously depressed, and hence the uncertainties lying in the leading order calculation are reduced.
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I. INTRODUCTION

Since predicted by the standard model [1–3], top quark
has become an important role in high energy physics due to
its large mass, which is close to the electroweak symmetry
breaking scale [4]. A great deal of research focusing on top
quark physics have been performed after its discovery in
1995 in the Fermilab [5]. Regarding the experiment aspect,
with the running of the Tevatron and forthcoming LHC, the
lack of adequate events will not be an obstacle for the top
quark physics study. According to Ref. [6], at the LHC
107 � 108 t�t pairs can be obtained per year, so this enables
the measurement of various top quark decay channels.
Meanwhile, the copious production of the top quarks also
produces a great number of bottom quark mesons since the
dominant top quark decay channel is t ! bþWþ.
Therefore, the bottom quark meson production in top quark
decays may stand as an important and independent means
for the study of heavy meson physics and the test of
perturbative QCD (pQCD).

As the known heaviest mesons, bottomonia and Bc (b �c
or �bc) possess particular meaning in the study of heavy
flavor physics. The LHCb as a detector specifically for the
heavy flavor study at the LHC will supply copious Bc and
� data for this aim. Theoretically, the direct hadro produc-
tion of Bc and � was studied in the literature [7–9]. In
addition to the ‘‘direct’’ production, ‘‘indirect’’ process as
in top quark decays may stand as an independent and
important source for Bc and � production. Since the top
quark’s lifetime is too short to form a bound state [10], the
Bc and � production involved scheme in top quark decays
is less affected by the nonpertubative effects than in other
processes. In Ref. [11], the top quark decays into � and �B�

c

at the Born level was evaluated. Recently, the S- and P-
wave Bc meson productions in top quark decays were fully
evaluated, including the color-octet contributions, at the
leading order accuracy of QCD by Chang et al. [12].

Considering the importance of investigating Bc and� in
the study of pQCD and potential models, it is reasonable
and interesting to evaluate the production rates of these

mesons in top quark decays at the next-to-leading order
(NLO) accuracy of pQCD. At the bottom quark and charm
quark mass scales the strong coupling is not very small;
therefore, the higher order corrections are usually large. On
the other hand, in the processes of top quark decays into
�Bcð�Þ, the t ! b �cð �bÞ þ cðbÞ þWþ, there exist large scale
uncertainties in the tree level calculation [13]. The NLO
corrections should in principle minimize it and give a more
precise prediction. To calculate the �Bc and � production
rates in top quark decays at the NLO accuracy are the aims
of this work. In our calculation, both of the S-wave spin-
singlet and -triplet states are taken into account, i.e., �B�

c,
�Bc,�, and �b. To deal with the nonperturbative effects, the
nonrelativistic QCD [14] effective theory is employed. The
calculation will be performed at the NLO in pQCD expan-
sion, but at leading order in relativistic expansion, that is,
in the expansion of v, the relativistic velocity of heavy
quarks inside bound states.
The paper is organized as follows: after the Introduction,

in Sec. II we explain the calculation of leading order decay
width. In Sec. III, virtual and real QCD corrections to the
Born level result are evaluated. In Sec. IV, the numerical
calculation for concerned processes at the NLO accuracy
of pQCD is performed, and the scale dependence of the
results is shown. The last remaining section provides a
brief summary and our conclusions.

II. CALCULATION OF THE BORN LEVEL DECAY
WIDTH

At the leading order in �s, there are two Feynman
diagrams for each meson production, which are shown in
Fig. 1. For the convenience of analytical calculation, taking
�Bc as an example, the momentum of each particle is
assigned as p1 ¼ pt, p3 ¼ pb, p4 ¼ p �c, p5 ¼ pc, p6 ¼
pWþ , p0 ¼ p3 þ p4, p3 ¼ mb

mc
p4. For bottomonium, the

only difference is that p4 and p5 represent the momenta
of antibottom quark and bottom quark, which are produced
in gluon splitting.
Of the �Bc and �B�

c production in top quark decays, i.e.,

tðp1Þ ! �Bc= �B
�
cðp0Þ þ cðp5Þ þWþðp6Þ; (1)*Corresponding author, qiaocf@gucas.ac.cn
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we employ the following commonly used projection op-
erators for quarks hadronization

vðp4Þ �uðp3Þ ! 1

2
ffiffiffi
2

p i�5ðp6 0 þmb þmcÞ

�
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
mbþmc

2

q c �Bc
ð0Þ

�
�
�
1cffiffiffiffiffiffi
Nc

p
�

(2)

and

vðp4Þ �uðp3Þ ! 1

2
ffiffiffi
2

p �6 �B�
c
ðp6 0 þmb þmcÞ

�
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
mbþmc

2

q c �B�
c
ð0Þ

�
�
�
1cffiffiffiffiffiffi
Nc

p
�
: (3)

