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By exploring specific helicity states in quark-gluon scattering at tree level we show explicitly that the

full t-channel pole can be described exactly as a contraction of two local currents. In the four cases of

helicity assignment where a channel exists also for qQ-scattering, qg-scattering is described exactly by

this t-channel pole. Only in two of the four remaining helicity assignments is there a contribution from u-

and s-channel poles. We extract a gauge-invariant definition for the t-channel current generated by the

scattering of a gluon and offer an interpretation of the form.
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I. INTRODUCTION

At the LHC, most studies of physics from both within
and possibly beyond the standard model will require a
detailed understanding of not just the rate but also the
topology of hard multijet events. The vast phase space
opened by the center-of-mass energy of the accelerator
can counteract the �s-suppression of further radiation in
the hard-scattering matrix element.1

This means that it is not only relevant to calculate
processes of ever higher multiplicity at the lowest order
in perturbation theory, but the description of even hard
radiative corrections to these tree-level configurations be-
comes increasingly relevant. To date, the radiative correc-
tions for LHC processes with two or more QCD charged
particles in the final state are known in full fixed order
perturbation theory only to the first order (i.e. the process is
known to next-to-leading order). Radiative corrections
beyond the first order have traditionally been approximated
within a parton shower approach [1–3]. The approxima-
tions applied to the real emissions become exact in the soft
and collinear limits, and result in a sufficiently simple
formalism that all-order results can be obtained. Virtual
corrections are defined by keeping the shower evolution
unitary (i.e. the probability for emitting or not emitting
equal to one; in the language of fixed order calculations,
the K-factor induced by the parton shower for the inclusive
cross section is one).

The perturbative corrections simplify not just in the soft
and collinear limit, but also in the limit of large invariant
mass between all produced particles, the limit of so-called
multi-Regge kinematics (MRK), where the all-order per-

turbative results for 2 ! n-scattering are known not just
for the real but also virtual corrections [4–6]. This limit is
of interest when the focus is on describing correctly the
number and topology of jets (rather than the radiation
within each jet), since any jet definition introduces a re-
quirement of a non-negligible invariant mass between the
constituents of separate jets.
We have recently presented a framework[7], which not

only reproduces the exact 2 ! n results in the MRK limit,
but also reproduces to a good degree the results obtained
using full perturbative QCD order-by-order (for the low
orders where such results can be obtained) for completely
inclusive calculations, i.e. without special cuts in phase
space. The amplitude for the scattering is described by a
basic 2 ! 2-scattering under the exchange of the current
generated by the deflection of each particle, supplemented
by effective vertices for the extra gluon emission. These
effective vertices take into account the emission off each of
the four legs of the basic (or backbone) 2 ! 2 process, and
emission off the exchanged current. The formulation of
Ref. [7] in terms of current scattering of specific helicity
states provides the crucial improvement over initial efforts
in Ref. [8,9], and extends the phase space region of appli-
cability even further. The point of constructing the approx-
imations to the perturbative series is to obtain a formalism
which is sufficiently simple to allow for the all-order sum
to be constructed directly, while being sufficiently accurate
when compared order-by-order to the full fixed-order re-
sults where these can be obtained. The approximating all-
order sum can be matched to the tree-level n-jet rates,
where these are known. See Ref. [7] and Appendix B for
further details.
In the MRK limit, the kinematical dependence of the

amplitude for quark-quark, quark-gluon, and gluon-gluon
scattering is identical, and the scattering amplitude differs
only by color factors. In this limit, the scattering amplitude
is dominated by the behavior dictated by the poles in the
t-channel momenta. Therefore, the picture advocated in
Ref. [7] is built on the basic structure of the scattering of

1This is true, in particular, for processes where the partonic
cross section is not suppressed with increasing partonic center-
of-mass energy ŝ, such as e.g. 2 ! 2 processes which can
proceed through a t-channel exchange of a gluon. For large ŝ
the partonic cross section for such processes limits to a constant
depending on the transverse momentum only. All other 2 ! 2
processes are suppressed by powers of ŝ.
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two different quark flavors qQ ! qQ, which at lowest
order proceeds through the exchange of a single gluon in
the t-channel. The results for gluon scattering are found by
using the same color factor replacement CF ! CA that
arises in the effective PDF approach [10].

