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The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral

symmetry breaking scale which is about 1 GeV (�� � 1 GeV) or with the scale �QCD � 0:2 GeV that

characterizes the distinction between perturbative and nonperturbative QCD. For quark masses signifi-

cantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-

energy contributions, and relativistic effects are believed to be less important for physical observables. We

explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism,

for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.
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I. INTRODUCTION

A large amount of research work on heavy quark sys-
tems has been done within a Hamiltonian approach con-
taining a static potential interaction. The quark mass is a
parameter to be fitted to experimental data. One refers to
this mass as a model-dependent constituent mass (see, for
example, [1,2]). In different potential models the range of
the c quark mass is 1:30–1:84 GeV while for the b quark is
4:2–5:17 GeV [3,4]. Recent work has made a clear con-
nection between a relativistic Hamiltonian and the QCD
Lagrangian. However, there remains no more than a quali-
tative relation between the various mass definitions within
the currently used approaches ([5–7], and references
therein).

Another approach is through the framework of the so-
called instantaneous Bethe-Salpeter model. In this case the
instantaneous Bethe-Salpeter equation (BSE) kernel and
the use of constituent mass quark propagators allow ex-
plicit integration over time in the rest frame of the mesons.
Such a model can give pseudoscalar and vector quarkonia
meson spectra and decay constants in reasonable agree-
ment to experimental data; however the number of parame-
ters is considerably greater than the present approach. The
lack of retardation effects is also a drawback. As you go to
higher radial or angular excited states, though, the masses
and the decay constants are not described in a satisfying
way (see, for example, [8,9], and references therein).

By using the Dyson-Schwinger equation formalism and
a heavy quark limit approach, which essentially begins
with a constituent or pole mass heavy quark propagator,
Kalinovski et al. in a series of works examined heavy quark
meson observables ([10,11], and references therein). For
the light quark propagator, they employed a parametriza-
tion fitted to light quark meson experimental data. The
solution of the BSE is simplified through a parametrization
of the Bethe-Salpeter amplitude (BSA). In that way, the

calculations of other physical observables, like decay con-
stants, form factors, etc. are a relatively easy and straight-
forward task (for more details, see [12,13]).
Heavy quark effective field theories (HQET) have been

developed by appropriately manipulating QCD Lagrangian
with the ultimate goal of simplifying the description of
nonperturbative physics. We stress that, unlike other effec-
tive theories, the purpose here is to describe heavy quark
hadron observables, thus one can not completely remove
the heavy quark degree of freedom. One can integrate out
degrees of freedom that describe fluctuations around the
mass shell. HQETs are also used in lattice QCD. In gen-
eral, masses, decay constants, form factors, and other
physical quantities for mesons and baryons with heavy
quarks are described with reasonable agreement to experi-
mental data. For more details and a pedagogical introduc-
tion in the HQETs, see for example [14,15] and for more
applications, see [16–18], and references therein. A de-
tailed overview of the present state of experimental and
theoretical studies of quarkonia can be found in Ref. [19].
Wewill examine the constituent mass concept within the

nonperturbative framework of Dyson-Schwinger equa-
tions, using a previously developed effective interaction.

II. DEFINITIONS OF A HEAVY QUARK MASS

In the case of quarkonia (heavy-heavy quark) Q �Q me-
sons, the heavy quarks with mass mQ have an effective

coupling that is small; the strong interactions at the
Compton scale, �Q � 1=mQ, can be treated perturbatively.

In this case the situation is quite simple, symmetric, and
much like the positronium system. For the light-heavy
mesons, the situation is not that simple since the heavy
quark is essentially in a strongly interacting medium of
light quarks, antiquarks, and gluons. The size of such
mesons is typically 1 fm (� 1=�QCD) and the momentum

exchange between the heavy quark and light quark is of the
order of �QCD. In order to couple to the heavy quark, one

has to use a hard (short distance) probe, but the gluons*nsouchlas@bnl.gov
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exchanged between light and heavy degrees of freedom are
soft. Therefore, the light quarks largely are insensitive to
the flavor and the spin orientation of the heavy quark; they
only feel its color field. Effective heavy quark field theories
and techniques have been developed to emphasize these
aspects [20,21].

An issue that has central significance for studies of
heavy quark systems is the definition of the mass of a
heavy quark. Since isolated quarks are never found, one
has to introduce a specific mass definition for each differ-
ent framework. The pole mass is the one we are going to

use for our studies but there are others like the MS mass,
the Georgi-Politzer mass, the potential model mass, and
the heavy quark effective field theory (HQET) mass [22–
24]. The idea behind the estimation of a heavy quark pole
mass, which is infrared finite and independent on the
renormalization scheme, is that, since the running coupling
is small at this scale, one can use perturbative QCD to
calculate the quark propagator. Therefore the pole mass is a
perturbative quantity. Since the quarks are confined, the
exact propagator can not have a true mass pole and that fact
by itself reveals the importance of nonperturbative infrared
effects in the mass function of the quark. Confinement also
creates ambiguity for a nonperturbative definition of a
quark pole mass. The light-heavy quark meson has a pole
mass that is a physical quantity which can, in principle, be
used to extract the heavy quark pole mass by subtracting
the binding energy which must be of the order of �QCD.

But the definition of a binding energy for absolutely con-
fined particles is itself ambiguous. Any so-determined
heavy quark pole mass will have then an uncertainty in
the order of �QCD. The use of the heavy quark pole mass

concept for the studies of heavy quark systems is limited
[25–27].

