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The light scalar meson �ð600Þ is known to appear at low excitation energy with very large width on top

of continuum states. We investigate it in the QCD sum rule as an example of resonance structures

appearing above the corresponding thresholds. We use all the possible local tetraquark currents by taking

linear combinations of five independent local ones. We ought to consider the �-� continuum contribution

in the phenomenological side of the QCD sum rule in order to obtain a good sum rule signal. We study the

stability of the extracted mass against the Borel mass and the threshold value and find the �ð600Þ mass at

530 MeV� 40 MeV. In addition, we find the extracted mass has an increasing tendency with the Borel

mass, which is interpreted as caused by the width of the resonance.
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I. INTRODUCTION

The light scalar mesons, �ð600Þ, �ð800Þ, f0ð980Þ, and
a0ð980Þ, have been intensively discussed for many years
[1–3]. However, their nature is still not fully understood
[4–8]. They have the same quantum numbers JPC ¼ 0þþ
as the vacuum, and hence the structure of these states is a
very important subject in order to understand nonperturba-
tive properties of the QCD vacuum such as spontaneous
chiral symmetry breaking. They compose of the flavor
SUð3Þ nonet with the mass below 1 GeV, and have a
mass ordering which is difficult to be explained by using
a q �q configuration in the conventional quark model [9–13].
Therefore, several different pictures have been proposed,
such as tetraquark states and meson-meson bound states,
etc. Here we note that hadrons with complex structures
such as tetraquarks may exist in the continuum above the
threshold energy of two hadrons with simple quark
structure.

The tetraquark structure of the scalar mesons was pro-
posed long time ago by Jaffe with an assumption of strong
diquark correlations [14,15]. It can naturally explain their
mass ordering and decay properties [16–18]. Yet the basic
assumption of diquark correlation is not fully established.
In this paper, we study �ð600Þ as a tetraquark state in the
QCD sum rule approach as an example of resonances in the
continuum states above the �-� threshold. In the QCD
sum rule, we calculate matrix elements from the QCD
(OPE) and relate them to observables by using dispersion
relations. Under suitable assumptions, the QCD sum rule
has proven to be a very powerful and successful nonper-
turbative method in the past decades [19,20]. Recently, this
method has been applied to the study of tetraquarks by
many authors [21–24].

In our previous paper [24], we have found that the QCD
sum rule analysis with tetraquark currents implies the
masses of scalar mesons in the region of 600–1000 MeV
with the ordering m� <m� < mf0;a0 , while the conven-

tional �qq current is considerably heavier (larger than
1 GeV). To get this result, first we find there are five
independent local tetraquark currents, and then we use
one of these currents or linear combinations of two currents
to perform the QCD sum rule analysis. But these interpo-
lating currents do not describe the full space of tetraquark
currents. In order to complete our previous study, we use
more general currents by taking linear combinations of all
these currents. It describes the full space of local tetraquark
currents which can couple to �ð600Þ. Since the �ð600Þ
meson is closely related to the �-� continuum and it has a
wide decay width, we also consider the contribution of the
�-� continuum as well as the effect of the finite decay
width.
This paper is organized as follows. In Sec. II, we estab-

lish five independent local tetraquark currents and perform
a QCD sum rule analysis by using linear combinations of
five single currents. In Sec. III, we perform a numerical
analysis, and we also study the contribution of �-� con-
tinuum. In Sec. IV, we consider the effect of the finite
decay width. Section V is devoted to summary.