The description of the basic 2 ! 2-scattering is there-
fore one of the contraction of two generated currents, each
of the form A� ¼ �c��c . We will call this form of the
matrix element ‘‘t-channel factorized,’’ because each cur-
rent obviously depends on the momenta of the local scat-
tering spinors only, and the amplitude has a pole only in the
t-channel. As already mentioned, the factorized form aris-
ing for the scattering of quarks was used also for gluon
scattering in Ref. [7], changing only the effective color
factor. This results in the right MRK limit also for pro-
cesses with gluon scattering.

A priori, one might worry about extending the simple
description in quark-quark scattering to processes involv-
ing gluons, since e.g. there are three Feynman diagrams
contributing to qg ! qg instead of the one in qQ ! qQ,
with apparent singularities in the s- and u-channels (see
Fig. 1). In Sec. II we will show explicitly that the full tree-
level scattering for qg ! qg factorizes completely accord-
ing to the above definition for all except two (suppressed)
out of eight nonequivalent helicity configurations. In fact,
for the helicity assignments where a channel exists also for
qQ-scattering, the square of the matrix element for
qg-scattering is equal to that of qQ-scattering, times a
factor depending only on the light-cone momenta of the
gluons. And even in the four remaining kinematically sup-
pressed channels, the t-channel singularity is completely
factorized. We thereby obtain a gauge-invariant definition
of the off-shell current generated by the scattering of a
gluon, by using the natural definition of the current as the
full coefficient of the t-channel pole.

While this result is interesting on its own, it can also be
applied within the formalism of Ref. [7] to define an
improved impact factor for the gluon, which ensures that
the description of qg ! qg is exact (for 6 out of 8 helicity
configurations, and for all 4 dominant ones). In
Appendix B we present the improvements of the results
in Ref. [7] on the description of jet production at the LHC,
offered by the inclusion of these kinematically subleading
corrections.

II. QUARK-GLUON SCATTERING

In this section we will evaluate the full, gauge-invariant,
tree-level scattering amplitudes M ¼ M��"��ðp2Þ"�ðpbÞ
for all 8 inequivalent helicity configurations in the scatter-
ing process qðpaÞ þ gðpbÞ ! qðp1Þ þ gðp2Þ. The aim is to
display the close resemblance to the simpler case of
qQ-scattering. In particular, wewill see that for the helicity
assignments, where a qQ-channel exists, the square of the
qg-scattering matrix element is a factor depending only on
the gluon momenta times the square of the simple
qQ-scattering matrix element.

A. Helicity conserving amplitudes

We start with the helicity configuration q�ðpaÞ þ
gþðpbÞ ! q�ðp1Þ þ gþðp2Þ. The simple relation to
qQ-scattering is easily obtained with the following gauge
choice for the polarization vectors:
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�
2ffiffiffi

2
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�u�b u
þ
2
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bffiffiffi
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�uþb u
�
2

"þb� ¼ � �uþ2 ��u
þ
bffiffiffi

2
p

�uþ2 u
�
b

¼ � �u�b ��u
�
2ffiffiffi

2
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"�b� ¼ �u�2 ��u
�
bffiffiffi

2
p

�u�2 u
þ
b

:

(1)

This particular gauge choice gives a symmetric form, and
keeps the factorization explicit between forward moving
particles ðpa; p1Þ and backward moving particles ðpb; p2Þ.
Using the conventions outlined in Appendix A and the
following shorthands:

hij�jji ¼ �u�i ��u�j ; hiji ¼ �u�i uþj ; and ½ij� ¼ �uþi u�j ;
(2)

we get (where Ax is the amplitude for the x-channel dia-
gram in the chosen gauge)
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2
1e

t̂
��

ffiffiffiffiffiffiffi
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This gives the (obviously gauge-invariant) sum of

M ¼ �ig2
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ffiffiffiffiffiffiffi
p�
b

p�
2

s
� tbeat

2
1e

ffiffiffiffiffiffiffi
p�
2

p�
b

s �

� hbj�j2i � h1j�jai: (4)

