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We study the two-flavor Nambu–Jona-Lasinio model with the Polyakov loop in the presence of a strong

magnetic field and a chiral chemical potential �5, which mimics the effect of imbalanced chirality due to

QCD instanton and/or sphaleron transitions. First, we focus on the properties of chiral symmetry breaking

and deconfinement crossover under the strong magnetic field. Then we discuss the role of �5 on the phase

structure. Finally, the chirality charge, electric current, and their susceptibility, which are relevant to the

chiral magnetic effect, are computed in the model.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is widely believed to
be the theory of the strong interactions. Investigations on
its rich vacuum structure and how the QCD vacuum can be
modified in an extreme environment are among the major
theoretical challenges in modern physics. It is, in particu-
lar, an interesting topic to study how nonperturbative fea-
tures of QCD are affected by thermal excitations at high
temperature T and/or by baryon-rich constituents at large
baryon (quark) chemical potential �q. Such research on

hot and dense QCD is important not only from the theo-
retical point of view but also for numerous applications to
the physics problems of the quark-gluon plasma (copiously
produced in relativistic heavy-ion collisions), ultradense
and cold nuclear/quark matter as could exist in the interior
of compact stellar objects, and so on.

The most intriguing nonperturbative aspects of the QCD
vacuum at low energy are color confinement and sponta-
neous breakdown of chiral symmetry. In recent years our
knowledge of (some parts of) the QCD phase diagram has
increased noticeably because of significant developments
of the lattice-QCD simulations (see [1–4] for several ex-
amples and see also references therein). At zero�q, except

for some reports [2], the numerical simulations have al-
most established that two QCD phase transitions (cross-
overs) take place simultaneously at nearly the same
temperature: one for quark deconfinement and another
for restoration of chiral symmetry (the latter being always
broken because of finite bare quark masses, strictly speak-
ing). It is still under debate whether two crossovers should
occur at exactly the same temperature, however.

Once a finite �q is turned on, the Monte Carlo simula-

tion in three-color QCD on the lattice cannot be performed

straightforwardly because of the (in)famous sign problem
[5]. To overcome this problem, several techniques have
been developed such as the multiparameter reweighting
method [6], Taylor expansion [7], the density of state
method [8], analytical continuation from the imaginary
chemical potential [9], the complex Langevin dynamics
[10], etc.
In addition to hot and dense QCD with T and �q, the

effect of a strong magnetic field B on the QCD vacuum
structure is also a very interesting subject. It would be of
academic interest to speculate modification of the vacuum
structure of a non-Abelian quantum field theory under
strong external fields. Besides, more importantly, this
kind of investigation has realistic relevance to phenome-
nology in relativistic heavy-ion collisions in which a strong
magnetic field is produced in noncentral collisions [11,12].
In particular, the results obtained by the UrQMD model
[12] show that eB created in noncentral Au-Au collisions
can be as large as eB � 2m2

� (i.e., B� 1018 G) for the top
collision energy at the Relativistic Heavy Ion Collider,
namely,

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Moreover, an estimate with

the energy reachable at LHC,
ffiffiffiffiffiffiffiffi
sNN

p � 4:5 TeV, gives

eB � 15m2
� for the Pb-Pb collision according to

Ref. [12]. Hence, heavy-ion collisions provide us with a
most intriguing laboratory available on the Earth in order
to study the effect of extremely strong magnetic fields on
the QCD vacuum.
Concerning the (electromagnetic) magnetic field effect

on the QCD vacuum structure, there have been many
investigations and it has been recognized that B plays a
role as a catalyzer of dynamical chiral symmetry breaking
[13–16]. The QCD vacuum properties have been also
studied by means of so-called holographic QCD models
[17]. The relation between the dynamics of QCD in a
strong magnetic field and noncommutative field theories
is investigated in Ref. [18].
A phenomenologically interesting consequence from the

strongB in heavy-ion collisions is what is termed the chiral
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magnetic effect (CME) [11,19]. The underlying physics of
the CME is the axial anomaly and topological objects in
QCD. Analytical and numerical investigations have dem-
onstrated that the sphaleron transition occurs at a copious
rate at high temperature unlike instantons that are ther-
mally suppressed [20,21]. Sphalerons are finite-energy
solutions of the Minkowskian equations of motion in the
pure gauge sector, and they appear not only in the electro-
weak theory but also in QCD [22]. They carry a finite
winding number QW , which is defined as

QW ¼ g2

32�2

Z
d4xTr½F ~F�; (1)

where F and ~F denote, respectively, the field strength
tensor and its dual. Sphalerons connect two distinct clas-
sical vacua of the theory with different Chern-Simons
numbers in Minkowskian space-time. It is possible through
the coupling with fermions in the theory to relate the
change of chirality NR � NL to the winding number by
virtue of the Adler-Bell-Jackiw anomaly relation

ðNR � NLÞt¼þ1 � ðNR � NLÞt¼�1 ¼ �2QW: (2)

The right-hand side of Eq. (2) is the integral over space-
time of @�j

�
5 , where j�5 represents the anomalous flavor-

singlet axial current. The physical picture that arises from
Eq. (2) is that in the presence of topological excitations
such as instantons and sphalerons with a given QW , and
starting with a system of quarks with NR ¼ NL, an unbal-
ance between left-handed and right-handed quarks is pro-
duced. Such an unbalance can lead to observable effects to
probe topological P - and CP -odd excitations. An experi-
mental observable sensitive to local P - and CP -odd effects
has been proposed in Ref. [23]. Recently, the STAR
Collaboration presented the conclusive observation of
charge azimuthal correlations [24] possibly resulting
from the CME with local P and CP violation.