Here, " �B�
c
is the polarization vector of �B�

c with p0 � " ¼ 0,

1c stands for the unit color matrix, and Nc ¼ 3 for QCD.
The nonperturbative parameters c �Bc

ð0Þ and c �B�
c
ð0Þ are the

Schrödinger wave functions at the origin of b �c bound
states, and in the nonrelativistic limit c �Bc

ð0Þ ¼ c �B�
c
ð0Þ.

In our calculation, the nonrelativistic relation m �Bc
¼

m �B�
c
¼ mb þmc is also adopted.

The LO amplitudes for �Bc production can then be read-
ily obtained with above preparations. They are

Ma ¼
��sgc �Bc

ð0ÞVtbCF�j;kffiffiffiffiffiffiffiffiffiffiffi
6m �Bc

q �uðp5Þ��i�5ðp6 0 þm �Bc
Þ��

� ðp6 0 þ p6 5 þmbÞ
ðp0 þ p5Þ2 �m2

b

�6 ðp6Þð1� �5Þ
ðp4 þ p5Þ2

uðp1Þ; (4)

and

Mb ¼
��sgc �Bc

ð0ÞVtbCF�j;kffiffiffiffiffiffiffiffiffiffiffi
6m �Bc

q �uðp5Þ��i�5ðp6 0 þm �Bc
Þ

� �6 ðp6Þð1� �5Þ
ðp4 þ p5Þ2

ðp6 3 þ p6 6 þmtÞ
ðp3 þ p6Þ2 �m2

t

��uðp1Þ: (5)

Here, j, k are color indices,CF ¼ 4=3 belongs to the SUð3Þ
color structure. For �B�

c production, the amplitudes can be
obtained by simply substituting i�5ðp6 0 þm �Bc

Þ with

�6 �B�
c
ðp6 0 þmb þmcÞ in the above expressions.

The Born amplitude of the processes shown in Fig. 1 is
then MBorn ¼ Ma þMb, and subsequently, the decay
width at leading order reads

d�Born ¼ 1

2mt

1

2

1

Nc

X jMBornj2dPS3: (6)

Here,
P

represents the sum over polarizations and colors
of the initial and final particles, 1

2 and
1
Nc

come from spin

and color average of initial top quark, dPS3 stands for the
integrands of three-body phase space, whose concrete form
is

dPS 3 ¼ 1

32�3

1

4m2
t

ds1ds2; (7)

where s1 ¼ ðp0 þ p5Þ2 ¼ ðp1 � p6Þ2 and s2 ¼
ðp5 þ p6Þ2 ¼ ðp1 � p0Þ2 are Mandelstam variables. The
upper and lower bounds of the above integration are

smax
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½m2

t ; s2; m
2
�Bc
� � f½s2; m2

c; m
2
W�

q
þ ½m2

t � s2 � ðmb þmcÞ2�ðs2 þm2
c �m2

WÞ
2s2

þm2
�Bc
þm2

c; (8)

smin
1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½m2

t ; s2; m
2
�Bc
� � f½s2; m2

c; m
2
W�

q
� ½m2

t � s2 � ðmb þmcÞ2�ðs2 þm2
c �m2

WÞ
2s2

þm2
�Bc
þm2

c; (9)

and

smax
2 ¼ ½mt � ðmb þmcÞ�2; smin

2 ¼ ðmc þmWÞ2;
(10)

with

f½x; y; z� ¼ ðx� y� zÞ2 � 4yz: (11)

III. THE NEXT-TO-LEADING ORDER
CORRECTIONS

At the next-to-leading order, the top quark decays to �Bc

and � include the virtual and real QCD corrections to the
leading order process, as shown in Figs. 2–5. With virtual
corrections, the decay widths at the NLO can be formu-
lated as

FIG. 1. The leading order Feynman diagrams for �Bc and �B�
c

production in top quark decays.
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d�Virtual ¼ 1

