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We present factorization theorems for two exclusive heavy-quarkonium production processes: produc-

tion of two quarkonia in eþe� annihilation and production of a quarkonium and a light meson in B-meson

decays. We describe the general proofs of factorization and supplement them with explicit one-loop

analyses, which illustrate some of the features of the soft-gluon cancellations. We find that violations of

factorization are generally suppressed relative to the factorized contributions by a factor v2mc=Q for each

S-wave charmonium and a factor mc=Q for each L-wave charmonium with L > 0. Here, v is the velocity

of the heavy quark or antiquark in the quarkonium rest frame, Q ¼ ffiffiffi
s

p
for eþe� annihilation, Q ¼ mB for

B-meson decays,
ffiffiffi
s

p
is the eþe� center-of-momentum energy, mc is the charm-quark mass, and mB is the

B-meson mass. There are modifications to the suppression factors if quantum-number restrictions apply

for the specific process.
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I. INTRODUCTION

A crucial step in the calculation of the amplitudes for
hard-scattering hadronic processes is the separation of the
effects of the strong interactions into short-distance and
long-distance contributions. The short-distance contribu-
tions are, by virtue of asymptotic freedom in quantum
chromodynamics (QCD), perturbatively calculable, while
the long-distance contributions are parametrized in terms
of inherently nonperturbative quantities. These separations
are usually embodied in factorization theorems for the
processes. In the case of hard-scattering processes that
involve heavy-quarkonium states, it has been proposed
that the effective theory nonrelativistic QCD (NRQCD)
could be used to describe the separation of perturbative
effects that produce a heavy-quark pair from the nonper-
turbative effects that bring about the evolution of the
heavy-quark pair into the quarkonium bound state [1].
Recently, progress has been made in understanding facto-
rization issues in inclusive heavy-quarkonium production
processes [2–5]. However, a proof of factorization to all
orders in QCD perturbation theory is still lacking for
inclusive quarkonium production. In the present paper we
discuss factorization for exclusive quarkonium production.

The exclusive production of double-charmonium states
in eþe� annihilation has provided an important testing
ground in which to compare predictions of theoretical
models of charmonium production with experimental mea-
surements. Measurements of the cross sections for double-

charmonium production by the Belle [6] and BABAR [7]
collaborations have, in several instances, disagreed with
theoretical predictions [8–11] and have led to a re-
examination of the bases for those predictions.
The exclusive decays of B mesons into a light meson

plus a charmonium state are also of interest, partly because
they could provide new constraints on the Cabibbo-
Kobayashi-Maskawa matrix and enhance our understand-
ing of the origins of CP violation. However, the nonper-
turbative effects of the strong interactions are significant in
such processes and must be taken into account in order to
make reliable QCD-based calculations of the process rates.
Factorization theorems for these processes would provide a
first-principles framework within which to take into ac-
count the strong-interaction effects. In the case of exclusive
decays of B mesons into a light meson plus a charmonium
state, several factorization theorems have been proposed
[12–14].
In this paper, we present proofs, valid to all orders in

QCD perturbation theory, of factorization theorems for the
exclusive quarkonium-production processes mentioned
above, giving details of the proofs that were summarized
in Ref. [15]. These are the first proofs of factorization
theorems for quarkonium production. We also present ex-
plicit calculations at one-loop order that illustrate key
features of the general arguments. Although our analyses
are for the specific cases of B decays and eþe� annihila-
tion, the techniques that we describe should apply to other
exclusive quarkonium-production processes, and may also
shed light on factorization in inclusive quarkonium pro-
duction. However, we note that, because we consider ex-*Current address
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clusive two-body quarkonium-production processes, rather
than inclusive quarkonium production, we avoid the issues
raised in Refs. [2,3] concerning light particles that are
comoving with a quarkonium and the issues raised in
Ref. [4,5] concerning the color-transfer-enhancement
mechanism that appears when an additional heavy quark
is comoving with a quarkonium.

In the analysis of Ref. [15], it was assumed that gluons
cannot have transverse momentum components that are
smaller than the QCD scale, �QCD. The possibility that

external on-shell lines can emit gluons of arbitrarily low
energy was discussed in detail in Ref. [16], and it will be
considered here as well. The factorization theorems stated
in Ref. [15] remain unchanged.