The intuitive picture of the CME is as follows. In a
strong magnetic field B, quarks are polarized along the
direction ofB. Let us suppose thatB is along the positive z
axis (that is conventionally taken as the y axis in the
context of heavy-ion collisions). By neglecting quark
masses, which is a good approximation for u and d quarks
in the high-T chiral restored phase, the chirality is an
eigenvalue to label the quarks. Then, right-handed u quarks
should have both their spin and momentum parallel to B,
and left-handed u quarks should have their spin parallel to
B and momentum antiparallel to B. Obviously, the same
reasoning applies to d quarks. IfNR ¼ NL, then the current
that would originate from the motion of left-handed
quarks is exactly canceled by that of right-handed quarks.
If NR � NL, which is expected from the anomaly rela-
tion (2), on the other hand, a finite net current is produced.
Therefore, if quarks experience a strong magnetic field in a
domain where the topological transition occurs, a net
current is produced locally.

The CME has been investigated in the chiral effective
model [25] as well as in the holographic QCD model [17].
The chiral magnetic conductivity is calculated without
gluon interactions in Ref. [26]. In Ref. [27], the electric-
current susceptibility under a homogeneous magnetic field,
which can be related to the fluctuation of the electric-
charge asymmetry measured by the STAR Collaboration,
has been computed in the same way. The first lattice-QCD
study of the CME has been performed by the Institute for
Theoretical and Experimental Physics lattice group [28] in
the color-SU(2) quench approximation. Moreover, the
Connecticut group [29] performed a lattice-QCD study of
the CME with 2þ 1 dynamical quark flavors.
This paper is devoted to the study of the two-flavor

Nambu–Jona-Lasinio model with the Polyakov loop cou-
pling (PNJL model) in a strong magnetic field. The PNJL
model has been introduced in Refs. [30,31] to incorporate
deconfinement physics into the NJL model [32]. The main
addition to the NJL model is a background gluon field in
the Euclidean temporal direction. The background field is
related to the expectation value of the traced Polyakov loop
�, which is known to be an order parameter for the
deconfinement transition in a pure gauge theory [33].
There are many theoretical studies related to different
aspects of the PNJL model; see, for example, Ref. [34].
See Ref. [35] for a related study within the Polyakov-
quark-meson model and Ref. [36] for an investigation
within QCD with imaginary chemical potential.
We work in the chiral limit throughout the paper, in

which the definition of the chiral critical temperature has
no ambiguity. First, we focus on the effect of B on chiral
symmetry restoration at finite temperature. As will be clear
soon, our results support the role of the external B as a
catalyzer of dynamical symmetry breaking; the critical
temperature increases with increasing B. Naturally, the
(pseudo)critical temperature for deconfinement crossover
is less sensitive to the presence of B because there is no
direct coupling between photons and gluons. Hence, the
PNJL model predicts that at large enough B, a substantial
range of temperature will open at which quark matter is
deconfined but chiral symmetry is still dynamically bro-
ken. See [37] for a related study.
Also we shall discuss the effects of a finite chiral chemi-

cal potential �5 on the phase structure within the PNJL
model. This �5 mimics the topologically induced changes
in chirality charges N5 ¼ NR � NL that are naturally ex-
pected by the QCD anomaly relation. The relevant quantity
in a microscopic picture is rather the total chirality charge
N5, but for technical reasons it is easier to work in the
grand-canonical ensemble by treating�5 (see Ref. [38] for
an alternative description based on the flux-tube picture),
which is to be interpreted as the time derivative of the �
angle of the strong interactions; �5 ¼ _�=ð2NfÞ. Besides
the phase diagram from the PNJL model, we compute
quantities that are relevant to the CME, namely, the in-
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duced electric-current density, its susceptibility, and the
chiral charge density n5 together with its susceptibility.

This paper is organized as follows; in Sec. II, we give a
detailed description of the model we are using. In Secs. III
and IV, we present and discuss our numerical results from
the model. Finally, in Sec. V, we draw our conclusions.