The concept of a constituent mass means a constant
mass, independent of momenta and used within a calcu-
lation of a hadron and its properties. In our case we will
compare results from such an assumption with results from
the dressed quarks of our model.

III. EQUATIONS OF STUDIES: GAP AND BSE

As a basis of our studies, we are going to use two
equations. These are the equation for the quark propagator
(gap equation) and the BSE for quarks bound states. In
Euclidean metric [28] gap equation is

SðpÞ�1 ¼ Z2ðip6 þmbmÞ

þ Z1

Z �

q
g2D��ðkÞ��

�i

2
SðqÞ�i

�ðp; qÞ; (1)

where D��ðkÞ is the renormalized dressed gluon propaga-

tor and �i
�ðp; qÞ is the renormalized dressed quark-gluon

vertex. Z1, Z2 are the gluon and quark propagator renor-
malization constants correspondingly, � is the regulariza-
tion mass scale, and finally mbm is the bare quark mass.

The homogeneous BSE for the bound state of quarks has
the form:

½�ab
M ðp; PÞ�tu ¼

Z � d4~q

ð4�Þ4 K
rs
tuðp; ~q; PÞ½Sað~qþ �PÞ

� �ab
M ð~q; PÞSbð~q� ��PÞ�sr: (2)

�ab
M ðp; PÞ is the meson amplitude (BSA) with a and b the

quark flavors, P is the total momentum, � ( ��) in the
propagators argument is the momentum partitioning pa-
rameter for the quark (antiquark) with �þ �� ¼ 1, � 2
½0; 1� while M signifies the type of the meson: scalar,
pseudoscalar, vector, or axial vector. The indices r, s, t,
and u are for the combined color and Dirac matrix indices;
Krs

tuðp; ~q; PÞ is the unknown renormalized amputated irre-
ducible quark-antiquark scattering kernel.
For the psudoscalar mesons, the most general form of

the BSA has four invariants, while for the vector mesons
has eight (see, for example, [29,30]). The invariant ampli-
tudes are Lorentz scalar functions of q2, P2, q � P, and the
very important for our studies, momentum partitioning
parameter �. The parameter for qQ mesons is chosen so
that propagator singularities are outside the BSE integra-
tion domain. A four Chebychev polynomial expansion is
used for each invariant.
The normalization condition for the bound state of two

quarks of flavor a and b is

1 ¼ @

@P2

�Z �

q
TrCD½ ��ab

M ðq;�KÞSaðqþÞ�ab
M ðq; KÞSbðq�Þ�

þ
Z �

q

Z �

k
½½ ��ba

M ðk; KÞ�utKrs
tuðk; q; PÞ

� ½�ab
M ðq;KÞ�sr�

���������K2¼P2¼�m2
; (3)

where �ab
M ðq; KÞ ¼ SaðqþÞ�ab

M ðq; KÞSbðq�Þ is the meson
wave function with qþ :¼ qþ �P, q� :¼ q� ��P the

quark momenta, ��ab
M ðq; KÞ ¼ ½C�1�ab

M ð�q; KÞC�t is the
antimeson BSA in which C ¼ �2�4 is the charge conju-
gation matrix, and At denotes the transpose of the matrix A.
The definition of the electroweak decay constant fH of a

charged pseudoscalar meson is the following [31]:

h0j �qb���5q
ajHabðPÞi ¼ ifPSH P�; (4)

where jHabðPÞ> is the meson state with total momentum
P�. The meson state is normalized according to relation

(3), and additionally the phase has been chosen in such a
way that the decay constant is real and positive. Working
out the details in the definition Eq. (4), we end up with the
following expression for the pseudoscalars decay constant
expressed in terms of the meson normalized BSA and
quark propagators:
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fPSH ¼ Z2NC

P2
�

�Z � d4q

ð2�Þ4 P�

� TrD½�ab
M ðq; PÞSbðq�Þ���5S

dðqþÞ�
�
; (5)

where P2 ¼ �m2
H and NC ¼ 3 is the number of colors,

from the trace over the color indexes. Z2, the quark propa-
gator renormalization constant, is quark mass independed,
and numerically it was found that Z2 ¼ 0:970 for all quark
masses up to about 4 GeV, with a variation only in the
fourth decimal point. A similar expression can be obtained
for vector mesons.

IV. RAINBOW-LADDER TRUNCATION, MARIS-
TANDY (MT) EFFECTIVE KERNEL, AND HEAVY

QUARK MESONS

With the Rainbow-Ladder truncation, we can isolate the
equations of interest from the rest of the system of infinite
coupled nonlinear integral equations of QCD. In rainbow
truncation for the gap equation, we set

Z1g
2D��ðqÞ�i

�ðp; qÞ ! 4��ðq2ÞDfree
�� ðqÞ��

�i

2
; (6)

where Dfree
�� ðqÞ is the free gluon propagator and �ðq2Þ is an

effective running coupling. The ladder truncation for the
BSE consists of replacing the Kernel K with

½Kðp; q; PÞ�rstu ! �4��ðq2ÞDfree
�� ðqÞ

�
�i

2
��

�
ru

�
�
�i

2
��

�
ts
: (7)

For the running coupling �ðk2Þ, we are going to use the
so-called MT model [31] that has the form

4��ðk2Þ
k2

¼ ð2�Þ2k2D
!6

e�ðk2=!2Þ þ 2ð2�Þ2�mFðk2Þ
ln½	þ ð1þ k2

�2
QCD

Þ2� :

(8)

For our calculations, we choose ! ¼ 0:4 GeV, D ¼
0:93 GeV2, and mt ¼ 0:5 GeV and the u=d- and
s-current quark masses at the renormalization scale � ¼
19 GeV fitted to the masses of pion and kaon are
mu=dð19 GeVÞ ¼ 0:00374 GeV and msð19 GeVÞ ¼
0:083 GeV.