II. QCD SUM RULE

The local tetraquark currents for �ð600Þ have been
worked out in Ref. [24]. There are two types of currents:
diquark-antidiquark currents ðqqÞð �q �qÞ and meson-meson
currents ð �qqÞð �qqÞ. These two constructions can be proven
to be equivalent, and they can both describe the full space
of local tetraquark currents [24]. Therefore, we shall just
use the first ones. Since we use their linear combinations to
perform the QCD sum rule analysis, we cannot distinguish
whether it is a diquark-antidiquark state or a meson-meson
bound state. However, we find that tetraquark currents with
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a single term do not lead to a reliable QCD sum rule result
which means that �ð600Þ probably has a complicated
structure. The five independent local currents are given by

S�3 ¼ ðuTaC�5dbÞð �ua�5C �dTb � �ub�5C �dTa Þ;
V�
3 ¼ ðuTaC���5dbÞð �ua���5C �dTb � �ub�

��5C �dTa Þ;
T�
6 ¼ ðuTaC���dbÞð �ua���C �dTb þ �ub�

��C �dTa Þ;
A�
6 ¼ ðuTaC��dbÞð �ua��C �dTb þ �ub�

�C �dTa Þ;
P�
3 ¼ ðuTaCdbÞð �uaC �dTb � �ubC �dTa Þ:

(1)

The summation is taken over repeated indices (�; �; � � � for
Dirac, and a; b; � � � for color indices). The currents S, V, T,
A, and P are constructed by scalar, vector, tensor, axial-
vector, pseudoscalar diquark, and antidiquark fields, re-
spectively. The subscripts 3 and 6 show that the diquarks
(antidiquarks) are combined into the color representations,
�3c and 6c (3c and �6c), respectively.
These five diquark-antidiquark currents ðqqÞð �q �qÞ are

independent. In this work we use general currents by taking
linear combinations of these five currents:

� ¼ t1e
i�1S�3 þ t2e

i�2V�
3 þ t3e

i�3T�
6 þ t4e

i�4A�
6

þ t5e
i�5P�

3 ; (2)

where ti and �i are ten mixing parameters, whose linear
combination describes the full space of local currents
which can couple to �ð600Þ. We cannot determine them
in advance, and therefore we choose them randomly for the
study of the QCD sum rule.

By using the current in Eq. (2), we calculate the OPE up
to dimension eight. To simplify our calculation, we neglect
several condensates, such as hg3G3i, etc., and we do not
consider the 	s correction, such as g2h �qqi2, etc. The
obtained OPE are shown in the following. We find that
most of the crossing terms are not important such as 
13,
and even more some of them disappear: 
15 ¼ 0, etc. For
the most cases, we find that the OPE terms of Dim ¼ 6 and

Dim ¼ 8 give major contributions in the OPE series in our
region of interest. This is because the condensates h �qqi2
(D ¼ 6) and h �qqihg �q�Gqi (D ¼ 8) are much larger than
others.
Since the OPE series should be convergent to give a

reliable QCD sum rule, we also calculate the OPE of
Dim ¼ 10 and Dim ¼ 12. However, we find that these
terms are not important. Using the parameter set (2) and
the values of the condensates of the next section as an
example, we show the convergence of the two-point corre-

lation function �ðMB; s0Þ �
Rs0
0 
ðsÞe�s=M2

Bds in Fig. 1 as

functions of M2
B. The threshold value is taken to be s0 ¼

1 GeV2, and we show its behavior up to certain dimen-
sions. We find that the OPE up to Dim ¼ 0 and Dim ¼ 2
are very small; the OPE of Dim ¼ 4 gives a minor con-
tribution; the OPE of Dim ¼ 6 and Dim ¼ 8 are both
important; the OPE of Dim ¼ 10 and Dim ¼ 12 are both
small, and so we shall neglect them in the following
analysis.