II. MODELWITHMAGNETIC FIELDANDCHIRAL
CHEMICAL POTENTIAL

In this section we analyze the interplay between the
chiral phase transition and the deconfinement crossover
at large B by using the PNJL model. Here we consider
two-flavor quark matter in the chiral limit since the chiral
phase transition is a true phase transition only in the chiral
limit, and then and only then Tc can be identified unam-
biguously by a vanishing chiral condensate. The chiral
limit in the two-flavor sector is not far from the physical
world in which the current quark masses are a few MeV,
almost negligible as compared to the temperature.
Moreover, we are interested in studying the situation in
the presence of chirality-charge density. In the grand-
canonical ensemble we can introduce the chirality charge
by virtue of the associated chemical potential �5 in the
following way.

The Lagrangian density of the model we consider is
given by

L ¼ �c ði��D
� þ�5�

0�5Þc þG½ð �c c Þ2 þ ð �c i�5�c Þ2�
�U½�; ��; T�; (3)

where the covariant derivative embeds the quark coupling
to the external magnetic field and to the background gluon
field as well, as we will see explicitly below. We note that
�5 couples to the chiral density operator N 5 ¼
�c�0�5c ¼ c y

Rc R � c y
Lc L; hence n5 ¼ hN 5i � 0 can

develop when �5 � 0. The mean-field Lagrangian is then
given by

L ¼ �c ði��D
� �Mþ�5�

0�5Þc �U½�; ��; T�; (4)

where M ¼ �2� with � ¼ Gh �c c i ¼ Gðh �uui þ h �ddiÞ.
In Eq. (4),� and �� correspond to the normalized traced

Polyakov loop and its Hermitian conjugate, respectively,

� ¼ ð1=NcÞTrL and �� ¼ ð1=NcÞTrLy, with the Polyakov
loop matrix

L ¼ P exp

�
i
Z �

0
A4d�

�
; (5)

where � ¼ 1=T.

The potential termU½�; ��; T� in Eq. (4) is built by hand
in order to reproduce the pure gluonic lattice data [34].
Among several different potential choices [39] we adopt
the following logarithmic form [31,34]:

U½�; ��; T� ¼ T4

�
� aðTÞ

2
���þ bðTÞ ln½1� 6 ���

þ 4ð ��3 þ�3Þ � 3ð ���Þ2�
�
; (6)

with three model parameters (one of four is constrained by
the Stefan-Boltzmann limit)

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
:

(7)

The standard choice of the parameters reads [34]

a0 ¼ 3:51; a1 ¼ �2:47;

a2 ¼ 15:2; b3 ¼ �1:75:
(8)

The parameter T0 in Eq. (6) sets the deconfinement scale in
the pure gauge theory, i.e., Tc ¼ 270 MeV.
We assume a homogeneous magnetic field B along the

positive z axis. The eigenvalues of the Dirac operator can
be derived by the Ritus method [40] and are [19]

!2
s ¼ M2 þ ½jpj þ s�5sgnðpzÞ�2; (9)

apart from (the phases of) the Polyakov loop, where s ¼
�1, p2 ¼ p2

z þ 2jqfBjk, with k a non-negative integer

labeling the Landau level.
The thermodynamical potential � in the mean-field

approximation in the presence of an Abelian chromomag-
netic field has been considered in much of the literature,
Ref. [41], for example. The expression for an electromag-
netic B can be obtained in the same way. Here we simply
write the final result:

� ¼ Uþ �2

G
� Nc

X
f¼u;d

jqfBj
2�

X
s;k

�sk

Z 1

�1
dpz

2�
f2�!sðpÞ

� 2T
X

f¼u;d

jqfBj
2�

X
s;k

�sk

Z 1

�1
dpz

2�

� lnð1þ 3�e��!s þ 3 ��e�2�!s þ e�3�!sÞ: (10)

Here the above definition of � is different from the stan-
dard grand potential in thermodynamics by a volume factor
V. The quasiparticle dispersion !s is given by Eq. (9). The
spin degeneracy factor is

�sk ¼
8<
:
	s;þ1 for k ¼ 0; qB > 0;
	s;�1 for k ¼ 0; qB < 0;
1 for k � 0:

(11)

Before going ahead further, one may wonder why we
introduce only one order parameter for the chiral symmetry
breaking even though the magnetic field breaks isospin
symmetry. Since qu � qd, one could suspect that the ef-
fects of B on h �uui and on h �ddi are different. This is not the
case, however, in the present model in the mean-field
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approximation. As a matter of fact, even in the presence of
B � 0, the thermodynamic potential (10) depends only on
� / h �uui þ h �ddi. This is so only when the four-fermion
interaction is Eq. (3) with equal mixing of the
Uð1ÞA-symmetric and Uð1ÞA-breaking terms. Hence, the
relevant quantity for the chiral symmetry breaking is just
one condensate, namely, �, even forB � 0, and there is no
need to introduce two independent condensates in this
special case. Even when we consider more general four-
fermion interaction, the isospin breaking effect is only
negligibly small.