2mt

1

2

1

Nc

X
2ReðM�

BornMVirtualÞdPS3: (12)

The ultraviolet (UV) and infrared (IR) divergences usually
exist in virtual corrections. We use the dimensional regu-
larization scheme to regularize the UVand IR divergences,
similar as performed in Ref. [15], and the Coulomb diver-
gence is regularized by the relative velocity v. In dimen-
sional regularization, �5 is difficult to deal with. In this
calculation, we adopt the naive scheme, that is, �5 anti-
commutates with each �� matrix in d-dimension space-
time, f�5; �

�g ¼ 0. The UV divergences exist merely in
self-energy and triangle diagrams, which can be renormal-
ized by counter terms. The renormalization constants in-
clude Z2, Z3, Zm, and Zg, corresponding to quark field,

gluon field, quark mass, and strong coupling constant �s,
respectively. Here, in our calculation the Zg is defined in

the modified-minimal-subtraction (MS) scheme, while for
the other three the on-shell (OS) scheme is adopted, which

tells

�ZOS
m ¼ �3CF

�s

4�

�
1

�UV
� �E þ ln

4��2

m2
þ 4

3
þOð�Þ

�
;

�ZOS
2 ¼ �CF

�s

4�

�
1

�UV
þ 2

�IR
� 3�E þ 3 ln

4��2

m2

þ 4þOð�Þ
�
;

�ZOS
3 ¼ �s

4�

�
ð�0 � 2CAÞ

�
1

�UV
� 1

�IR

�
þOð�Þ

�
;

�ZMS
g ¼ ��0

2

�s

4�

�
1

�UV
� �E þ ln4�þOð�Þ

�
:

(13)

Here, �0 ¼ ð11=3ÞCA � ð4=3ÞTfnf is the one-loop coeffi-

cient of the QCD beta function; nf ¼ 5 is the number of

active quarks in our calculation; CA ¼ 3 and TF ¼ 1=2
attribute to the SUð3Þ group; � is the renormalization
scale.

FIG. 2. The self-energy diagrams in virtual corrections.

FIG. 3. The triangle diagrams in virtual corrections.
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In virtual corrections, IR divergences remain in the
triangle and box diagrams. Of all the triangle diagrams,
only two have IR divergences, which are denoted as
TriangleN7 and TriangleN9 in Fig. 3. Of the diagrams in
Fig. 4, BoxN3 has no IR singularity, while BoxN4 and
PentagonN9 have Coulomb singularities and PentagonN9
possesses ordinary IR singularity as well. The remaining
diagrams all have IR singularities, while the combinations
BoxN2+BoxN6, BoxN1+PentagonN8+TriangleN9,
BoxN5+TriangleN7 are IR finite. The Coulomb singular-
ities belonging to BoxN4 and PentagonN9 can be regular-
ized by the relative velocity v. After regularization
procedure, the 1

� term will be canceled out by the counter

terms of external quarks which form the �Bc or�, while the
1
v term will be mapped onto the wave functions of the

concerned heavy mesons. The remaining IR singularities
in BoxN7 and BoxN9 are canceled by the corresponding
parts in real corrections. In the end, the IR and Coulomb
divergences in virtual corrections can be expressed as

d�IR;Coulomb
virtual ¼ d�Born

4�s

3�

�
�2

v
� 1

�
� pt � pcxs lnxs

mcmtð1� x2sÞ
1

�

�
;

(14)

with pt ¼ p1, pc ¼ p5 and xs ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2mcmt=ðmcmt�pt�pcÞ

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2mcmt=ðmcmt�pt�pcÞ

p .

Here, in this work 1
� in fact represents 1

� � �E þ lnð4��2Þ.
Of our concerned processes, there are 12 different dia-

grams in real corrections, as shown in Fig. 5. Among
them, RealN2, RealN3, RealN8, and RealN9 are IR finite,
meanwhile the combinations of RealN1+RealN5 and
RealN10+RealN11 exibit no IR singularities as well, due
to the reasons of gluon connecting to the b or �c quark of
final �Bc or �. The remaining diagrams, RealN4, RealN6,
RealN7, and RealN12 are not IR singularity free. To regu-
larize the IR divergence, we enforce a cut on the gluon
momentum, the p7. The gluon with energy p0

7 < � is
considered to be soft, while p0

7 > � is thought to be hard.
The � is a small quantity with energy-momentum unit. In
this case, the IR term of the decay width can then bewritten
as

d�IR
Real ¼

1

2mt

1

2

1

Nc

X jMRealj2dPS4jsoft; (15)

where dPS4 is the four-body phase space integrands for real
corrections. Under the condition of p0

7 < �, in the Eikonal
approximation we obtain

dPS 4jsoft ¼ dPS3
d3p7

ð2�Þ32p0
7

jp0
7
<� (16)

In the small � limit, the IR divergent terms in real correc-

FIG. 4. The box and pentagon diagrams in virtual corrections.