ðsÞ ¼ t21
11ðsÞ þ t22
22ðsÞ þ t23
33ðsÞ þ t24
44ðsÞ þ t25
55ðsÞ þ 2t1t2 cosð�1 � �2Þ
12ðsÞ þ 2t1t3 cosð�1 � �3Þ
13ðsÞ
þ 2t1t4 cosð�1 � �4Þ
14ðsÞ þ 2t2t3 cosð�2 � �3Þ
23ðsÞ þ 2t2t4 cosð�2 � �4Þ
24ðsÞ þ 2t2t5 cosð�2 � �5Þ
25ðsÞ
þ 2t3t4 cosð�3 � �4Þ
34ðsÞ þ 2t3t5 cosð�3 � �5Þ
35ðsÞ; (3)

where


11ðsÞ ¼ s4

61 440�6
þ

�
� mu

2

1536�6
þ mumd

1536�6
� md

2

1536�6

�
s3 þ

�hg2GGi
6144�6

�muh �qqi
192�4

�mdh �qqi
192�4

�
s2

þ
�
�m2

uhg2GGi
1024�6

þmumdhg2GGi
1024�6

�m2
dhg2GGi
1024�6

�muhg �q�Gqi
64�4

�mdhg �q�Gqi
64�4

þ h �qqi2
12�2

�
s� 7m2

uh �qqi2
48�2

þmumdh �qqi2
4�2

� 7m2
dh �qqi2
48�2

�muhg2GGih �qqi
768�4

�mdhg2GGih �qqi
768�4

þ h �qqihg �q�Gqi
12�2

; (4)
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FIG. 1. The convergence of the two-point correlation function
�ðMB; s0Þ. The threshold value is taken to be s0 ¼ 1 GeV2, and
we show its behavior up to certain dimensions, as functions of
M2

B. The solid line is for �ðMB; s0Þ up to Dim ¼ 8. The short-
dashed line around it is for �ðMB; s0Þ up to Dim ¼ 10, and the
long-dashed line around it is for �ðMB; s0Þ up to Dim ¼ 12.
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22ðsÞ ¼ s4

15 360�6
þ

�
� mu

2

384�6
� mumd

768�6
� md

2

384�6

�
s3 þ

�hg2GGi
3072�6

þmuh �qqi
24�4

þmdh �qqi
24�4

�
s2 (5)

þ
�
�m2

uhg2GGi
512�6

þmumdhg2GGi
512�6

�m2
dhg2GGi
512�6

þmuhg �q�Gqi
32�4

þmdhg �q�Gqi
32�4

� h �qqi2
6�2

�
sþ 11m2

uh �qqi2
12�2

þ 2mumdh �qqi2
�2

þ 11m2
dh �qqi2

12�2
�muhg2GGih �qqi

384�4
�mdhg2GGih �qqi

384�4
� h �qqihg �q�Gqi

6�2
; (6)


33ðsÞ ¼ s4

1280�6
þ

�
� mu

2

32�6
� md

2

32�6

�
s3 þ

�
11hg2GGi
768�6

þmuh �qqi
4�4

þmdh �qqi
4�4

�
s2 þ

�
� 11m2

uhg2GGi
128�6

� 11m2
dhg2GGi
128�6

�
s

þ 5m2
uh �qqi2
�2

þ 20mumdh �qqi2
�2

þ 5m2
dh �qqi2
�2

þ 11muhg2GGih �qqi
96�4

þ 11mdhg2GGih �qqi
96�4

; (7)


44ðsÞ ¼ s4

7680�6
þ

�
� mu

2

192�6
þ mumd

384�6
� md

2

192�6

�
s3 þ 5hg2GGi

3072�6
s2 (8)

þ
�
� 5m2

uhg2GGi
512�6

þ 5mumdhg2GGi
512�6

� 5m2
dhg2GGi
512�6

�muhg �q�Gqi
16�4

�mdhg �q�Gqi
16�4

þ h �qqi2
3�2

�
s�m2

uh �qqi2
6�2

þ 8mumdh �qqi2
3�2

�m2
dh �qqi2
6�2

þmuhg2GGih �qqi
128�4

þmdhg2GGih �qqi
128�4

þ h �qqihg �q�Gqi
3�2

; (9)