The vacuum part of the thermodynamic potential,
�ðT ¼ 0Þ, is ultraviolet divergent. This divergence is
transmitted to the gap equations. Thus we must specify a
scheme to regularize this divergence. The choice of the
regularization scheme is a part of the model definition, but,
nevertheless, the physically meaningful results should not
depend on the regulator eventually. In the case with a
strong magnetic field the sharp momentum cutoff suffers
from a cutoff artifact since the continuum momentum is
replaced by the discrete Landau quantized one. To avoid a
cutoff artifact, in this work, we use a smooth regularization
procedure by introducing a form factor f�ðpÞ in the di-
verging zero-point energy. Our choice of f�ðpÞ is as fol-
lows:

f�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2N

�2N þ jpj2N
s

; (12)

where we specifically choose N ¼ 10. In the N ! 1 limit,
the above f�ðpÞ is reduced to the sharp cutoff function
�ð�� jpjÞ. Since the thermal part of � is not divergent,
we do not need to introduce a regularization function.

III. PHASE STRUCTURE WITH CHIRAL
CHEMICAL POTENTIAL

In this section we first focus on the system at�5 ¼ 0 and
discuss the role of the magnetic field as a catalyzer of the
dynamical chiral symmetry breaking. We also analyze the
interplay between chiral symmetry restoration and decon-
finement crossover as the strength of B increases.

A. Results at �5 ¼ 0—chiral symmetry breaking and
deconfinement

We analyze, within the PNJL model, the response of
quark matter to B at �5 ¼ 0. In particular, we are inter-
ested in the interplay between chiral symmetry restoration
and deconfinement crossover in the presence of a magnetic
field, which leads to the so-called chiral magnetic catalysis
[14]. Our model parameter set is

� ¼ 620 MeV; G�2 ¼ 2:2: (13)

These parameters correspond to f� ¼ 92:4 MeV and the

vacuum chiral condensate h �uui1=3 ¼ �245:7 MeV, and

the constituent quark mass M ¼ 339 MeV. The critical
temperature for chiral restoration in the NJL part at B ¼
0 is Tc � 190 MeV. We set the deconfinement scale T0 in
the Polyakov loop potential [see Eq. (6)] as T0 ¼
270 MeV, which is the value of the known deconfinement
temperature in the pure SU(3) gauge theory.
In Fig. 1, we plot the absolute value of the chiral con-

densate h �uui1=3 (upper panel) and expectation value of the
Polyakov loop (lower panel) as a function of T computed at
several values of eB (expressed in units of m2

�). The chiral
condensate h �uui and the Polyakov loop � are the solution
of the gap equations @�=@� ¼ @�=@� ¼ 0 in the model
at hand.
Figure 1 is interesting for several reasons. First of all, the

role of B as a catalyzer of chiral symmetry breaking is
evident. Indeed, the chiral condensate and thus constituent
quark mass increase in the whole T region as eB is raised.
(For graphical reasons, we have plotted our results starting
from T ¼ 100 MeV. There is nevertheless no significant
numerical difference between the T ¼ 0 and T ¼
100 MeV results.) This behavior is in the correct direction

FIG. 1. Absolute value of the chiral condensate jh �uui1=3j
(upper panel) and expectation value of the Polyakov loop (lower
panel) as a function of T computed at several values of eB (in
units of m2

�). In this model Tc ¼ 228 MeV at �5 ¼ B ¼ 0.
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consistent with the well-known magnetic catalysis re-
vealed in Ref. [14] and also discussed recently in
Ref. [41] in a slightly different context of the PNJL-model
study on the response of quark matter to external chromo-
magnetic fields.

Second, we observe that the deconfinement crossover is
only marginally affected by the magnetic field. We can
identify the deconfinement Tc by the inflection point of �
as a function of T. This simple procedure gives results
nearly in agreement with those obtained by the peak posi-
tion in the Polyakov loop susceptibility, which is a com-
mon prescription to locate the so-called pseudocritical
temperature. Also, we can identify the deconfinement Tc

with the temperature at which� ¼ 0:5. We note that Tc in
Fig. 1 is the chiral Tc ¼ 228 MeV where the chiral con-
densate vanishes, but not the deconfinement Tc in both
figures.

From Fig. 1 we notice that, by increasing eB from 4m2
�

to 20m2
�, the shift of the chiral transition temperature

�T
 � 20 MeV, while the shift of the deconfinement

crossover temperature is as small as �T� � 5 MeV.
Hence, the chiral phase transition is more easily influenced
by the magnetic field than the deconfinement as antici-
pated. Consequently, under a strong magnetic field, there
opens a substantially wide T window in which quarks are
deconfined but chiral symmetry is still spontaneously bro-
ken. This result, valid for �5 ¼ 0, does not necessarily
hold, in general, for �5 � 0, as we will see in the next
subsection.