In the case of the exclusive production of double-
charmonium states in eþe� annihilation, we will argue
that the production amplitude can be written in the follow-
ing factorized form:

Aðeþe� ! �� ! H1 þH2Þ ¼
X
ij

AijhH1jOij0ihH2jOjj0i:

(1)

The factors hHnjOij0i are NRQCDmatrix elements, which
describe the nonperturbative evolution of the charm-quark
and the charm-antiquark (c �c) pair into a charmonium state
Hn. The sum over the matrix elements is organized as an
expansion in powers of v, the relative velocity between the
c and the �c in the charmonium rest frame. (For charmo-
nium, v2 � 0:3.) The quantity Aij is a short-distance coef-

ficient, which contains the amplitude for an eþe� pair to
annihilate through a virtual photon into two c �c pairs in the
color and angular-momentum states of the NRQCD opera-
tors Oi and Oj.

In the case of eþe� annihilation, we define the hard-
scattering scale Q � ffiffiffi

s
p

to be the center-of-momentum
(CM) energy of the eþe� pair. We will argue that the
factorized form in Eq. (1) holds up to corrections of
relative order f1f2, where fl ¼ v2mc=Q for an S-wave
charmonium Hl, fl ¼ mc=Q for an L-wave charmonium
Hl with L > 0, andmc is the charm-quark mass. As wewill
discuss in detail, these suppression factors are modified if
quantum-number restrictions apply for the specific
process.

In the case of exclusive decays of B mesons into a light
meson plus a charmonium state, we will argue that the
decay amplitude can be written in the following factorized
form1:

AðB!H1 þKÞ ¼X
ife

FB!K
fði;eÞ ðM2

1ÞAiehH1jOij0i

þX
ije

A0
ije ��Kj ��B1hH1jOij0i: (2)

Again, the factors hH1jOij0i are the NRQCD matrix ele-
ments, which describe the nonperturbative evolution of the
c �c pair into a charmonium state H1. The quantities F

B!K
f ,

�Kj, and �B1 are also nonperturbative objects, which we

describe below. The quantities Aie and A0
ije are short-

distance coefficients. They contain the amplitude for the
electroweak vertex to produce a c �c pair in the color and
angular-momentum state of Oi. We approximate the elec-
troweak vertex as a local four-fermion vertex. The sum
over e is over the various operators in the electroweak
effective action. The sum over f is over the allowed form
factors that result from shrinking the hard subdiagram (to
be described later) to a local vertex with respect to the B-
meson-to-light-meson transition process. The symbol �
represents the convolution of a short-distance coefficient
with the light-cone distributions of the light meson and the
B meson.
The first term of Eq. (2) contains a B-meson-to-light-

meson form factor

FB!K
fði;eÞ ðM2

1Þ ¼ hKj ��l�fði;eÞ�bjBi: (3)

Here, B and K denote the B meson and the light meson,
respectively, andM1 is the charmoniummass. The quantity
�fði;eÞ is the product of a Dirac matrix and a color matrix

that arises when one shrinks the hard-scattering subdia-
gram to a point with respect to the B-meson-to-light-meson

transition amplitude. It is understood that the fields ��l and
�b are in a color-singlet state. Following Ref. [12], we
define FB!K

f in the first term in Eq. (2) to be the ‘‘physical’’

meson form factor, which contains both hard and soft
contributions. Then, in the second term in Eq. (2), one
must omit from the short-distance coefficients the hard
contributions that are already contained in the first term
in Eq. (2).
The second term of Eq. (2) involves the light-cone

distribution amplitude(s) of the light meson �Kj, which

are defined by the expression

p�
K

�

Z þ1

�1
dxþ exp½�ið2y� 1Þp�

Kx
þ�

� hKðpKÞj ���ðxþÞP½xþ;�xþ���ð�xþÞj0i
� X

j

�KjðyÞ½�Kj���; (4)

and the light-cone distribution of the B meson �B1, which
is defined by the expression

1The two terms in the factorization formula (2) are analogous
to the two terms in the factorization formula in Eq. (4) of
Ref. [12] for the case of decays into two light mesons.
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pþ
B

2�

Z þ1

�1
dx� exp½i�pþ

B x
��

� h0j ��l�ðx�ÞP½x�; 0��b�ð0ÞjBðpBÞi
� X

m

�Bmð�Þ½�Bm���

� � ifB
4

fðp6 b þmbÞ�5½�B1ð�Þ þ n6 ��B2ð�Þ�g��: (5)

Here, � is the quark field, � and � are Dirac indices, ��
and � in each matrix element are understood to be in a
color-singlet state, and the �Kj and the �Bm are Dirac-

matrix structures for the light meson and the B meson,
respectively.2 We define light-cone variables k ¼
ðkþ; k�; k?Þ in terms of Cartesian components as kþ ¼
ð1= ffiffiffi