The MT model was developed within the Dyson-
Schwinger equations approach and the rainbow-ladder
truncation to study the physics of dynamical chiral sym-
metry breaking and related phenomena, like the spectrum
of light quark mesons e.g. pions, kaons, and light vector
mesons [30–32]. Studies of other physical observables like
form factors, charge radii, and hadronic decays, of light
mesons can be found in [30,33–42]. All estimations appear
to be in very good agreement with experimental data. The
QCD mechanisms responsible for the agreement are not so

obvious. A more detailed and deeper understanding of
QCD dynamics responsible for the light quark results is
required.
An extension to heavy quark meson properties can in-

form us on the physical content. Early applications could
be extended, at most, to charmonium, due to numerical
problems in the heavy quark gap equation [36,43–46].
Singularities that are near to, but not within, the domain
of integration require careful numerical work, which has
only been achieved recently [47–49]. The model gave us
masses and decay constants that are in surprisingly good
agreement with experimental data. The unequal heavy
quark meson studies (i.e. theD, Bmesons) reveal the limits
of the model (see [46] for more details). Finally, it will be
interesting to explore the effectiveness of a constituent
mass approximation for the heavy quark propagators, es-
pecially for the meson masses and electroweak decay
constants.

V. MESON’S AMPLITUDE AND MASSES WITHIN
A CONSTITUENT MASS DYNAMICS

The solution of the gap Eq. (1) has the general form

SðpÞ ¼ 1

Aðp2Þ
1

ðip6 þMðp2ÞÞ ¼ �ip6 
vðp2Þ þ 
sðp2Þ;
(9)

where the amplitudes 
s and 
v are


sðp2Þ ¼ 1

Aðp2Þ
Mðp2Þ

p2 þM2ðp2Þ ðaÞ;


vðp2Þ ¼ 1

Aðp2Þ
1

p2 þM2ðp2Þ ðbÞ:
(10)

For the solution of the BSE, propagator amplitudes mo-
mentum p2 is in general a complex number and varies
within a parabolic region in the complex plane determined
by the total momentum P and the partitioning parameter �.
Avery small region, near the peak, is of special importance
due to the weight provided by the infrared part of the
effective kernel in the BSE. The mass amplitude also varies
slowly in that small region. The peak point, on mass shell,
is at q2þ ��ð�MmesonÞ2 withMmeson the meson mass. One
may approximate the quark mass amplitude in the whole
parabolic region, and for the mass-shell solution of the
BSE, with the ‘‘representative’’ value of the mass ampli-
tude at the peak. We call that point ’’mass-shell’’ point.
In the constituent mass approximation, the heavy (c or

b) quark propagator simplifies to

SðpÞ�1 � ip6 þMc; (11)

where Mc is the constituent mass. The propagator ampli-
tudes then reduce to the following expressions:


sðp2Þ � Mc

ðp2 þM2
cÞ
; 
vðp2Þ � 1

ðp2 þM2
cÞ
: (12)
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In essence we have more than one approximations involved
in order to get the above expressions from the complete
propagator. One is the constituent or pole mass approxi-
mation in the real part of the mass function
[RealðMðp2ÞÞ �Mc] and at the same time we ignore the
imaginary part of this function [ImðMðp2ÞÞ � 0] which
becomes more important at the peak of the parabolic
region. So the complex quark mass function is replaced
by a real constant and geometrically that means we replace
the surface of the real part of the mass amplitude by a flat
surface in the complex plane. Unlike the ambiguous and
problematic physical definition of the approximation, a
simple and precise mathematical description is possible
by just referring to as a constant quark mass function
approximation. The other approximation regards ampli-
tude Að¼ 1=ZÞ where we set RealðAðp2ÞÞ � 1, and
ImðAðp2ÞÞ � 0. By plotting that function for the c quark
propagator [46], one can see that it is generally over one in
the area near the peak of the parabolic region (mass-shell
point) and again the imaginary part of this amplitude is
quite important over there. The significance and the differ-
ent role of the imaginary parts of these two functions
(M;A) in the solution of the BSE and the sensitivity of
physical observables for the light-heavy and heavy-heavy
quark systems has been studied in detail [46].

A plot used for justifying a constituent mass approxi-
mation for the heavy quarks is the one in Fig. 1. From this
plot, one can readily see that there are very strong infrared
dressing effects for chiral quarks and the u=d and s quark
making them much heavier in the infrared region. The
dressing is relatively smaller for the much heavier c and
b quarks, and their mass functions are almost flat lines;
therefore, one can assume they can be well approximated
by a constant. We should notice though that the plot is in
logarithmic scale (both axes). The behavior of the mass
amplitude and propagator amplitude Aðp2Þ (real and imagi-
nary parts) for the timelike or complex p2, can be impor-
tant influences upon the existence of a solution of the BSE.