B. Results at �5 � 0—suppression on the chiral
condensate

We next turn to the study of the effect of a finite �5 on
the QCD phase transitions using the PNJL model. We
recall that �5 cannot be a true chemical potential since
its conjugate variable n5 is only approximately conserved
due to axial anomaly. Nevertheless, because the time de-
rivative of the strong � angle translates into �5, as ex-
plained in the introduction, �5 itself is a physically
meaningful quantity. We specifically look into the behavior
of the critical line for chiral symmetry restoration, which is
well defined in the chiral limit, at differing B while keep-
ing�5 fixed. This study will be useful, among other things,
in order to understand the relation between the chirality
density n5 and �5 that we compute numerically in later
discussions.

One effect of�5 � 0 is lowering of the critical tempera-
ture of the chiral phase transition. This is evident from the
upper panels of Fig. 2. First, we discuss the case of eB ¼
5m2

� corresponding to the left upper and left lower panels
of Fig. 2. We see that increasing �5 at low T results in
slight enhancement of the chiral condensate. As T ap-
proaches Tc, however, the chiral phase transition at larger
�5 takes place earlier below Tc. As a result of the coupling
between the chiral condensate and the Polyakov loop, the

deconfinement crossover as shown in the lower panels of
Fig. 2 is also shifted earlier as �5 becomes greater.
In view of the right upper and right lower panels of

Fig. 2 for large eB ¼ 10m2
� the �5 effect on the chiral

condensate at low T is less visible. This is understood from
the fact that the chiral magnetic catalysis effect is predomi-
nant over the minor enhancement due to�5. In contrast, as
T is increased toward Tc, the qualitative behavior of the
shift in the critical temperature is just the same as what we
have seen previously for eB ¼ 5m2

�.
An interesting prediction from the PNJLmodel is that, at

a given value of eB, there exists a critical �5, above which
the chiral phase transition becomes first-order. In the case
eB ¼ 5m2

� as shown in Fig. 2, the critical �5 is found
between 300 and 400 MeV. As a matter of fact, at �5 ¼
400 MeV, the chiral condensate and the Polyakov loop
both exhibit discontinuity at the critical temperature. We
see that, as compared to the �5 ¼ 300 MeV case, the
slopes of the chiral condensate and the Polyakov loop
sharply change as a function of T for the �5 ¼ 400 MeV
case. Hence, our data plotted in Fig. 2 suggest the existence
of a critical�5 in the range 300 MeV<�c

5 < 400 MeV at

which the weakly first-order transition becomes a true
second-order one. The phase diagram in the �5-T plane
has a tricritical point (TCP) accordingly. We will discuss
more on the TCP in the next subsection. We notice that this
picture is qualitatively robust regardless of the chosen
value of eB, as is already implied from Fig. 2. The first-
order phase transition in the high-mu5 and low-T region
leads to a discontinuity in the chirality density as a function
of �5. This point will also be addressed in some detail in
the next section.
As a final remark in this subsection we note that, in

Figs. 1 and 2, the slope of the curve quickly changes at
some point (at T=Tc ¼ 1 for eB ¼ 0, for example). This is
because of the second-order phase transition, which is the
case for chiral restoration in the chiral limit.

C. Phase diagram

The results we have revealed so far can be summarized
into the phase diagram in the �5-T plane. In the upper
panel of Fig. 3, we show the phase diagram at eB ¼ 5m2

�.
In the lower panel, for comparison we plot the phase
diagram at eB ¼ 15m2

�. The line represents the chiral
phase transition. It is of second order for small values of
�5 (shown by a thin line) and becomes of first order at
large �5 (shown by a thick line). The location of the TCP
on the phase diagram depends only slightly on eB, while
the topology of the phase diagram is not sensitive to the
magnetic field.
The general effect of �5 is to lower the chiral transition

temperature. One may argue that the critical line can hit
T ¼ 0 eventually at very large�5, though the PNJL model
is of no use at such large �5 because the ultraviolet cutoff
causes unphysical artifacts. The locations of the TCP are
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estimated from the PNJL model as

ð�5; TÞ � ð400 MeV; 200 MeVÞ; for eB ¼ 5m2
�; (14)

ð�5; TÞ � ð370 MeV; 200 MeVÞ; for eB ¼ 15m2
�:

(15)

IV. CHIRALITY CHARGE, ELECTRIC CURRENT,
AND SUSCEPTIBILITIES

In this section we show our results for quantities relevant
to the CME. We numerically compute the chiral density n5
and its susceptibility 
5 as a function of �5 and eB. Also
we calculate the current density j3 along the direction of B
and its susceptibility 
J. Finally, we use the result n5ð�5Þ
to evaluate j3 as a function of n5.