2
p Þðk0 þ kzÞ and k� ¼ ð1= ffiffiffi

2
p Þðk0 � kzÞ. In Eq. (5), n�

is the vector n� ¼ ffiffiffi
2

p ð0; 1; 0?Þ, and we have retained only
the leading-twistBmeson light-cone distributions. We take
the spatial components of pK to lie along the minus z
direction, and we take the B meson to be at rest. The
expression ½y; x� in Eqs. (4) and (5) is the exponentiated
line integral of the gauge field:

½y; x� ¼ exp

�Z y

x
igTaA

a
�dx

�

�
: (6)

P indicates path ordering, Ta is a generator of color SU(3),
and Aa

� is the gluon field.

In the case of B-meson decays, we define the hard-
scattering scale Q to be the B-meson mass mB. We will
argue that the factorized form in Eq. (2) holds up to
corrections of relative order f1, where f1 ¼ v2mc=Q for
an S-wave quarkonium H1 and f1 ¼ mc=Q for an L-wave
quarkonium H1 with L > 0.3 As in the eþe�-annihilation
case, these suppression factors are modified if quantum-
number restrictions apply for the specific process. This
result was suggested previously in Ref. [12]. However,
there it was conjectured only that the violations of facto-
rization vanish in the limit mc ! 0.

The remainder of this paper is organized as follows: In
Sec. II, we specify models for the production amplitudes.
In Sec. III, we outline proofs of the factorization for the
processes under consideration. There we describe the mo-
mentum regions that are leading in the hard-scattering
scale, the momentum regions in which loop integrands
become singular, the diagrammatic topologies of the lead-

ing and singular regions, the approximations that are ap-
propriate to contributions involving momenta that are soft
or collinear, the factorization of the soft and collinear
singular regions, the subsequent construction of the factor-
ized form, and the corrections to the factorized form. We
illustrate general features of the factorization proofs with
explicit one-loop examples in Sec. IV. In Sec. IVA, we
describe the implementation of the soft approximation at
the one-loop level. Sections IVB and IVC contain one-
loop examples for eþe� annihilation and B decays, re-
spectively. We summarize and discuss our results in Sec. V.
The Appendix contains the expressions for the quark-
antiquark spin-projection operators that we use in Sec. IV.

II. MODEL FOR THE AMPLITUDE

We carry out our analyses in the rest frame of the B
meson and in the CM frame of the eþe� pair, choosing the
three-momentum of the quarkonium H1 to be in the posi-
tive z direction and choosing the three-momentum of the
light meson K or the quarkoniumH2 to be in the negative z
direction. We take the constituents of each meson and
quarkonium to be on the mass shell. We also assume
that, for each meson and quarkonium, there is an integra-
tion over the relative momentum of the constituents,
weighted by a meson wave function, and subject to the
mass-shell constraints.
We model the B meson as an on-shell ‘‘active’’ bottom

quark, which participates in the electroweak interaction,
and an on-shell ‘‘spectator’’ light antiquark, which does not
participate in the electroweak interaction. We take the
quark and antiquark to be in a color-singlet state. We
take the bottom quark to have momentum pb and mass
mb, with (in Cartesian coordinates)

pb ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b þ q2B

q
; qBÞ � ðmb;�QCDÞ: (7)

We take the spectator antiquark to have momentum pl,
with

pl ¼ ðjqBj;�qBÞ � ð�QCD;�QCDÞ: (8)

The momentum of the Bmeson, pB, is given by the sum of
pb and pl:

pB ¼ pb þ pl ¼ ðmB; 0Þ
¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b þ q2B

q
þ jqBj; 0Þ � ðmb; 0Þ: (9)

Similarly, we model the light meson K as an on-shell
active light quark and an on-shell spectator light antiquark,
with the quark and antiquark in a color-singlet state. We
can write the quark momentum, pkq , and the antiquark

momentum, pk �q
, as

pkq ¼ 1
2pK þ rk; (10a)

pk �q
¼ 1

2pK � rk; (10b)

2For example, for the leading-twist distributions of the pseu-
doscalar meson P, the longitudinally polarized vector meson V,
and the transversely polarized vector meson V?, �Kj is
iðfP=4Þq6 �5, �iðfV=4Þq6 , and �iðfV?=8Þ½6�; q6 �, respectively.
Here, fP, fV , and fV? are the meson decay constants.