FIG. 5. The real correction Feynman diagrams that contribute to the production of �Bc or �B�
c.
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tion can therefore be expressed as

d�IR
Real ¼ d�Born

4�s

3�

��
1

�
� Logð�2Þ

��
1þ pt � pcxs lnxs

mcmtð1� x2sÞ
�

þ finite terms

�
: (17)

Here, the Logð�2Þ involved terms will be canceled out by
the �-dependent terms in the hard sector of real correc-
tions. Referring to Eq. (14), it is obvious that the IR
divergent terms in real and virtual corrections cancel
each other. In case of hard gluons in real correction, the
decay width reads

d�hard
Real ¼

1

2mt

1

2

1

Nc

X jMRealj2dPS4jhard: (18)

In this case, the phase space dPS4jhard can be written as

dPS4jhard ¼ 2

ð4�Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsyþm2

c �m2
WÞ2 � 4sym2

c

q
y

Z p0
0þ

p0
0�

dp0
0

�
Z 1

�1
d cos	c

Z 2�

0
d
c �

�Z p0
7�

�
dp0

7

Z yþ

y�
dy

þ
Z p0

7þ

p0
7�

dp0
7

Z yþ

ððmcþmW Þ2=sÞ
dy

�
; (19)

with

p0�
0 ¼ mb þmc; (20)

p0þ
0 ¼ sþm2

b �m2
W þ 2mbmc � 2mW �mc

2
ffiffiffi
s

p ; (21)

p7�0 ¼ sþm2
b �m2

W þ 2mbmc � 2mW �mc � 2
ffiffiffi
s

p
p0

0

2
ffiffiffi
s

p � 2p0
0 þ 2

ffiffiffiffiffiffiffiffiffij ~p0j
p ;

(22)

p7þ0 ¼ sþm2
b �m2

W þ 2mbmc � 2mW �mc � 2
ffiffiffi
s

p
p0

0

2
ffiffiffi
s

p � 2p0
0 � 2

ffiffiffiffiffiffiffiffiffij ~p0j
p ;

(23)

y� ¼ 1

s
½ð ffiffiffi

s
p � p0

0 � p7
0Þ2 � j ~p0j2 � ðp7

0Þ2 � 2j ~p0jp0
7�;

(24)

yþ ¼ 1

s
½ð ffiffiffi

s
p � p0

0 � p7
0Þ2 � j ~p0j2 � ðp7

0Þ2 þ 2j ~p0jp7
0�;

(25)

where y is a dimensionless parameter defined as y ¼ ðp1 �
p0 � p7Þ2=s with

ffiffiffi
s

p ¼ mt, and

j ~p0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0

0Þ2 �m2
�Bc

q
: (26)

The sum of the soft and hard sectors gives the total con-
tribution of real corrections, i.e., �Real ¼ �IR

Real þ �hard
Real.

With the real and virtual corrections, we then obtain the
total decay width of top quark to �Bc and � at the NLO
accuracy of QCD

�total ¼ �Born þ �Virtual þ �Real þOð�4
sÞ: (27)

In above expression, the decay width is UVand IR finite. In
our calculation the FEYNARTS [16] was used to generate the
Feynman diagrams, the amplitudes were generated by the
FEYNCALC [17], and the LOOPTOOLS [18] was employed to

calculate the Passarino-Veltman integrations. The numeri-
cal integrations of the phase space were performed by the
MATHEMATICA.