55ðsÞ ¼ s4

61 440�6
þ

�
� mu

2

1536�6
� mumd

1536�6
� md

2

1536�6

�
s3 þ

�hg2GGi
6144�6

þmuh �qqi
64�4

þmdh �qqi
64�4

�
s2 (10)

þ
�
�m2

uhg2GGi
1024�6

�mumdhg2GGi
1024�6

�m2
dhg2GGi
1024�6

þmuhg �q�Gqi
64�4

þmdhg �q�Gqi
64�4

� h �qqi2
12�2

�
sþ 17m2

uh �qqi2
48�2

þ 7mumdh �qqi2
12�2

þ 17m2
dh �qqi2

48�2
þmuhg2GGih �qqi

256�4
þmdhg2GGih �qqi

256�4
� h �qqihg �q�Gqi

12�2
; (11)


12ðsÞ ¼
�

mu
2

3072�6
þ mumd

1536�6
þ md

2

3072�6

�
s3 þ

�
�muh �qqi

48�4

�mdh �qqi
48�4

�
s2 þ

�
�muhg �q�Gqi

32�4
�mdhg �q�Gqi

32�4

þ h �qqi2
6�2

�
s� 5m2

uh �qqi2
12�2

�mumdh �qqi2
2�2

� 5m2
dh �qqi2
12�2

þ h �qqihg �q�Gqi
6�2

; (12)


13ðsÞ ¼ � hg2GGi
1024�6

s2 þ
�
3m2

uhg2GGi
512�6

þ 3m2
dhg2GGi
512�6

�
s

�muhg2GGih �qqi
128�4

�mdhg2GGih �qqi
128�4

;

(13)


14ðsÞ ¼
�
3m2

uhg2GGi
4096�6

þ 3mumdhg2GGi
2048�6

þ 3m2
dhg2GGi
4096�6

�
s

�muhg2GGih �qqi
128�4

�mdhg2GGih �qqi
128�4

; (14)


23ðsÞ ¼
�
� 9m2

uhg2GGi
2048�6

� 9mumdhg2GGi
1024�6

� 9m2
dhg2GGi
2048�6

�
sþ 3muhg2GGih �qqi

64�4

þ 3mdhg2GGih �qqi
64�4

; (15)


24ðsÞ ¼ hg2GGi
1024�6

s2 þ
�
� 3m2

uhg2GGi
512�6

� 3m2
dhg2GGi
512�6

�
s

þmuhg2GGih �qqi
128�4

þmdhg2GGih �qqi
128�4

; (16)


25ðsÞ ¼
�
m2

uhg2GGi
4096�6

þmumdhg2GGi
2048�6

þm2
dhg2GGi
4096�6

�
s

�muhg2GGih �qqi
384�4

�mdhg2GGih �qqi
384�4

; (17)
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34ðsÞ ¼
�
� mu

2

256�6
� mumd

128�6
� md

2

256�6

�
s3 þ

�
muh �qqi
4�4

þmdh �qqi
4�4

�
s2 þ

�
� 15m2

uhg2GGi
2048�6

� 15mumdhg2GGi
1024�6

� 15m2
dhg2GGi

2048�6
þ 3muhg �q�Gqi

8�4
þ 3mdhg �q�Gqi

8�4
� 2h �qqi2

�2

�
sþ 5m2

uh �qqi2
�2

þ 6mumdh �qqi2
�2

þ 5m2
dh �qqi2
�2

þ 5muhg2GGih �qqi
64�4

þ 5mdhg2GGih �qqi
64�4

� 2h �qqihg �q�Gqi
�2

; (18)


35ðsÞ ¼ � hg2GGi
1024�6

s2 þ
�
3m2

uhg2GGi
512�6

þ 3m2
dhg2GGi
512�6

�
s

�muhg2GGih �qqi
128�4

�mdhg2GGih �qqi
128�4

: (19)