3Reference [17] presents an analysis of the process B ! �cJK
in the limit mb ! 1 with mc=mb fixed, where mb is the bottom-
quark mass. The use of the term ‘‘factorization’’ in that paper
has, therefore, a different meaning than in the present paper, in
which we take mc=mb to be a small parameter.
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with pK 	 rk ¼ 0. In the rest frame of the light meson, we
denote the vectors that are associated with the light meson
with a hat. Then, we have

p̂K ¼ ðmK; 0Þ ¼ ð2jr̂kj; 0Þ; (11a)

r̂k ¼ ð0; r̂kÞ; (11b)

p̂kq ¼ ðjr̂kj; r̂kÞ; (11c)

p̂k �q
¼ ðjr̂kj;�r̂kÞ: (11d)

The quantity r̂k is of order �QCD.

The boosts from the light-meson rest frame to the
B-meson rest frame are given, for an arbitrary momentum
k, by

k̂þ ! EK � PCM

mK

k̂þ; (12a)

k̂� ! EK þ PCM

mK

k̂�; (12b)

k̂? ! k̂?: (12c)

Here, PCM is the magnitude of the three-momentum of
either H1 or K in the B-rest frame,

PCM ¼ 	1=2ðs;M2
1; m

2
KÞ

2
ffiffiffi
s

p �mb; (13a)

	ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2ðxyþ yzþ zxÞ; (13b)

EK is the energy of the meson K,

EK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
CM þm2

K

q
�mb: (14)

M1 �mc in Eq. (13a) is the heavy-quarkonium mass,
which we will define in our model below. Therefore, in
the B-meson rest frame we have

pK ¼
�
1ffiffiffi
2

p ½EK � PCM�; 1ffiffiffi
2

p ½EK þ PCM�; 0?
�

�
��2

QCD

mb

;mb; 0?
�
; (15a)

rk ¼
�
r̂zkffiffiffi
2

p EK � PCM

mK

;� r̂zkffiffiffi
2

p EK þ PCM

mK

; r̂k?
�

�
��2

QCD

mb

;mb;�QCD

�
: (15b)

It is now convenient to define a momentum fraction y
and a vector qk that has zero minus component. In terms of
these quantities, the momenta of the quark and the anti-
quark are

pkq ¼ ypK þ qk; (16a)

pk �q
¼ ð1� yÞpK � qk � �ypK � qk: (16b)

y is the fraction of minus component of the momentum of
the meson that is carried by the quark:

y ¼ 1

2
þ r�k

p�
K

: (17)

Hence,

qk ¼
�
1

2
� y

�
pK þ rk

¼
�
2
r̂zkffiffiffi
2

p EK � PCM

mK

; 0; r̂k?
�
�
��2

QCD

mb

; 0;�QCD

�
:

(18)

Finally, we model the charmonium states as an on-shell
charm quark and an on-shell charm antiquark in a color-
singlet state, with the momentum of the charm quark equal
to piq and the momentum of the charm antiquark equal to

pi �q. We take

piq ¼ 1
2Pi þ qi; (19a)

pi �q ¼ 1
2Pi � qi; (19b)

where Pi is the quarkonium momentum and Pi 	 qi ¼ 0. In
the quarkonium rest frame, we denote vectors that are
associated with the quarkonium with a hat. The quantity
q̂i has only spatial components, whose magnitudes are of
order mcv. Hence,

P̂i ¼ ðMi; 0Þ ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ q̂2i

q
; 0Þ; (20a)

q̂i ¼ ð0; q̂iÞ: (20b)

In the case in which the quarkonium i is in a spin-triplet
state, we also define a spin-polarization vector �i. In the
quarkonium i rest frame, �i has spatial components of
order unity and temporal component zero:

�̂ i ¼ ð0; �̂iÞ; (21)

which implies that Pi 	 �i ¼ 0.
The boost from the rest frame of the quarkonium with

momentum P1 to the B-meson rest frame or the eþe� CM
frame is

k̂þ ! E1 þ PCM

M1

k̂þ; (22a)

k̂� ! E1 � PCM

M1

k̂�; (22b)

k̂? ! k̂?: (22c)

The boost from the rest frame of the quarkonium with
momentum P2 to the eþe� CM frame is

k̂þ ! E2 � PCM

M2

k̂þ; (23a)

k̂� ! E2 þ PCM

M2

k̂�; (23b)

k̂? ! k̂?: (23c)

Here,
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Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
CM þM2

i

q
�Q; (24a)

PCM ¼ 	1=2ðs;M2
1;

~M2
2Þ

2
ffiffiffi
s

p �Q; (24b)

Mi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ q̂2i

q
: (24c)

~M2 ¼ M2 in the case of eþe� annihilation into two quar-
konia, and ~M2 ¼ mK in the case of B-meson decays. It then
follows that, in the eþe� CM frame or the B-meson rest
frame,