The fitted constituent mass for the c quark was found to
be Mc

c � 2:0 GeV and for the b quark Mb
c � 5:3 GeV. For

the light quarks, we use, for reasons of convenience, a three
complex conjugate pole representation (3ccp) [Eq. (13)]
that has been previously used [50] and studied in detail
[46,51]:

SðqÞ ¼ X3
k¼1

�
zk

iq6 þmk

þ z�k
iq6 þm�

k

�
: (13)

mk, zk are complex parameters fitted to the propagator
dynamical solution on the real axis. Besides the nonper-
turbative effects absorbed in the values of the constituent
mass parameters, some error, because of the use of the light
quark 3ccp representation, may be present, but considering
the results of a previous analysis [46], we can safely
assume that it is relatively very small (in the second
decimal point in the fitted constituent masses) and hence
insignificant for the purpose of the present studies. The
results of studies where we actually solve the gap equation
for the light quark propagator in the parabolic region (in
the complex plane) needed for the solution of the BSE
verify the last statement.
By varying parameter �, we can change the parabolic

domain of the quark propagator sampled during the solu-
tion of the BSE. In that way we can move closer or further
away from the propagator singularities and determine any
influence in the calculated observables. The exact location
and the type of the singularities are not known for the
dynamical propagator. The knowledge of the exact location
of the lowest pair of poles in the light quark propagator
3ccp representation makes it easier to determine the range
of allowable values of �, so that these poles and the
constituent mass pole of the heavy quark propagator are
always outside of their integration domain. In earlier stud-
ies [31,38], it was found that if you do not have the
complete Dirac structure for the meson amplitude (BSA)
and/or if more Chebychev polynomials in the invariants’
angle expansion are required for convergence, then the
calculated observables will show a dependence on the
value of �. Therefore, the variation of � can also serve
as an indirect check for the convergence of the Chebychev
polynomial expansion. In addition, we can check for any
systematic uncertainties introduced by the light quark
propagator 3ccp representations. For all these reasons,
the calculations were repeated for two or three different
values of � in the allowable range, even for equal quark
mesons.
A direct comparison of the quark propagator amplitudes

from the constituent mass approximation and the gap
solution, in the real axis only is shown in Figs. 2 and 3.
One can notice the stronger behavior of 
s over that of 
v

near the mass-shell position because of the presence of the
quark mass function in the numerator of 
s. Far from the
singularities, a better agreement is possible. As the current
quark mass increases, there is comparatively less dressing,
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FIG. 1 (color online). Quark mass functions in the real space-
like axis, for the chiral limit, u=d, s, c, and b quarks. Current
quark masses are at � ¼ 19 GeV.
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and the lower singularities of the propagator will be closer
to the dominant region of the complex domain needed for
the meson bound state calculations. That is q2þ � ð�PÞ2 �
�RefM2½ð�PÞ2�g � �m2

qð�Þ where P2 ¼ �ðMmesonÞ2 and
Mmeson � 2mq. The first pair of poles of the 3ccp repre-

sentation for the b quark produce the real part of the pole
location on q2þ plane to be at m2

r �m2
i ¼ 27:977 GeV2

which is very close to the pole location of the constituent
mass approximation ðMc

bÞ2 ¼ 28:09 GeV2. This is also

very close to the real part of the quark mass function
near the peak of the mass-shell parabolic region. We should
notice here that for the heavy quarks studies we use the
fitted current masses mcð19 GeVÞ ¼ 0:88 GeV, and
mbð19 GeVÞ ¼ 3:8 GeV from [43].

The results for the c and b quark mesons masses are
presented in Table I (see also [49]).

All calculated masses appear to be in excellent agree-
ment with experiment with a deviation of no more than
3.1%. Variation of parameter �within the allowable region

revealed that overall for pseudoscalar mesons a third deci-
mal point (or more) in the masses can be trusted, while for
the vector mesons, since the amplitude has eight invariants,
there was a weak variation in the masses, usually less than
1% of the mass. This might be due to the influence of the
singularities (BSA amplitude is now more sensitive and we
also have to move closer to the singularities) and/or due to
nonconvergence of the Chebychev polynomial expansion.
The influence of these two can be distinguished only if we
repeat the calculations with more polynomials in the ex-
pansion or use no expansion at all. Notice also that
although the singularities are always outside of the inte-
gration domain, it is not possible to determine beforehand
how far we need to be to reach a bound state solution. The
influence of the constituent mass pole and the complex
conjugate mass poles of the light quark representation is
also different. For the present purposes, the achieved agree-
ment between calculated and experimental D and Bmeson
masses, for the estimation of the constituent c and b quark
masses, and the accuracy in the rest of the calculated
meson masses is deemed adequate to safely draw the
desired conclusions.
The reason for this successful description of the heavy

quark meson masses is due to the behavior of the mass
function near the constituent mass shell point (peak of the
parabolic region) and the infrared weight provided by the
MT effective kernel. We next examine the deviation of the
calculated BSA. For the quarkonia, we do this by compar-
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FIG. 2 (color online). c quark propagator amplitudes on the
real axis and near the mass-shell point in the timelike region,
from the constituent mass approximation (Mc

c ¼ 2:0 GeV),
noted as 1rp, compared to the DSE solution.