A. Chirality density and its susceptibility

The axial anomaly relates the topological charge QW to
the chirality charge N5, with N5 ¼ n5V, where V ¼
LxLyLz is the volume of topological domains. We can

read n5 from

n5 ¼ � @�

@�5

: (16)

It is useful information to relate n5 and �5 for various
temperatures and magnetic field strengths. In the next
section we will use the results of n5ð�5Þ to express the
current density as a function of the chirality density.
The relation between n5 and �5 can be found analyti-

cally only in simple limiting cases [19]. In general, one has
to determine it numerically by using an effective model.
We show n5ð�5Þ for eB ¼ 5m2

� at three temperatures
around Tc in Fig. 4. The qualitative picture is hardly
modified even if we change the magnetic field.
From Fig. 3 we can read the critical temperature at�5 ¼

0 that is Tc ¼ 228 MeV. At temperatures well below Tc, as
seen in the T ¼ 160 MeV case in Fig. 4, the discontinuity
associated with the first-order phase transition with respect

to h �uui1=3 and � is conveyed to the relation n5ð�5Þ, which
is a typical manifestation of the mixed phase at critical �5.
Naturally, as T gets larger, the chirality density as a func-

FIG. 2. Absolute value of the chiral condensate jh �uui1=3j (upper panel) and expectation value of the Polyakov loop (lower panel) as a
function of T computed at several values of eB (in units of m2

�) and �5 (in units of MeV).

KENJI FUKUSHIMA, MARCO RUGGIERI, AND RAOUL GATTO PHYSICAL REVIEW D 81, 114031 (2010)

114031-6



tion of �5 becomes smoother, since the chiral phase tran-
sition is of second order at higher T as is clear from Fig. 3.
It is interesting to compute the chirality-charge suscep-

tibility 
5, as well as n5, defined as


5 ¼ hn25i � hn5i2 ¼ � 1

�V

@2�

@�2
5

; (17)

where � ¼ 1=T and V is the volume. We note that this
definition of the susceptibility is different from that in
Ref. [27] by V. It should be mentioned that we take a
numerical derivative to compute 
5 including implicit
dependence in� and �. In Fig. 5, we plot 
5 as a function
of eB for several �5 values. The upper panel corresponds
to �5 ¼ 0, the middle one to �5 ¼ 200 MeV, and the
lower one to �5 ¼ 400 MeV. For completeness, in the
right panels of the same Fig. 5, we plot the chiral conden-

sate jh �uui1=3j for the same T and same�5. The oscillations
in 
5 are artificial results because of the momentum cutoff
�. As shown in Ref. [41], by choosing a regulator which is
smoother than used in this work, the oscillations of the
various quantities could be erased. The qualitative picture
is, nevertheless, unchanged even with a different regulator.
For this reason we do not perform a systematic study here
on the cutoff scheme dependence.
A notable aspect is the suppression of the chirality-

charge fluctuations at large T and large eB. This is evident,
for example, in the result with �5 ¼ 0 and T ¼ 1:1Tc in
Fig. 5. As long as eB is small, 
5 is a monotonously
increasing function of eB as expected naively. When eB
reaches a critical value around 20m2

�, however, 
5 has a
pronounced peak and then decreases with increasing eB,
which is a result of mixture with diverging chiral suscep-
tibility at the chiral phase transition. It should be men-
tioned that 
5 at �5 ¼ 0 (as shown in the upper left panel
of Fig. 5) does not diverge at the critical eB since the
mixing with the chiral susceptibility is vanishing due to
�5 ¼ 0. This behavior below and above the chiral critical
point can be easily understood in terms of the chiral
symmetry breaking by virtue of the magnetic field. As a
matter of fact, at T > Tc the chiral condensate stays zero
identically as long as eB is small enough, leading to zero
quasiparticle masses. Once eB exceeds a critical value, the
chiral symmetry is broken spontaneously even at high T
(see the upper right panel of Fig. 5) and the quasiparticle
masses can then jump to a substantially large number. Such
dynamical quark masses result in appreciable suppression
of the chirality-charge fluctuations. As will be shown in the
next section, this interesting and intuitively understandable
effect appears in the current susceptibility as well.

B. Current density and its susceptibility

The current density j3 (and its susceptibility as well) is
the most important quantity to compute for the chiral
magnetic effect [27]. It corresponds to the charge per
unit volume that moves in the direction of the applied

FIG. 4. Chirality density n5 (in units of fm�3) as a function of
�5 (in units of MeV) at eB ¼ 5m2

� for several values of T.

FIG. 3. (Upper panel) Phase diagram in the �5-T plane ob-
tained at eB ¼ 5m2

�. The thin line represents a second-order
chiral phase transition and the thick one a first-order transition.
Below the line, chiral symmetry is spontaneously broken, while
chiral symmetry is restored above the line. The label ‘‘TCP’’
denotes the tricritical point. (Lower panel) Phase diagram for
eB ¼ 15m2

�.

CHIRAL MAGNETIC EFFECT IN THE POLYAKOV– . . . PHYSICAL REVIEW D 81, 114031 (2010)

114031-7



magnetic field in a domain where an instanton/sphaleron
transition takes place, which causes chirality change of
quarks. The current has been computed analytically in
Ref. [19] in four different ways.