Pþ
1 �Q; Pþ

2 ¼ 2
m2

c � q22
P�
2

�m2
c

Q
;

P�
1 ¼ 2

m2
c � q21
Pþ
1

�m2
c

Q
; P�

2 �Q;

P1? ¼ 0; P2? ¼ 0;

qþ1 � vQ; qþ2 � vm2
c

Q
;

q�1 � vm2
c

Q
; q�2 � vQ;

�þ1 � Q

mc

; �þ2 �mc

Q
;

��1 �mc

Q
; ��2 � Q

mc

;

qi? �mcv; �i? � 1:

(25)

III. PROOF OF FACTORIZATION

A. Strategy

If we dress the lowest-order decay and production am-
plitudes in our models with additional gluons, then certain
regions of integration of the gluon momenta yield contri-
butions that are leading in powers of the large momentum
scale,Q. Wewill describe these regions in Sec. III B below.
We wish to isolate the contributions from the loop integra-
tions that can be calculated in perturbation theory from
those that cannot. That is, we wish to isolate contributions
in which propagators have large virtuality, of orderQ, from
contributions with lower virtualities. We call the large-
virtuality part of the amplitude the ‘‘hard’’ part. In order
to establish factorization, we will show that the low-
virtuality contributions either cancel or can be absorbed
into nonperturbative functions. The nonperturbative func-
tions are the NRQCD matrix elements for the charmonia
and, in the case of B-meson decays, the B-meson-to-light-
meson form factor, the light-cone distribution amplitude
for the B meson, and the light-cone distribution amplitude
for the light meson. We will first demonstrate a factoriza-
tion involving quarkonium distribution amplitudes. Then,
we will argue that the distribution amplitudes can be
straightforwardly decomposed into a sum over NRQCD

matrix elements multiplied by short-distance coefficients.4

After the factorization of low-virtuality contributions, the
remaining hard part will depend only on the momenta and
spins of the quarks and antiquarks that enter into the
leading-order process and will be independent of the
low-virtuality properties of the external mesons.
The low-virtuality contributions arise from regions of

loop integration that are logarithmically enhanced. In these
logarithmically enhanced regions, loop integrations have
logarithmic power counts and can lead to actual infrared
(IR) divergence or would-be IR divergences that are cut off
by scales smaller thanQ, such as quark masses. In the case
of a would-be divergence that arises from the emission of a
gluon that is nearly collinear to one of the external charm
quarks, the minimum virtuality of the quark propagator is
of orderm2

cjkj=ð2jpjÞ, where k is the gluon momentum and
p is the charm-quark momentum. Hence, the virtuality can
be much less than Q2, and even of order �2

QCD. Therefore,

we must factor such contributions from the hard part in
order to arrive at a perturbatively calculable contribution.
One could, in principle, deal with the low-virtuality

contributions by devising a suitable subtraction scheme
for the contributions that would appear order by order in
perturbation theory. That would be a formidable task, as
one would need to ensure that all such contributions are
accounted for in an arbitrarily complicated Feynman dia-
gram, with no double counting of contributions.
For our purposes, we can take a simpler approach. We

consider the singularities that appear in the limit mc ! 0
with qi fixed. First, we establish that the contributions from
infinitesimal neighborhoods of these singularities can be
factored into nonperturbative functions. Then, we restore
mc to its physical value and extend the regions contained in
the nonperturbative functions from the infinitesimal neigh-
borhoods of the singularities to regions of finite size. Then
the hard part, which is defined to be the remainder of the
amplitude, contains no logarithmically enhanced
contributions.
The factorization proofs entail the use of soft and col-

linear approximations, which are exact at the singular
points. These approximations are described in Secs. III E
and III F. The actual factorization is achieved through the
use of decoupling relations, which are based on the graph-
ical Ward identities of QCD. These decoupling relations
are described in Sec. III G.
We note that, because our models make use of on-shell

external quarks and antiquarks, it is possible to emit col-
linear and nearly collinear gluons of arbitrarily low energy
from the external lines. This situation is discussed in detail
in Ref. [16]. It is unphysical since, in a meson, confinement
cuts off gluon energies at values of order �QCD.