This is the full, tree-level amplitude for this helicity con-
figuration. In the high energy limit (p�

b � p�
2 ), the term in

the brackets reduces to just a color matrix, and we find a
contribution proportional to a t-channel pole and the con-
traction of two currents

pb

pa

p2

p1

pb

pa

p2

p1

pb

pa

p2

p1

FIG. 1. The s-, t-, and u-channel processes which contribute to
q�ðpaÞ þ gþðpbÞ ! q�ðp1Þ þ gþðp2Þ.
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g2

t̂
fb2mtm1a �

p�
2?

jp2?j hbj�j2i � h1j�jai; (5)

which agrees (up to an irrelevant phase and a color factor)
with the structure for qQ-scattering. However, the crucial
exact result in Eq. (4) is that this helicity amplitude for
quark-gluon scattering is still expressible exactly as a
scattering under exchange of a t-channel gluon current
(despite the fact that the t-channel diagram itself is zero
in this gauge). However, the current generated by the
scattering of a gluon is slightly more complicated [by the
terms in the brackets of Eq. (4)] than that generated by a
quark. The color summed and averaged scattering matrix
element is

jMq�gþ!q�gþj2 ¼ g4

t̂a1 t̂b2

CF

N2
c � 1

�
1

2

p�2
b þp�2

2

p�
b p

�
2

�
CA � 1

CA

�

þ 1

CA

�
jhbj�j2ih1j�jaij2: (6)

In this case, t̂a1 ¼ t̂b2, but we write it this way in antici-
pation of the generalization to the multijet case. Cast in this
form, we see directly that this helicity scattering of quarks
and gluons is identical to that of the scattering of two
different quark flavors with a replacement of CF by the
color factor

1

2

�
CA � 1

CA

��
p�
b

p�
2

þ p�
2

p�
b

�
þ 1

CA

: (7)

We note that in the MRK limit (p�
b ! p�

2 ), this tends to

CA, as used in Ref. [7]. Equation (7) expresses how the
strength of the coupling of the current increases with

increasing acceleration of the scattering gluon [as ðp�
b

p�
2
þ

p�
2

p�
b
Þ increases]. We will therefore call the result of Eq. (7)

the color acceleration multiplier (CAM).
For the same process with positive helicity quarks

(qþðpaÞ þ gþðpbÞ ! qþðp1Þ þ gþðp2Þ), the only differ-
ence is that h1j�jai becomes haj�j1i which leads to the
same gluon impact factor. The processes with negative
helicity gluons can be found by taking the complex con-
jugate of these results, and because the new multiplicative
factor is real, we again find the corresponding quark cur-
rent multiplied by Eq. (7).

We see that the amplitudes for the assignments where
the gluon helicity is not flipped all scale as ŝ=t̂ in the high
energy limit—and the square of the scattering matrix ele-
ment is given exactly by the corresponding qQ-case, multi-
plied by the same factor, depending only on the gluon
momenta. All other helicity assignments are kinematically
suppressed in the high energy limit.

The pure t-channel factorization in fact extends also to
two-gluon scattering for the helicity configurations like
g�ðpaÞgþðpbÞ ! g�ðp1Þgþðp2Þ, where the t-channel mo-
mentum is defined as pa � p1 ¼ �ðpb � p2Þ (i.e. configu-
rations where two unlike helicity gluons scatter into two

unlike helicity gluons). The full, gauge-invariant scattering
amplitude can be put in the form

Mg�gþ!g�gþ ¼ �ig2

t
h1j�jaihbj�j2i p�
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2
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: (8)

This once again has the current structure of the simple
qQ ! qQ amplitude, multiplied by similar factors as
found in Eq. (4).