TABLE I. qQ and QQ pseudoscalar and vector meson masses
using constituent mass approximations (noted as 1rp) for the c, b
quark propagators. The pseudoscalar mesons DðucÞ and BðubÞ
experimental masses were used to determine the values of the
constituent c and b quark mass parameters. The last column has
the percentage differences between experimental and calculated
hadron masses �m=mexp ¼ ðm1rp �mexpÞ=mexp. No experimen-
tal data are available for the B�

cðcbÞ vector meson mass. The
absolute relative percentage difference is from 0.13%–3.26% and
no increasing difference between experimental and calculated
masses with increasing quark mass is observed . Experimental
data are from [52] and �b mass from [53].

Meson Exp. (GeV) 1rp (GeV) �m=mexp%

DðucÞ 1.864 1.852 �0:6
D�ðucÞ 2.007 2.04 þ1:6
DsðscÞ 1.969 1.975 þ0:3
D�

sðscÞ 2.112 2.17 þ2:8
BðubÞ 5.279 5.254 �0:5
B�ðubÞ 5.325 5.32 �0:1
BsðsbÞ 5.370 5.38 þ0:2
B�
sðsbÞ 5.413 5.42 þ0:1

�cðc �cÞ 2.980 3.025 þ1:5
J=c ðc �cÞ 3.097 3.192 þ3:1
BcðcbÞ 6.286 6.36 þ1:2
B�
cðcbÞ 6.440

�bðb �bÞ 9.389 9.603 þ2:3
�ðb �bÞ 9.460 9.645 þ2:0
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FIG. 3 (color online). b quark propagator amplitudes on the
real axis and near the mass-shell point in the timelike region,
from the constituent mass approximation (Mb

c ¼ 5:3 GeV),
noted as 1rp, compared to the DSE solution.
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ing the Chebychev moments of the amplitudes. In addition,
we include results from using a three complex conjugate
pole mass representation for the heavy quarks.

Figures 4 and 5 display the first Chebychev moment of
the dominant invariant of the amplitude of the pseudoscalar
quarkonia �c, �b. The effect of the constituent mass
approximation for the heavy quark propagator is a faster
fall off of the moments with momentum i.e. a larger meson
in coordinate space. To see whether the difference in
relative momentum dependence might be due to the differ-
ent mass-shell locations, we calculate the amplitude rela-
tive momentum dependence of the 3ccp and constituent
mass [one real pole(1rp)] approximation evaluated at the
mass shell of the full dynamical solution [solution in the
complex plane with the gluon momentum k as integration

variable (kcp)]. We found there is no significant change
and we can safely conclude that the amplitude differences
are a true consequence of the different dynamics of the
propagator approximations. The same pattern appears to
hold true for the vector quarkonia. Heavy quark dressing
effects appear to strengthen the binding of the quarks. For
the qQ systems, a similar analysis is not possible since a
meson mass-shell solution is not attained with the dynami-
cal heavy quark propagator.

VI. CONSTITUENT MASS DYNAMICS EFFECTS
ONMESONELECTROWEAKDECAYCONSTANTS

Using the constituent mass approximation, we calculate
the mesons electroweak decay constants. Table II contains
these results (see also [49]).
Unfortunately, there are not many experimental data for

the electroweak decay constants of qQ vector mesons, but
the available data for the other mesons are enough to get a
clear picture of the pattern in the calculated decays. Overall
it appears that the calculated decay constants are much
smaller than the experimental data and the situation is
rapidly deteriorating as we go to heavier quark systems.
The relative difference for the�ðb �bÞmeson is�70:0%, so
it appears that, even for the relatively simpler quarkonia
systems, the agreement is poor. Intuitively, one would
expect that the constituent mass approximation will get
better for heavier quarks but the results for the electroweak
decay constants indicate the opposite. To help understand
how this comes about, we will use meson amplitudes
obtained from constituent mass approximations and the
dynamical propagator. Since we have no dynamical solu-
tion (kcp) for the qQ meson systems, we will use the 3ccp
model for the heavy quarks in the N (normalization), f
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FIG. 5 (color online). First Chebychev moment of the domi-
nant invariant amplitude of the b �b pseudoscalar meson by using
the DSE dynamical solution (kcp), the 3ccp propagator repre-
sentation, and the constituent mass approximation (1rp). In the
parenthesis for each line we include the meson total momentum
squared.
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FIG. 4 (color online). First Chebychev moment of the domi-
nant invariant amplitude of the c �c pseudoscalar meson by using
the DSE dynamical solution (kcp), the 3ccp propagator repre-
sentation, and the constituent mass approximation (1rp). In the
parenthesis for each line we indicate the meson total momentum
squared.

TABLE II. qQ and QQ pseudoscalar and vector meson elec-
troweak decay constants using constituent mass approximation
for the c, b propagators. The last column has the percentage
differences between experimental and calculated hadron decays
�f=fexp ¼ ðf1rp � fexpÞ=fexp. Experimental data are from [52].

Meson Exp. (GeV) 1rp (GeV) �f=fexp%

DðucÞ 0.223 0.154 �31:1
D�ðucÞ 0.164

DsðscÞ 0.294 0.197 �33:0
D�

sðscÞ 0.180

BðubÞ 0.176 0.105 �40:3
B�ðubÞ 0.182

BsðsbÞ 0.144

B�
sðsbÞ 0.20

�cðc �cÞ 0.340 0.239 �29:7
J=c ðc �cÞ 0.416 0.198 �52:4
BcðcbÞ 0.210

B�
cðcbÞ 0.18

�bðb �bÞ 0.244

�ðb �bÞ 0.700 0.21 �70:0
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(decay constant) loop integrals to contrast with the con-
stituent mass approximation. For the quarkonia states, the
results are in Table III.