4For a discussion at the one-loop level of the decomposition of
quarkonium light-cone distribution amplitudes into a sum over
NRQCD matrix elements see Refs. [18,19].
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Nevertheless, it is important to establish factorization in
the on-shell case in order to guarantee the consistency of
perturbative calculations of the hard part, which are usually
carried out in the context of on-shell amplitudes. Because
the logarithmically enhanced contributions in the presence
of a cutoff of order�QCD are a subset of the logarithmically

enhanced contributions in the case of on-shell external
lines, the factorization argument that we will present also
applies in the simpler case of a model with a cutoff. As we
will see, the methods that we use to prove factorization
apply to models in which the external particles are off their
mass shells, provided that the models maintain gauge
invariance. For example, one could model the B meson
as an elementary, color-singlet pseudoscalar that produces
the constituent quark and antiquark off their mass shells
through a pointlike pseudoscalar-interaction vertex that is
proportional to �5.

B. Leading momentum regions

In describing the regions of loop momenta that yield
contributions that are leading in powers of the large scale
Q, we make use of the nomenclature of Ref. [16]. We first
describe the various regions of momentum space, and then,
in Sec. III B 5, we specify the conditions that must be
fulfilled in order for these regions to give leading contri-
butions to an amplitude. In a Feynman diagram, we call a
gluon or quark, or, generically, a line that carries momen-
tum of type X an ‘‘X gluon,’’ ‘‘X quark,’’ or ‘‘X line.’’

1. Hard, soft, and collinear regions

The hard (H), soft (S), collinear-to-plus (Cþ), and
collinear-to-minus (C�) momenta have components with
the following orders of magnitude:

H: Qð1; 1; 1?Þ; (26a)

S: Q�Sð1; 1; 1?Þ; (26b)

Cþ: Q�þ½1; ð
þÞ2;�þ
?�; (26c)

C�: Q��½ð
�Þ2; 1;��
?�: (26d)

The energy scales of the various types of momenta are
determined by the parameters �S, �

þ, and ��. The soft
region of momentum space is defined by the condition

�S 
 1: (27)

The collinear regions of momentum space are defined by
the conditions

�� & 1; 
� 
 1: (28)

In the case of B-meson decays, there is also a leading
region that is associated with momenta that are nearly
collinear to the light-quark momentum pl. We call this
region Cl. It is characterized by momenta that scale as

Cl: Q�l½el þ ð
lÞ2 �el þ 
leTl �; (29)

where el, is a unit vector that is parallel to the lightlike
vector pl, �el is the parity inverse of el, and eTl is a unit

vector that is transverse to el and �el. The Cl region is
defined by

�l & �QCD=Q; 
l 
 1: (30)

We assume that pl does not lie exactly in the plus or minus
direction. In order to simplify the discussion to follow, we
often do not mention Cl momenta explicitly. In these
instances, it may be assumed that the lines carrying Cl

momenta may be treated analogously to the lines carrying
C� momenta.
We note that soft and collinear contributions lie in

restricted regions of phase space. Were it not for enhance-
ments that arise from propagators with low virtuality, soft
contributions would be suppressed by a phase-space factor
�4S and collinear contributions would be suppressed by a

phase-space factor ð��Þ4ð
�Þ4. The low-virtuality propa-
gators associated with these contributions lead to loop
integrals that have a logarithmic power count and to con-
tributions that behave as �0S and ð��Þ0ð
�Þ0. We refer to

such contributions as soft and collinear logarithmic
enhancements.
The definitions given above for the H, S, and Ci mo-

mentum regions do not specify unambiguously the
boundaries between them. For instance, if the 
i parame-
ters in the collinear regions take on values that are not too
different from one, then the Ci momenta are not distin-
guished from the Smomenta; i.e., it would not be clear if a
Ci momentumwith
i close to 1 belongs to theCi region or
to the S region. Hence, the possibility of double counting
arises. Analogous issues appear at the other boundaries
between the H, S, and Ci regions. However, as we have
mentioned previously, this is not a problem for our proof of
factorization, which will be presented later, because the
proof focuses on the singularities and would-be singular-
ities, rather than on the momentum regions. The heuristic
description of regions presented here is intended only to set
the stage for the subsequent discussions of the singular
regions.
In contrast with the corresponding momentum regions,

the soft and collinear singularities are distinct. The soft
singularities appear in the limit �S ! 0 or �i ! 0 and the
collinear singularities appear in the limits 
i ! 0. A
double (soft and collinear) singularity can arise if �i ! 0
and 
i ! 0 at the same time.