To compute the current density along the magnetic field,
i.e., j3 ¼ qh �c�3c i, we follow the common procedure to
add an external homogeneous vector potential along the
magnetic field, A3, coupled to the fermion field. Then

FIG. 5. (Left panels) Chirality-charge susceptibility 
5 as a function of eB (in units of m2
�) for several temperatures. The chiral

chemical potential is chosen as �5 ¼ 0, 200 MeV, and 400 MeV, respectively, from the upper to the lower panels. The solid line
corresponds to T ¼ 0, the dashed line to T ¼ 0:95Tc, and the dotted-dashed line to T ¼ 1:1Tc. Here Tc ¼ 228 MeV is the critical
temperature in this model at �5 ¼ B ¼ 0. (Right panels) Absolute value of the chiral condensate h �uui1=3 as a function of eB. The line
styles are the same as defined in the left upper panel.
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j3 ¼ � @�

@A3

��������A3¼0
: (18)

The derivative of the thermodynamic potential in the pres-
ence of a background field is computed in the following
way. The coupling of quarks to A3 is achieved by shifting
pz in Eq. (10) as pz ! pz þ qfA3. After putting regulari-

zation in the momentum integral with an ultraviolet cutoff
� (we know that the current is ultraviolet finite; hence the
choice of the regularization method does not affect the final
result), we change the order of the momentum integral and
the derivative with respect to A3. Then we make use of the
following replacement:

@

@A3
! qf

d

dpz

; (19)

to obtain

j3 ¼ Nc

X
f¼u;d

qf
jqfBj
2�

X
s;k

�ks

Z �

��

dpz

2�

d

dpz

½!sðpÞ þ � � ��:

(20)

The ellipsis represents irrelevant matter terms. After sum-
ming over the spin s, the contribution of the integrand from
the Landau levels with n > 0 turns out to be an odd
function of pz. Therefore, only the lowest Landau level
gives a nonvanishing contribution to the current, and we
get from the surface contribution [19]

j3 ¼ Nc

X
f¼u;d

q2f�5B

2�2
¼ 5�5e

2B

6�2
; (21)

which is certainly ultraviolet finite as it should be.
Generally speaking, we should utilize a gauge-invariant
regularization. Nevertheless, the above (21) indicates that a
naive momentum cutoff can reproduce a correct expression
for the anomalous chiral magnetic current.

The current density as given by Eq. (21) does not depend
on quark mass explicitly or on temperature either. The
reason is that the current is generated by the axial anomaly
and it receives contributions only from the ultraviolet
momentum regions (as the above derivation shows), and
so it is insensitive to any infrared energy scales. Also, the
Polyakov loop does not appear explicitly in Eq. (21). This
is easy to understand; the Polyakov loop is a thermal
coupling between quark excitations and the gluonic me-
dium, and thus the Polyakov loop only enters the thermal
part of �. Since the current originates from the anomaly,
however, the thermal part of� just drops off for the current
generation. The effect of the Polyakov loop will appear
implicitly through the relation between �5 to n5.

To confirm that our numerical prescription works well,
we have computed j3 by means of Eq. (18) with� given in
Eq. (10). In Fig. 6, we show the results from our numerical
computation as a function of �5. In the figure we have
plotted the normalized current

~j 3 ¼
�
5�0e

2B

6�2

��1
j3; (22)

with a choice of �0 ¼ 1 GeV, which we defined so as to
make the comparison transparent at a glance. In Fig. 6, the
dashed line represents ~j3 at T ¼ 160 MeV; on the other
hand, the dotted-dashed line represents the case at T ¼
240 MeV. We notice that our numerical results are per-
fectly in agreement with Eq. (21). We conclude that our
numerical procedure correctly reproduces the expected
dependence of j3 on �5 with the correct coefficient insen-
sitive to infrared scales regardless of whether T is below or
above Tc.
The result shown in the upper panel of Fig. 6 gives us

confidence in our numerical procedure, but the figure itself
is not yet more informative than Eq. (21). We express now
j3 as a function of n5 using Eq. (21) and the results
discussed in the previous section. The result of this com-
putation is shown in the lower panel of Fig. 6, in which we
plot the (not normalized) current density (measured in
fm�3) as a function of n5 (measured in fm�3), at eB ¼
5m2

� and at three different temperatures.

FIG. 6. (Upper panel) Normalized current density ~j3 ¼
ð5�0e

2B=6�2Þ�1j3, with �0 ¼ 1 GeV, as a function of �5 at
two different temperatures (below and above Tc). (Lower panel)
Current density as a function of n5 for eB ¼ 5m2

� computed at
three different temperatures.
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From Fig. 6 we notice that, at a fixed value of n5, the
larger the temperature is, the smaller j3 becomes. This
seemingly counterintuitive result is easy to understand.
As a matter of fact, as the temperature gets larger, the
corresponding �5 for a given n5 should decrease because
of more abundant thermal particles at higher temperature.
Since j3 depends solely on �5, a higher temperature re-
quires a larger n5 to give the same j3.