The second column of Table III uses the constituent
mass bound state amplitudes. We see that the decay con-
stant differs by 0.088 GeV if the N, f integrals are com-
puted using the dynamical (kcp) quark propagator. The
corresponding difference for the full dynamical bound
state (kcp) is 0.065 GeV. These differences are very close
and reveal the effect of the different dynamics of the
propagators in the decay constant value. On the other
hand, the difference of the decays in the third row
(0.322 GeV and 0.239 GeV) is 0.083 GeV and for the
ones in the last row (0.327 GeV and 0.387 GeV) is
0.06 GeV. This shows the influence of the dressed bound
state amplitudes on the decay constant. It appears that both
1rp propagators and 1rp BSA are about equally account-
able for the very small value of the �c decay constant.
Also, we see that the 3ccp representation of propagators
captures the full dynamical solution very well. For the
corresponding vector meson, we reach the same conclu-
sion, only now the differences (about 0.11 GeV) resulting
from the 1rp BSA or 1rp c propagator are larger than
before.

For the b quarkonia, we see, in general, a deteriorating
situation. For the pseudoscalar meson, we have for both
cases a 0.201 GeV difference due to the dynamics of the
constituent mass b propagator (more than twice the differ-
ence in the pseudoscalar c quarkonium), and for the dif-
ferences due to the constituent mass BSA we have
0.248 GeV and 0.248 GeV, so it appears now that the 1rp
BSA is slightly more responsible for the very small decay.
For the vector meson, we have 0.240 GeV, 0.258 GeV,

0.215 GeV, and 0.233 GeV for the corresponding cases.
Therefore, we see there is a more balanced contribution
form the 1rp propagator and BSA in the difference of the
decay. The 3ccp model lacks the success it had in the
calculation of the c quarkonia.
Overall we can conclude that the constituent quark mass

approximation will give us smaller decay constants than
the complete solution and the difference will increase as
we go to heavier quarks. We found that the quark dressing
indirectly through the BSA and directly in the N, f loop
integrals, will have about the same responsibility for get-
ting so small decay constants. It is very easy to understand
the reason for the influence the constituent propagator has
directly in these two integrals if we just notice that the total
momentum derivative in the N integral in this case will act
only in the momentum q2�, since it is the only P dependent
quantity. With the full propagator though, we will get eight
additional terms from the action of the operator inM and A
amplitudes (they have real and imaginary parts). So at the
end not only will augment the influence of the mass
amplitude in the normalization integral by increasing the
power of the denominator of the propagator amplitudes
when it acts in the momenta q2� , but we will also have
additional terms when it acts directly on the two functions
(notice one of these terms will be M � @PM). All of these
additional contributions from the extra terms are lost in the
constituent mass approximation, making the decay con-
stants very sensitive observables on quarks dressing.
For the light-heavy systems, the use of the heavy 3ccp

model in the place of the 1rp propagator when calculating
N, f gave us the results in Table IV. For reasons of
completeness and comparison, we include the 3ccp decay
constant results for quarkonia.
Before we start analyzing and discussing the data of the

table, we can infer something about the approximation
without inspecting the data. We found that the Dyson-TABLE III. �cðc �cÞ, �bðb �bÞ pseudoscalar, J=c ðc �cÞ, �ðb �bÞ

vector meson decay constants by using a BSAð�Þ calculated
with constituent mass approximation (1rp), representation (3ccp)
or dynamical (kcp) c, �c and b, �b quark propagators and using
1rp, 3ccp, or kcp propagators in the calculations for N and f
integrals for each case, indicated in the first column of the table.
The index in � signifies the type of quark propagator used for the
calculation of the meson amplitude. Here, � ¼ 0:50 but calcu-
lations were also done for � ¼ 0:45, 0.55. All calculated decay
constants are in GeV.

c, �c fexp�c
¼ 0:340 GeV fexpJ=c ¼ 0:416 GeV

N, f integ. �1rp �3ccp �kcp �1rp �3ccp �kcp

1rp, 1rp 0.239 0.319 0.322 0.198 0.296 0.308

3ccp, 3ccp 0.326 0.362 0.372 0.330 0.340 0.368

kcp, kcp 0.327 0.378 0.387 0.308 0.382 0.415

b, �b f
exp
�b

¼ ? f
exp
� ¼ 0:700 GeV

N, f integ. �1rp �3ccp �kcp �1rp �3ccp �kcp

1rp, 1rp 0.243 0.398 0.491 0.209 0.342 0.449

3ccp, 3ccp 0.414 0.547 0.647 0.381 0.515 0.628

kcp, kcp 0.444 0.571 0.692 0.424 0.535 0.682

TABLE IV. Pseudoscalar and vector mesons decay constants
with constituent mass approximation for the c or b quark
propagators in the BSE and 1rp or 3ccp in f and N integrals.
Experimental data are from [52].