B. Helicity-flipping amplitudes

Returning to qg ! qg-scattering, the cases where the
gluon flips helicity are more complicated, but can be cast in
a very similar form. The two distinct cases are q�g� !
q�gþ, which gives
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(9)

and q�gþ ! q�g� which gives

As ¼ ig2tbeat
2
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jp2?j h2j�jbi � h1j�jai

At ¼ �g2tm1af
m2b � ðp2 þ pbÞ�

t̂
� h1j�jai

Au ¼ �ig2t2eat
b
1e

t̂
�

ffiffiffiffiffiffiffi
p�
b

p�
2

s
p2?
jp2?j hbj�j2i � h1j�jai:

(10)

We see that only for the helicity configuration where the
incoming gluon has the same helicity as that of the quark
and the helicity of the gluon is flipped is there a contribu-
tion which is not expressible as a simple current contrac-
tion over a t-channel pole. Only these two (kinematically
suppressed) helicity configurations give rise to the poles in
the û- and ŝ-channel.
In the current study, we focus on the t-channel pole, and

will therefore neglect the additional terms in Eq. (10),
which are suppressed in the MRK limit as ŝ=t̂ ! 1, ŝ !
�û. The description of the t-channel pole is obviously still
gauge-invariant.
The amplitudes with positive helicity quarks can be

obtained by complex conjugation. We notice that between
Eqs. (9) and (10), As and Au are swapped (as we would
expect). One can check explicitly that the amplitudes
where the gluon changes helicity all vanish in the MRK
limit. This should be compared with the scaling as ŝ=t̂ in
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the MRK limit for the helicity amplitudes studied in
Sec. II A.

We now seek to find the equivalent of Eq. (6) for the
nonhelicity conserving amplitudes. We use the shorthands

j
�;�
ij ¼ hjj�jii; and j

þ;�
ij ¼ hij�jji: (11)

Then the matrix element squared with summed and aver-
aged color is (Mt denotes the t-channel factorized approxi-
mation to the full M)
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�
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�

þ 2R

�
p2?
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2?j
jþb2:j

�
a1 � ðj�b2:j�a1Þ�

�
: (12)

The result for jMt
q�gþ!q�g�j2 (in this case equal to

jMq�gþ!q�g�j2) is very similar, with the jb2 currents
reversed and appropriate phases complex conjugated, as
can be seen by comparing Eqs. (9) and (10). While these
matrix elements are more complicated than Eq. (4), they
are just the sum of terms of contractions of currents for
specific helicity configurations, plus a new one (p2 þ pb)
which is necessary for the description of the spin-flip of the
gluon.

We note in passing that in all the results discussed so far,
the gluon has been taken to be moving in the backward
direction. This is obviously an arbitrary choice, but the
choice of light-cone directions results in a complex phase
arising from the conventions for the spinors, given in
Appendix A.

The overall conclusion of this section is that using
scattering of helicity states, it is possible to extract a
gauge-invariant definition of the t-channel pole generated
by the deflection of a gluon. Only two out of eight non-
equivalent helicity configurations have a contribution
which cannot be ascribed to a pure t-channel pole (and
these helicity configurations are suppressed in the MRK
limit).

In Appendix B we show some sample results of includ-
ing this new approach to gluon channels in the formalism
of Ref. [7].

III. CONCLUSIONS

By exploring the scattering of specific helicity states in
quark-gluon scattering at tree-level we have shown explic-
itly that the t-channel pole can be described exactly as a
contraction of two local currents. Furthermore, we dem-
onstrate that out of eight nonzero helicity configurations,
only two suppressed possibilities have contributions that
are not pure t-channel poles. We extract a gauge-invariant
definition for the t-channel current generated by the scat-
tering of a gluon.

This at the same time directly proves the assertions on
the generality of quark and gluon scattering in the multi-

Regge kinematic (MRK) limit made in Ref. [7], and offers
slight improvements in the description of scattering ampli-
tudes in the subasymptotic region. The formalism devel-
oped here is immediately applicable in the resummation
program developed on the basis of Ref. [7] for the descrip-
tion of production of pure multijets, and multiple jets in
association with a W, Z, or H-boson.
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APPENDIX A: SPINOR REPRESENTATION

We use the following representation for the spinors. For
outgoing particles with 4-momentum p, p� ¼ E� pz,
and p? ¼ px þ ipy, we use

uþðpÞ ¼

ffiffiffiffiffiffiffi
pþp

ffiffiffiffiffiffiffi
p�p p?