III. NUMERICAL ANALYSIS

To perform the numerical analysis, we use the values for
all the condensates from Refs. [25–30]:

h �qqi ¼ �ð0:240 GeVÞ3;
h�ssi ¼ �ð0:8� 0:1Þ � ð0:240 GeVÞ3;

hg2sGGi ¼ ð0:48� 0:14Þ GeV4;

mu ¼ 5:3 MeV; md ¼ 9:4 MeV;

msð1 GeVÞ ¼ 125� 20 MeV;

hgs �q�Gqi ¼ �M2
0 � h �qqi;

M2
0 ¼ ð0:8� 0:2Þ GeV2:

(20)

As usual we assume the vacuum saturation for higher
dimensional operators such as h0j �qq �qqj0i � h0j �qqj0i�
h0j �qqj0i. There is a minus sign in the definition of the
mixed condensate hgs �q�Gqi, which is different with some

other QCD sum rule calculation. This is just because the
definition of coupling constant gs is different [25,31].
Altogether we took 50 randomly chosen sets of ti and �i.

Some of these sets of numbers lead to negative spectral
densities in the low energy region of interest, which should
be, however, positive from their definition. This is due to
several reasons. One reason is that the convergence of OPE
may not be achieved yet for those currents for the tetra-
quark state. Another reason is that some currents may not
couple to the physical states properly. Except them, there
are 15 sets which lead to positive spectral densities. We
show these 15 sets of ti and �i in Table I, and label them as
ð01Þ; ð02Þ; � � � ; ð15Þ. They are sorted by the fourth column
‘‘Pole contribution’’ (PC):

Pole contribution �
Rs0
0 e�s=M2

B
ðsÞdsR1
0 e�s=M2

B
ðsÞds : (21)

The PC is an important quantity to check the validity of the
QCD sum rule analysis. Here, 
ðsÞ denotes the spectral
function. It depends on the ten mixed parameters as well as
MB and s0. We note that the �-� continuum, which we
shall study later, is not included in the pole contribution.
By fixing s0 ¼ 1 GeV2, we show the PC values in Table I
for the 15 sets. ‘‘PC(0.5),’’ ‘‘PC(0.8),’’ and ‘‘PC(1.2)’’
denote pole contribution by setting M2

B ¼ 0:5 GeV2,

TABLE I. Values for parameters ti, �i, the mass range M�, the pole contribution (PC) and the continuum amplitude aðti; �iÞ. The
meaning of these quantities are given in the text. There are altogether 15 sets, which are sorted by the fourth column ‘‘PC.’’ ‘‘PC(0.5),’’
‘‘PC(0.8),’’ and ‘‘PC(1.2)’’ denote pole contribution by setting M2

B ¼ 0:5 GeV2, 0:8 GeV2, and 1:2 GeV2, respectively.

No t1 t2 t3 t4 t5 �1 �2 �3 �4 �5 M� (MeV) PC(0.5) PC(0.8) PC(1.2) a (GeV4)