2. End-point region

In the case of B-meson decays, there is a leading con-
tribution from the so-called ‘‘end-point’’ region [12]. This
contribution is associated with a gluon that connects the
B-meson and light-meson antiquarks to the remainder of
the amplitude. The contribution in the end-point region
arises from a would-be infrared divergence that corre-
sponds to the singular point at �y ¼ 0. The divergence is
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cut off by qk, the residual momentum of light-meson
antiquark, and by pl, the momentum of the B-meson
antiquark, both of which are of order �QCD. That is, the

divergence is cut off at �y��QCD=mb. In our model, the

explicit diagrammatic factors yield a linearly divergent
power count, but the would-be divergence is moderated
by a factor �y from the light-meson wave function and is
actually logarithmic. The gluon that is associated with the
end-point region carries S momentum of order �QCD.

5

If the gluon that is associated with the end-point region
attaches to an active-quark line from the B meson or the
light meson or to a heavy-quark or heavy-antiquark line
from the charmonium, then its momentum causes the
propagators of those lines to be off shell by an amount of
order mb�QCD. We call such lines ‘‘semihard’’ lines.

Contributions from these lines can be calculated in pertur-
bation theory. We treat the semihard region as part of the
hard region, and we include lines carrying semihard mo-
menta in the hard subdiagram that we will describe below.

3. Glauber region

The ‘‘Glauber’’ region is also leading in power counting
[1,24]. In this region, jkþj 
 jk?j, jk�j 
 jk?j, and
k2? 
 Q2. In processes with two incoming hadrons, such

as Drell-Yan lepton-pair production, pinch singularities
can develop in the Glauber region for the kþ and k�
contours of integration on a diagram-by-diagram basis
[24–26]. The pinches arise when a gluon connects a spec-
tator parton in one initial-state hadron with a spectator
parton in the other initial-state hadron. (Here, in contrast
with the terminology that is used to discuss exclusive
B-meson decays, ‘‘spectator parton’’ means a parton that
does not participate in the hard-scattering process.) The
pinches appear because the momentum of a gluon that
attaches to a spectator-parton line must route through the
hadron wave function and the active-parton line from that
hadron to the hard process. If the gluon’s momentum in the
active-parton line is in the same direction as the momen-
tum of the active parton, then, in the spectator-parton line,
it is in the direction opposite to the momentum of the

spectator parton. Consequently, there is a pinch in the
light-cone variable that is conjugate to the direction of
the momentum of the hadron. In contrast, in exclusive
processes, all of the partons in a hadron are connected in
the lowest-order process, either through the hard subpro-
cess or, possibly through a soft gluon in the case of
B-meson decays. (See the discussion of the end-point
region above.) Thus, if an additional gluon carrying soft
momentum attaches to a parton, one can always route that
momentum through a leading-order connection to the hard
part, avoiding routings through other partons in the hadron
that could produce a pinch. Because of this, the kþ and k�
contours of integration are not pinched in the Glauber
region in exclusive processes, and it is possible to deform
them out of the Glauber region on a diagram-by-diagram
basis. Therefore, we ignore the Glauber region in the
remainder of our discussion.

4. Threshold region

In the case of a quarkonium, there are ‘‘threshold en-
hancements’’ that are associated with the exchange of a
gluon between the quark and the antiquark. (See Ref. [1]
for examples.) In the quarkonium rest frame, the enhance-
ment occurs when the exchanged gluon has momentum

components k̂0 �mcv
2 and jk̂j �mcv. The enhancement

produces a power infrared divergence that is cut off by the
relative momentum of the quark and antiquark q̂�mcv.
The divergence is proportional to mc=jq̂j � 1=v. Now let
us consider the momentum of the exchanged gluon in the
eþe� CM frame in the case of eþe� annihilation and in the
B-meson rest frame in the case of B-meson decays. In these
frames, as can be seen from the boosts in Eqs. (22) and
(23), an exchanged gluon in the quarkonium with momen-
tum P1 has momentum k� ðQv;m2

cv=Q;mcv?Þ, and an
exchanged gluon in the quarkonium with momentum P2

has momentum k� ðm2
cv=Q;Qv;mcv?Þ. Therefore, the

exchanged gluons associated with threshold enhancement
have Cþ or C� momentum, and, in our analysis, we do not
distinguish them from other gluons with Cþ or C� mo-
mentum. Because the threshold enhancements involve the
gluons and heavy quarks in a single quarkonium, in each
Feynman diagram they are a priori compatible with the
factorized forms. Therefore, it will not be necessary to
manipulate the threshold contributions or to identify
them by considering the limit v ! 0.

5. Leading momentum configurations in Feynman
diagrams

Next we identify the configurations of momentum types
that can yield leading contributions in the Feynman dia-
grams. By ‘‘leading,’’ we mean contributions that are not
suppressed as powers of ratios of momentum components.
We follow the analysis presented in Ref. [16]. Here, and
throughout this paper, we work in the Feynman gauge.