IV. NUMERICAL RESULTS

To complete the numerical calculation, the following
ordinarily accepted input parameters are taken into ac-
count:

mb ¼ 4:9 GeV; mc ¼ 1:5 GeV;

mt ¼ 174 GeV; mW ¼ 80 GeV;
(28)

c �Bc
ð0Þ ¼ c �B�

c
ð0Þ ¼ R1ð0Þffiffiffiffiffiffiffi

4�
p ¼ 0:3616 GeV3=2; (29)

c LO
� ð0Þ ¼ c LO

�b
ð0Þ ¼ RLO

2 ð0Þffiffiffiffiffiffiffi
4�

p ¼ 0:6812 GeV3=2; (30)

c NLO
� ð0Þ ¼ c NLO

�b
ð0Þ ¼ RNLO

2 ð0Þffiffiffiffiffiffiffi
4�

p ¼ RLO
2 ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�� 16CF�s

p

¼ 0:8277 GeV3=2; (31)

Vtb ¼ 1:0; GF ¼ 1:1660� 10�5 GeV�2: (32)

Here, Vtb is the Cabibbo-Kobayashi-Maskawa matrix ele-
ment and GF is weak interaction Fermi constant.
In above numerical calculation inputs, the radial wave

function at the origin for S-wave �B�
cð �BcÞ system is esti-

mated by potential models [19], while the corresponding
�ð�bÞ nonperturbative parameter is determined from its
electronic decay rate [8]. A one-loop result of strong
coupling constant is taken into account, i.e.,

�sð�Þ ¼ 4�

ð11� 2
3nfÞLogð �2

�2
QCD

Þ
: (33)

With the above preparation, one can readily obtain the
decay widths of top quark to b �c and b �bmesons, as listed in
Table I. To see the scale dependence of the LO and NLO
results, the ratios �ð�Þ=�ð2mcÞ for b �c system and
�ð�Þ=�ð2mbÞ for b �b system are showed in Figs. 6 and 7,
respectively. Our calculation tells us that after including
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the NLO corrections, the energy scale dependence of the
results is reduced, as expected.

V. SUMMARYAND CONCLUSIONS

In this work we have calculated the decay widths of top
quark to S-wave b �c and b �b bound states at the NLO

accuracy of perturbative QCD. Considering that there
will be copious t�t data in the near future at the LHC, our
results are helpful to the study of the indirect production of
these states. They may be also useful to the future study of
NLO heavy quark to b �c and b �b bound states fragmentation
functions.

TABLE I. The decay widths of the processes t ! �B�
c þWþ þ c, t ! �Bc þWþ þ c, t ! �þWþ þ b and t ! �b þWþ þ b at

the tree level and with the NLO QCD corrections are presented in two renormalization scale � limits; those are 2mc andmt for the first
two processes and 2mb and mt for the other two.

t ! �B�
c þWþ þ c t ! �Bc þWþ þ c t ! �þWþ þ b t ! �b þWþ þ b

� 2mc mt 2mc mt 2mb mt 2mb mt

�LO 0.793 MeV 0.151 MeV 0.572 MeV 0.109 MeV 26.8 keV 9.54 keV 27.1 keV 9.67 keV

�NLO 0.619 MeV 0.307 MeV 0.514 MeV 0.227 MeV 52.3 keV 28.2 keV 34.3 keV 24.5 keV

FIG. 6. The ratio �ð�Þ=�ð2mcÞ versus renormalization scale � in top quark decays. The left diagram for the b �c spin-singlet state �Bc

and the right diagram for the spin-triplet state �B�
c.

FIG. 7. The ratio �ð�Þ=�ð2mbÞ versus renormalization scale � in top quark decays. The left diagram for the b �b spin-singlet state �b

and the right diagram for the spin-triplet state �.
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Numerical results indicate that the NLO corrections
greatly enhance the LO results for the b �b system, while
slightly decreasing the b �c states’ production widths. The
main reason for this difference is that the NLO wave
function for bottomonium is much larger than that of the
LO one, while for the calculation of the �Bc meson, the
same wave function given by potential models is used.
Although from Table I, superficially the number of indi-
rectly produced �Bc overshoots that of �, experimentally to
detect the latter is much easier than the former. Since top
quark dominantly decays into a b andWþ final state with a
width of 1.5 GeVor so, numerical results remind us that the
� indirect production from top quark decay is detectable,
while it is hard to pin down the �Bc states by this way.

The numerical calculation also shows that the next-to-
leading order QCD corrections to processes t ! b �cðb �bÞ þ

Wþ þ cðbÞ decrease the energy scale dependence of the
decay widths as expected, and hence the uncertainties in
theoretical estimation. Future precise experiment on the
concerned processes may provide a test on the theoretical
framework for heavy quarkonium production and the re-
liability of perturbative calculation for them.
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