(1) 0.03 0.03 0.73 0.37 0.24 2.7 3.4 4.7 5.5 3.6 510–580 92% 52% 13% 1:2� 10�7

(2) 0.03 0.92 0.75 0.70 0.03 5.6 0.80 4.1 2.9 2.5 510–590 90% 46% 11% 5:5� 10�7

(3) 0.25 0.79 0.16 0.95 0.22 1.8 1.2 6.1 0.44 1.8 510–600 87% 44% 11% 3:6� 10�7

(4) 0.53 0.26 0.93 0.24 0.76 2.9 0.40 2.0 2.5 3.3 510–610 85% 41% 10% 1:7� 10�6

(5) 0.74 0.54 0.74 0.65 0.67 0.15 3.1 1.4 2.7 6.1 520–640 81% 36% 8% 1:9� 10�6

(6) 0.98 0.50 0.12 0.33 0.03 2.0 4.0 6.3 1.3 1.6 510–590 82% 32% 6% 5:8� 10�8

(7) 0.98 0.42 0.84 0.82 0.72 0.095 1.5 3.7 2.4 3.0 540–700 70% 26% 6% 4:2� 10�6

(8) 0.48 0.68 0.58 0.96 0.04 1.8 2.5 3.0 4.3 3.7 530–690 70% 25% 6% 1:9� 10�6

(9) 0.53 1.0 0.99 0.34 0.86 5.6 4.8 5.3 4.1 0.076 540–700 68% 24% 5% 4:5� 10�6

(10) 0.75 0.96 0.32 0.12 0.11 4.3 2.6 0.93 5.1 2.9 560–760 57% 17% 4% 9:5� 10�7

(11) 0.31 0.81 0.71 0 0.10 4.2 1.8 2.8 5.4 5.1 570–780 55% 17% 4% 3:2� 10�6

(12) 0.47 0.40 0 0.46 0.91 0.18 1.9 1.9 0.091 0.94 540–730 58% 16% 3% 2:0� 10�7

(13) 0.60 0.26 0.44 0.27 0.24 3.3 3.6 0.92 5.9 3.7 620–850 43% 13% 3% 1:7� 10�6

(14) 0.74 0.73 0.73 0.32 0.28 1.3 1.3 4.6 3.3 5.6 620–850 42% 12% 3% 4:3� 10�6

(15) 0.65 0.55 0.92 0.19 0.96 4.9 5.2 4.0 5.5 3.3 730–930 25% 7% 2% 5:4� 10�6
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0:8 GeV2, and 1:2 GeV2, respectively. We find that the
pole contribution decreases very rapidly as the Borel
mass increases. Since we have discussed the convergence
of OPE in the previous section, and found that the Dim ¼
10 and Dim ¼ 12 terms are much smaller than the Dim ¼
6 andDim ¼ 8 terms, and so it is only the pole contribution
which gives a upper limitation on the Borel mass. The
Borel window is wider for the former parameter sets
ð1Þ; ð2Þ; � � � , and narrower for the latter ones. It almost
disappears for the set (15), whose mass prediction is also
much different from others. The Borel window should be
our working region. However, since the Borel stability is
always very good whenM2

B > 0:5 GeV2, we shall keep the
idea of Borel window in mind and work in the region 0:5<
M2

B < 2 GeV2. On the other side, we shall care more about
the threshold value s0.

By using these 15 sets of numbers, we perform the QCD
sum rule analysis. There are two parameters, the Borel
mass MB and the threshold value s0 in the QCD sum rule
analysis. We find that the Borel mass stability is usually
good, but the threshold value stability is not always good.
We show the mass range of �ð600Þ, M�, in Table I, where
the working region is taken to be 0:8 GeV2 < s0 <
1:2 GeV2 and 0:8 GeV2 <M2

B < 2 GeV2. We find the
mass range is small when the pole contribution (PC) is
large.

The parameter sets (01)-(06) lead to relatively good
threshold value stability. Taking the set (02) as an example,
we show its spectral density 
ðsÞ in Fig. 2 as function of s.
It is positive definite, and has a small value around s�
1:2 GeV2. Therefore, the threshold value dependence is
weak around this point, as shown in Fig. 3 for the extracted
mass as functions of bothM2

B and s0. We find all the curves
are very stable in the region 0:5 GeV2 <M2

B < 2 GeV2

and 0:6 GeV2 < s0 < 1:4 GeV2. From the set (02) we can
extract the mass of �ð600Þ around 550 MeV. From other
good cases, we find that the mass of �ð600Þ is around
50 MeV as well.