Besides j3, another interesting quantity is the current
susceptibility defined by


J ¼ hj23i � hj3i2 ¼ � 1

�V

@2�

@A2
3

��������A3¼0
: (23)

If we naively use the above definition (23) for the cutoff
model like the PNJL model, 
J is nonzero proportional to
�2 even at T ¼ B ¼ 0 as discussed in Ref. [27]. This is in
contradiction with the gauge invariance, which requires the
above susceptibility to vanish because the current suscep-
tibility is nothing but the 33-component of the photon
polarization tensor at zero momentum. Therefore, in order
to deal with the physically meaningful quantity, we sub-
tract the vacuum part from the above equation and compute

�
 J ¼ 
Jð�5; B; TÞ � 
Jð�5; 0; 0Þ (24)

to fulfill the requirement that photons are unscreened at
T ¼ B ¼ 0 regardless of any value of �5.

We plot our results for �V �
J as a function of eB in
Fig. 7 at �5 ¼ 0 (upper panel), �5 ¼ 200 MeV (middle
panel), and�5 ¼ 400 MeV (lower panel). The oscillations
in the susceptibility behavior are an artifact of the momen-
tum cutoff. In these plots Tc ¼ 228 MeV denotes the
critical temperature for chiral symmetry restoration at
�5 ¼ B ¼ 0.

Let us first focus on the case at �5 ¼ 0. At T ¼ 0 and
T ¼ 0:95Tc, the system is in the broken phase with h �uui �
0 over the whole range of eB. On the other hand, at the
temperature T ¼ 1:1Tc, the system is in the chiral sym-
metric phase for eB smaller than a critical value. There is a
phase transition from the symmetric to the broken phase
with increasing eB. This transition is driven by the pres-
ence of the magnetic field as the catalysis of chiral sym-
metry breaking, as mentioned before. The effect of the
phase transition leads to a cusp in the susceptibility 
J as
a function of eB. We also notice that there seems to exist a
range in eB in which �
J < 0. This is a mere artifact of the
momentum cutoff, which causes unphysical fluctuations in
�
J. The qualitative picture is similar also at �5 � 0.
To distinguish physically meaningful information from

cutoff artifacts, we have computed 
J by using a smoother
regulator with N ¼ 5 in Eq. (12). We have readjusted the
NJL parameters to keep the physical quantities (f� and
h �uui) unchanged. Figure 8 is the result in which oscilla-
tions are suppressed and 
J > 0 for any T and B.

In view of Figs. 7 and 8, we can conclude that it is
certainly a physical effect that the chiral phase transition
critically affects the susceptibility 
J as well as 
5. As
shown in Ref. [27], the susceptibility difference between
the longitudinal and transverse directions has an origin in
the axial anomaly and is insensitive to the infrared infor-
mation. Nevertheless, 
J (and transverse 
T

J , too) should
be largely enhanced near the chiral phase transition
through mixing with the divergent chiral susceptibility,
which is not constrained by anomaly. Such enhancement
in 
J would ease the confirmation of the CME signals at
experiment.
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FIG. 7. Subtracted current susceptibility �V �
J as a function of
eB (in units of m2

�) for several different values of T (in units of
Tc ¼ 228 MeV) and �5 (measured in MeV).
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V. CONCLUSIONS

In this paper, we have considered several aspects related
to the response of quark matter to an external magnetic
field. Quark matter has been modeled by the PNJL model,
in which the QCD interaction among quarks is replaced by
effective four-fermion interactions. In the PNJL model,
besides the quark-antiquark condensate, which is respon-
sible for the dynamical chiral symmetry breaking in the
QCD vacuum, it is possible to compute the expectation
value of the Polyakov loop, which is a relevant indicator
for the quark deconfinement crossover.

In our study, we have first focused on the effect of a
strong magnetic field on chiral symmetry restoration at
finite temperature. Our results show the effect of the ex-
ternal field as a catalyzer of dynamical symmetry breaking.
Moreover, the critical temperature increases as the strength

of B is increased. This behavior is in agreement with the
previous studies on magnetic catalysis in NJL-like models.
We have also discussed the effects of a chiral chemical

potential�5 on the phase structure of the model. The chiral
chemical potential mimics the chirality induced by topo-
logical excitations according to the QCD anomaly relation.
Instead of working at fixed chiralityN5, we have worked in
the grand-canonical ensemble introducing �5, i.e., the
chemical potential conjugate to N5. Besides the phase
diagram of the model, summarized in Fig. 3, we have
computed several quantities that are relevant for the
CME. That is, we have computed the current density j3
and its susceptibility 
J as well as the chiral charge density
n5 and its susceptibility 
5.
As a future project it is indispensable to extend our

analysis to the 2þ 1 flavors and tune the PNJL-model
parameters to reproduce the correct Tc and thermodynamic
properties, which would enable us to make a serious com-
parison with the dynamical lattice-QCD data [29], and,
furthermore, it would be possible to give a more pertinent
prediction on the physical observables.
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