jp?j
0
0

0
BBB@

1
CCCA and u�ðpÞ ¼

0
0ffiffiffiffiffiffiffi

p�p p�
?

jp?j
� ffiffiffiffiffiffiffi

pþp

0
BBBB@

1
CCCCA:

(A1)

For incoming particles with 4-momentum p moving in the
þ direction, we use

uþðpÞ ¼

ffiffiffiffiffiffiffi
pþp
0
0
0

0
BBB@

1
CCCA and u�ðpÞ ¼

0
0
0

� ffiffiffiffiffiffiffi
pþp

0
BBB@

1
CCCA: (A2)

For incoming particles with 4-momentum p moving in the
� direction, we use
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FIG. 2 (color online). Results for d�=d�y and d�=d� for ud ! ugd (a) and (b), ug ! ugg (c) and (d), and gg ! ggg (e) and (f).
�y is the rapidity difference between the most forward and most backward hard jet. The black dashed line represents the full matrix
element, the red dashed line is the implementation based on the scattering of quark currents [7], the full blue line is this result with the
color adjusted multiplier (CAM) of Eq. (7) and the green dashed line has the CAM and the effect of flipped helicities, Eq. (12).
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(e) (f)

FIG. 3 (color online). As in Fig. 2, but now for the 4 jet final states: ud ! uggd (a) and (b), ug ! uggg (c) and (d), and gg ! gggg
(e) and (f).
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APPENDIX B: RESULTS

Here, we show comparisons between the full matrix
element, obtained from MADGRAPH 11, and the results
obtained in the t-channel factorized picture of Ref. [7].
We will concentrate on the changes introduced by this
current study compared to the description in Ref. [7], and
will not show the results for just 2-jet rates, since here the
approximations are so good that the difference to the full
tree-level result is completely insignificant.

Within the t-channel factorized approximation, the case
of 2 ! 2 helicity-nonflipping pure gluon scattering (gg !
gg) is described as simply the scattering of two quark-
generated currents, but with a color acceleration multiplier
[Eq. (7)] for each current. The possibility of one helicity-
flipping is then described simply as Eq. (12), but with an
extra CAM for the nonflipping gluon current. Since the
contribution from the single gluon helicity-flipping ampli-
tudes is small, we refrain from a description of the (double

suppressed) contribution of a flip in the helicity of both
scattered gluons.
The square of the 2 ! n-scattering amplitude is ap-

proximated by the sum over the square of the basic 2 !
2 current contractions (for each helicity possibility), multi-
plied by one (gauge-invariant) effective vertex for each
additional gluon emission. See Ref. [7] for further details.
Figures 2 and 3 show the results for 3- and 4-jet final

states respectively (for both qg and gg initiated processes)
within the following cuts (identical to the ones used in
Ref. [7]):

pj? > 40 GeV jyjj< 4:5.
We show the differential cross section with respect to �y,
the rapidity difference between the two jets extremal in
rapidity, and �, the angle in the transverse plane between
these outer jets. These are just examples to illustrate the
accuracy obtained in the perturbative approximations.
There is obviously no change compared to Ref. [7] in the
cases of quark-quark-initiated processes, which are just
included here for completeness.
One can see that the effect of multiplying by the adjusted

color factor, Eq. (7), alone (green lines, marked CAM in
Figs. 2 and 3) gives an improvement in all cases. It has a
greater effect in the 4-jet cases compared to 3-jet cases,
which agrees with the interpretation of it as a contribution
from the acceleration of the gluon. One would expect this
to be greater when an extra jet is produced, and we do
indeed see a greater effect. We then see a further, more
modest, improvement when the channels where the helicity
of one of the gluons changes are also incorporated through
Eq. (12). The blue solid line in the plots is the sum total of
improvements, and is obtained within a formalism which,
according to the results of Ref. [7], is sufficiently simple
that all orders in the perturbative series can be summed
directly. We did not go to higher than 4-jet final states here
because of the time it would take for the full matrix
element results. We were not limited by the time for our
formalism; the 4-jet results took about 5 minutes on a
single computer.
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