The parameter sets (07)-(15) lead to the threshold value
stability, which is not good. Taking the set (13) as an

example, we show its spectral density in Fig. 4 as a
function of s (left figure), and the extracted mass in
Fig. 5 as a function of s0 (upper three curves). The mass
increases with s0 and we cannot extract the mass from this
result. Many effects contribute to the mass dependence on
the threshold value, but for �ð600Þ the �-� continuum
contribution is probably the dominant one. Hence, we add
a term 
��ðsÞ in the spectral function in the phenomeno-
logical side to describe the �-� continuum:


ðsÞ ¼ f2Y�ðs�M2
YÞ þ 
��ðsÞ þ 
cont: (22)

where 
cont is the standard expression of the continuum
contribution except the �-� continuum. To find an expres-
sion for 
��ðsÞ, we introduce a coupling

��� � h0j�j�þ��i: (23)

The correlation function of the �-� continuum is

���ðp2Þ ¼ i
Z d4q

ð2�Þ2
i

ðpþ qÞ2 �m2
� þ i

� i

q2 �m2
� þ i

j���j2; (24)

and the spectral density of the �-� continuum is just its
imaginary part
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FIG. 2. The spectral density 
ðsÞ calculated by the mixed
current �, as a function of s. We show the results of the
parameter set (02) as an example.
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FIG. 3. The extracted mass of �ð600Þ as a tetraquark state
calculated by the mixed current �, as functions of the Borel mass
MB and the threshold value s0. We show the results of the
parameter set (02) as an example. At the left panel, the solid,
short-dashed, and long-dashed curves are obtained by setting
s0 ¼ 0:8, 1, and 1:2 GeV2, respectively. At the right panel, the
solid and dashed curves are obtained by settingM2

B ¼ 0:5, 1, and
2 GeV2, respectively.
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FIG. 4. The spectral density 
ðsÞ calculated by the mixed
current �, as a function of s. We show the results of the
parameter set (13) as an example. The left figure shows the
full spectral density as given on the left-hand side of Eq. (22),
while the right figure is the one with 
��ðsÞ subtracted.
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��ðsÞ ¼ Im���ðsÞ ¼ 1

16�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

s

s
j���j2: (25)

We may calculate ��� by using the method of current
algebra if we know the property of the resonance state.
However, this is not the topic of this paper. Moreover, in
this paper we use a general local tetraquark current to test
the full space of local tetraquark currents, so we again
make some trial and error tests, and find that the following
function leads to a reasonable QCD sum rule result, ��� �
s. Hence, we take the spectral density of the �-� contin-
uum as


��ðsÞ ¼ aðti; �iÞs2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

s

s
: (26)

We add the continuum contribution 
��ðsÞ in the phe-
nomenological side and perform the QCD sum rule analy-
sis. The values of parameter aðti; �iÞ are listed in Table I.
After adding the continuum contribution, the threshold
value stability becomes much better. Still taking the set
(13) as an example, we show its spectral density in Fig. 4 as
a function of s (right figure), and the extracted mass in
Fig. 5 as functions of s0 (lower three curves). We see that
now the spectral density has a small value around s�
1:1 GeV2, and the stability of the threshold value is sig-
nificantly improved.

Hence, we made the same analysis for all the other
cases. We found all the cases are good except one, which
is the case (15), where we are not able to get the desired
stability as a function of s0. The mass function has a small
stability region and increases rapidly with s0. Hence, we
consider this case is between the good case and bad case,
and remove it from the further analysis in this paper. We
show several results out of all the good cases in Fig. 6,

which are obtained by using the parameter sets (01), (03),
(06), (09), (12), and (14). We list the used aðti; �iÞ in
Table I for all the cases. All the masses behave very nicely
as functions of the Borel mass and s0 as shown in Fig. 6. In
our working region 0:8 GeV2 < s0 < 1:2 GeV2 and
0:8 GeV2 <M2

B < 2 GeV2, all the cases lead to a mass
within the region 495 MeV� 570 MeV. From this mass
range, the mass of �ð600Þ is extracted to be 530 MeV�
40 MeV.