Meson Exp. (GeV) f1rp (GeV) f3ccp (GeV)

DðucÞ 0.222 0.154 0:255� 0:010
D�ðucÞ 0.164 0:288� 0:030
DsðscÞ 0.294 0.197 0:255� 0:005
D�

sðscÞ 0.180 0:326� 0:040
BðubÞ 0.176 0.105 0:193� 0:005
B�ðubÞ 0.182 0:549� 0:083
BsðsbÞ 0.144 0:212� 0:002
B�
sðsbÞ 0.20 0:425� 0:041

�cðc �cÞ 0.340 0.239 0.326

J=c ðc �cÞ 0.416 0.198 0.330

BcðcbÞÞ 0.210 0:324� 0:004
B�
cðcbÞÞ 0.18 0:328� 0:008

�bðb �bÞ 0.244 0.414

�ðb �bÞ 0.700 0.210 0.381
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Schwinger equations (DSE) solution for the heavy quark
propagator failed to generate a bound state for the qQ
mesons, but with the constituent mass approximation we
did reach a physical state. Thus the constituent mass ap-
proximation does not reproduce the dynamics of the DSE
dynamical propagator obtained with the effective MT in-
teraction. This indicates that the dynamical propagator is
deficient for heavy quarks because it departs from a con-
stituent mass supporting behavior. On the other hand
quarks are only found inside hadrons and cannot propagate
macroscopically far from a hadron. Hence quarks cannot
truly have a real pole mass. The fact that we obtain qQ
bound states using a constituent mass approximation for
the heavy quark, but not using a MT dynamical heavy
quark propagator indicates that both are not very good
representations of nature. It does not indicate that a con-
stituent heavy quark mass approximation is generally bet-
ter. It also indicates that the MT dynamical model has
inadequacies that are minor for quarkonia but more serious
for qQ mesons. From the data in Table IV we see that by
use of the 3ccp representation for the heavy quark propa-
gator gives us, decay constants that are much larger than
the ones we havewith the constituent mass propagator. The
calculations for different values of � revealed a small
dependence of the decay constants on that parameter, and
for that we can blame the proximity of the singularities of
the propagator. Nevertheless the decay constants now are
closer to experiment, therefore the constituent mass qQ
meson amplitudes (unlike the QQ ones) are of reasonable
accuracy for their decay estimations. The explanation for
this is rather simple. For QQ systems, we have essentially
two propagators approximated by constituent-like ones
while for the qQ mesons there is only one approximate
propagator. The same reasoning can be applied for the
calculations of the N, f loop integrals.

The variation of amplitudes M and A of the propagator
along the real and imaginary p2 axes near the mass-shell
point are influenced, to a different degree as the quark mass
increases, by the infrared behavior (infrared dressing ef-
fects) of the MT kernel. The derivatives of these functions
will appear in the normalization integral and the latter is a
more sensitive probe for a larger area in the mass-shell
parabolic region in the complex plane. An approximation
that was good for the meson mass is not necessarily good
for a decay constant. The same is true for the approxima-
tions to the bound state amplitudes. The decay constant
integrals show a sensitivity to self-energy corrections to the
pole propagator and through them reveal their sensitivity to
the MT model in the infrared region.

VII. THE EXTREME HEAVY QUARK LIMIT.

There are relations [12] for the masses and decay con-
stants of heavy quark mesons that have been extracted by
using the heavy quark limit behavior of the propagator and
a dimensional analysis of the involved equations. The

approximation for the behavior of the propagator is based
on the fundamental assumption that all the meson momen-
tum is carried by the heavy quark alone. In this case the
momentum of the quark will be

P� ¼ MHv� ¼ ðmQ þ EHÞv�; (14)

where P� is the total momentum of the meson of massMH

with a heavy quark of mass mQ, and energy EH. Then the

heavy quark propagator can be written as [12]

SQðqþ PÞ ¼ 1

2

�iv6 þ 1

q:v� EH

þO
� jqj
mQ

;
EH

mQ

�
; (15)

where q is the relative quark momentum and the dimen-
sionless velocity satisfies v2 ¼ �1. This approximation is
considered to work satisfactorily well for qQmesons as far
as the binding energy of the system and the momentum
scale, defined as the width of the meson BSA, are much
smaller than the heavy quark mass. The width (hqi) of the
BSA gives a measure of how fast the amplitude decreases
with momentum and a typical definition, is the momentum
where the amplitude falls in half of its value at the origin.
The definition of a binding energy as we explained is
ambiguous. We know that the difference between the
meson mass and the heavy quark mass will be roughly of
the order of �QCD � 0:2 GeV, and we assume this to be

also the order of the binding energy. Therefore, since a
typical constituent mass for the c quark was found to be
about 1.3 GeV and for the b about 4.6 GeV, this was
considered a reasonable approximation (see, for example,
[11,12]). The consequences of the other approximation are
more complicated ones and essentially require the before-
hand knowledge of the behavior of the complete solution
of the BSE. In the studies for the qQ systems using a pole
mass heavy quark propagator, it was found that the
Chebychev moment of the dominant invariant amplitude
does not decrease faster with the momentum as the Q
quark mass increases but the quality of the result is un-
known, hence the reliability of the approximation as well.
At the end it was found that in this case the decay constant
of the light-heavy mesons should behave like [12]

fH � 1=
ffiffiffiffiffiffiffiffi
MH

p
; 1=m̂Q � 0: (16)

Using the same analysis it was found for the so-called in-
hadron quark condensate:

� hq �qiH� ¼ constþOð1=MHÞ; if 1=MH � 0; (17)

and use of these in the pseudoscalar mass formula gives

MH � m̂Q; if 1=m̂Q � 0; (18)

where m̂Q is the renormalization-group-invariant current

quark mass for the heavy quark. This last result is some-
thing one should intuitively expect, as well as the fact that
the mass difference between pseudoscalar and vector me-
sons should get smaller as m̂Q ! þ1, and they have been
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both numerically confirmed. Our studies of qQ mesons
using a constituent mass approximation for the heavy
quark propagator indicate the electroweak decay constants
in the range of current mass up to the b quark (3.8 GeV) do
not follow that behavior. Our calculated electroweak decay
constants using a constituent mass approximation are much
smaller than the experiment and probably not reliable
conclusion can be drawn.

Going back to the initial step of the analysis for the light-
heavy quark mesons, it was assumed that all the meson
momentum is carried by the heavy quark and hence one
can take � ¼ 1. For our analysis, we will try to find an
approximated form by keeping � general. Then, we have
for the denominator of the propagator

D ¼ q2þ þM2ðq2þÞ
¼ ð1� �2ÞM2

H þ 2ði�j~qjvþ EÞMH þ ~q2 þ E2; (19)

where v is now the cosine of the angle between the four
vectors ~q (the quark relative momentum and BSE integra-
tion variable), and the total meson momentum P (with
P2 ¼ �M2

H). We also used the expression MH ¼ MQ þ
Mq � E�MQ � E so MQ ¼ MH þ E, where E is the

binding energy of the system,Mq andMQ are the constitu-

ent masses for the light and heavy quarks correspondingly.
We assume Mq 	 MQ, so the light quark mass can be

ignored, and finally made the approximationMðq2þÞ �MQ

for the whole parabolic BSE integration region. Notice that
the constant coefficient of M2

H is (1� �2) and this term
does not exist if � ¼ 1, dramatically changing the depen-
dence of the denominator onMH. So in this case if wewrite
P ¼ iMHu where u is a unit 4-vector, we get for the
propagator:

SQðqþÞ � ð1þ �u6 ÞMH þ ðE� i~q6 Þ
D

; (20)

and at the end, we can write

SQðqþÞ � 1

MH

ð1þ �u6 Þ
ð1� �2Þ þ 2ði�j~qjvþ EÞ=MH

þO
� j~qj
MH

;
E

MH

�
: (21)

By replacing E ! �EH, u ! �iv, ~q ! q to match the
notation in Ref. [12] and setting MH �MQ, we have

SQðqþÞ � 1

MQ

ð1� i�v6 Þ
ð1� �2Þ þ 2ð�q:v� EHÞ=MQ

þO
� jqj
MQ

;
EH

MQ

�
; (22)

which gives [Eq. (15)] for � ¼ 1
It is clear in this case that the heavy quark limit of the

propagator has an � dependence that significantly modifies

its dependence on the heavy quark mass. On the other
hand, relations in (16)–(18), obtained by dimensional
analysis arguments for � ¼ 1, concern physical observ-
ables, so they should be independent of � [54]. Therefore,
they should not hold true for the general case of (22) since
that will introduce a different dependence on MQ.

In Ref. [43] the calculated masses of q1q2 mesons up to
about 0.8 GeV current quark masses were fit by the form

M2
H ¼ M2

0 þ a1ðm1 þm2Þ þ a2ðm1 þm2Þ2; (23)

where m1, m2 are the current quark masses at � ¼
19 GeV, and the parameters of the relation fitted to the
numerical data for the meson masses are MPS

0 ¼ 0 GeV,
MV

0 ¼ 0:75 GeV, aPS1 ¼ 2:96 GeV, aV1 ¼ 3:24 GeV,
while for both vector and psudoscalar mesons a2 ¼
1:12 GeV. We also notice that as m2 ! þ1, we have
M2

H ! a2ðm2Þ2 (for both vector and pseudoscalar) and
for the quarkonia M2

H ! a2ð2mQÞ2 since m1 ¼ m2 ¼
mQ ! þ1. That relation was actually designed to have

this behavior in the large quark limit. Expression (23) and
the experimental masses of c and b pseudoscalar quarkonia
were used to determine the c and b current quark masses in
our studies.

VIII. CONCLUSIONS

In this work we explored the constituent mass concept
for heavy quarks using a nonperturbative approach. For c �c
and b �b mesons, a constituent mass approximation yields
very good mass results but the electroweak decay constants
are too low by some 30%–70%. Use of dynamically
dressed propagators removes almost all of this deficiency
and the decay constants are within 20% of the experiment.
This improvement provided by dynamical dressing of c
and b quarks is persistent and systematic in the sense that,
when the dressing is progressively introduced into all three
stages (bound state solution, normalization loop integral,
and then the loop integral for evaluation of the decay
constant), the final value always increases towards the
experimental value. This indicates that a constituent mass
approximation, even for b quarks is inadequate. Small
departures from a strictly constant mass function and re-
normalization function Z for quarks in the relevant region
of the complex plane are magnified due to the very weak
binding of the mesons in question. These small deviations
include confinement effects that appear to be, in general,
important even for heavy quarks. The results of the MT
model for heavy quark propagator dressing are not well
reflected by a constituent mass approximation for the
propagator.
However, our findings in the case of heavy-light mesons

indicate that the role of self-energy dressing is a much
more complicated and subtle topic. With fully dressed
quark propagators, our model does not provide a physical
bound state solution for qc, qb, q ¼ u=d, s, or even cb
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mesons. Such physical states are easily obtained with a
constituent mass approximation, but again the indication is
that the decay constants are too low. Therefore, it is evident
that the constituent mass approximation is not reliable even
for b quarks, and that our ladder-rainbow model kernel has
deficiencies in the heavy quarks region that are masked in
QQ mesons but are plainly evident in qQ mesons.
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