IV. THE EFFECT OF FINITE DECAY WIDTH

After the s0 stability has been improved, we notice now
that the mass increases systematically with the Borel mass
as seen in Fig. 6 in all the cases. We therefore try to
consider a possible reason for this systematic result. The
�ð600Þ meson has a large decay width. We parametrize it
by a Gaussian distribution instead of the �-function for the
�ð600Þ.


FDWðsÞ ¼ f2Xffiffiffiffiffiffiffi
2�

p
�X

exp

�
�ð ffiffiffi

s
p �MXÞ2

2�2
X

�
: (27)

The Gaussian width �X is related to the Breit-Wigner
decay width � by �X ¼ �=2:4. We set �X ¼ 200 MeV,
and MX ¼ 550 MeV and calculate the following ‘‘mass’’:

M2ðMB; s0Þ ¼
Rs0
0 e�s=M2

Bs expð� ð ffiffi
s

p �MXÞ2
2�2

X

Þ ds
2
ffiffi
s

pRs0
0 e�s=M2

B expð� ð ffiffi
s

p �MXÞ2
2�2

X

Þ ds
2
ffiffi
s

p
: (28)
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FIG. 5. The extracted mass of �ð600Þ as a tetraquark state
calculated by the mixed current �, as functions of the threshold
value s0. We choose the parameter set (13) as an example. The
solid, short-dashed, and long-dashed curves are obtained by
setting M2

B ¼ 0:5, 1, and 2 GeV2, respectively. The upper three
curves are obtained without adding the contribution of the �-�
continuum in the spectral density in the phenomenological side,
while the lower three curves are obtained after adding the
contribution of the �-� continuum.
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FIG. 6. The extracted mass of �ð600Þ as a tetraquark state
calculated by the mixed currents �, as functions of the threshold
value s0. We choose the parameter sets (01), (03), (06), (09),
(12), and (14). The results are shown in sequence. The solid,
short-dashed, and long-dashed curves are obtained by setting
M2

B ¼ 0:5, 1, and 2 GeV2, respectively.
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We find that the obtained mass M is not just 550 MeV, but
increases as M2

B increases as shown in Fig. 7. Hence, the
extracted mass in the QCD sum rule analysis ought to
depend on the Borel mass. The amount of the change of
the extracted mass in the QCD sum rule analysis is similar
to the one found in this model calculation. Moreover, we
find that the finite decay width does not change the final
result significantly, which we have also noticed in our
previous paper [24].

V. SUMMARY

In summary, we have studied the light scalar meson
�ð600Þ in the QCD sum rule. We have used general local
tetraquark currents, which are linear combinations of five
independent local ones. This describes the full space of
local tetraquark currents, which can couple to �ð600Þ
either strongly or weakly. We find some cases where the
stability of the Borel mass and threshold value is both
good, while in some cases the threshold value stability is
not so good. The resonance mass has an increasing trend

with s0, which indicates a continuum contribution. Hence,
we have introduced a contribution from the �-� contin-
uum, and obtained a good threshold value stability. The
mass of �ð600Þ is extracted to be 530 MeV� 40 MeV. A
very interesting observation is that the mass increases
slightly with the Borel mass. We have made a model
calculation by taking the Gaussian width of 200 MeV
centered at 550 MeV and try to make a sum rule analysis.
We see a similarly increasing trend as seen in the QCD sum
rule analysis.
The continuum contribution exists in the background of

the �ð600Þ meson and it is very important to consider this
fact in the QCD sum rule analysis for exotic states. We
have seen a clear tendency of the mass increase with the
Borel mass after getting a good signal of the threshold
dependence. The decay width of �ð600Þ is related to this
increase tendency. We are now trying to calculate this by
using the three-point correlation function within the QCD
sum rule approach. The present analysis is very encourag-
ing to apply the QCD sum rule including the continuum
states for other scalar mesons. Moreover, the continuum
contribution should be important in many other resonances
such as �ð1405Þ etc., which lies in some continuum back-
ground. In the future, we will use the QCD sum rule
analysis with continuum to study various resonances.
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