5If the spectator antiquark line that connects the B meson to
the light meson carries a C� momentum whose invariant square
is of order�3

QCD=Q, then that momentum is said to be in the soft-
collinear or messenger region [20]. Such a momentum arises
from a small part of the phase space in which a gluon on the
B-meson side of the soft-collinear spectator line carries away
most of pl and a gluon on the light-meson side of the soft-
collinear spectator line carries away most of pk �q

. It has been
argued that the soft-collinear region is leading only when one
makes use of certain infrared regulators [21–23]. In any case, a
contribution from the soft-collinear region does not require any
special treatment in our factorization argument: The gluon on the
light-meson side of the soft-collinear spectator line can be
treated as Cþ, and the gluon on the B-meson side of the soft-
collinear spectator line can be treated as S, as it would be in the
end-point region.
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We start with a basic diagram that is just the amplitude
of lowest order that involves the external quark and anti-
quark from each meson. Then we add gluons, one at a time,
determining for each gluon the momentum types that
produce leading contributions. The added gluons can con-
tain fermion, gluon, and ghost vacuum-polarization loops.

Because there are many redundant ways to obtain a
given momentum configuration in a diagram, it is useful
to define a convention for the way in which we add gluons.
In order to do that, we first define combination momenta
~C� and CC. A ~C� momentum arises from the sum of a C�
momentum and an S momentum with �S � ��
� or from
the sum of a C� momentum and a C� momenta with
��ð
�Þ2 
 �� 
 ��. A CC momentum arises from the
sum of a C� momentum and a C� momentum with �þ �
��. These combination momenta have the following orders
of magnitude:

~Cþ: Q�þð1; ~
þ;�þ
?Þ; (31a)

~C�: Q��ð~
�; 1;��
?Þ; (31b)

CC: Q�CCð1; 1;�CC?Þ; (31c)

where

1  ~
�  ð
�Þ2: (32)

Analogous combination momenta may be defined for com-

binations of Cl momenta with other momenta. A ~Cl mo-
mentum has dominant component in the el direction. A
CCl momentum, which arises from the sum of a Cl mo-
mentum and a C� momentum with �l � ��, has at least
two components of order �l.

Now we define our convention for adding gluons to the
basic diagram. We say that a gluon with momentum l can
attach to a line with momentum p only if the energy scale
of the momentum pþ l is of the same order as the �
parameter of the momentum p and one of the following
conditions is fulfilled:

(1) The momentum pþ l is of the same type as the
momentum p;

(2) The momentum p is Ci and pþ l is ~Ci;

(3) The momentum p is Ci or ~Ci and pþ l is CC.
The analysis in Ref. [16] shows that, if we consider only

the terms 2p 	 l in propagator denominators, then the glu-
ons that we add to the basic diagram must be S, Cþ, C�, or
Cl in order to obtain a leading contribution. The combina-
tion momenta defined above, arise when we add S, C�, and
Cl momenta. If we consider, as well, the terms p2 and l2 in
propagator denominators, then contributions are sublead-
ing unless

k 	 p * k2; k 	 p * p2: (33)

The constraints in Eq. (33) lead to additional restrictions on
the momentum combinations that yield leading contribu-
tions. These restrictions, combined with our conventions
for adding gluons to a diagram, result in the rules for the
attachments that yield leading contributions that are given
in Table I. The rules in Table I also apply when the gluon
attaches to one of the fermion lines that begins as an
external quark or antiquark. In that case, one sets 
� ¼
0 for the external quark or antiquark. We have not dis-
played the rules for the attachments of gluons with C� or
~C� momenta to lines with C� or ~C� momenta because the
rules for such attachments are complicated and cannot be
characterized simply in terms of the magnitudes of the
momentum components. For our purposes, it suffices to
note that necessary conditions for such attachments are
given in Eq. (33).
Some of the allowed attachments in Table I change the

type of the momentum in the top row, for example, when
we add an S gluon to a C� gluon with �S � 
���. That
change can propagate through the Feynman diagram. In
those cases one must check that the rules in Table I still
allow the attachments of all the vertices that are affected by
the change.

TABLE I. Conditions that a gluon with momentum k must fulfill in order to attach to a line with momentum p. These conditions
guarantee that the resulting attachment is allowed according to the convention described in the text and that it results in a leading
contribution. Here, leading means that the contribution is not suppressed as powers of ratios of momentum components. In each table,
the left-hand column gives the momentum type of the gluon with momentum k, and the top row gives the momentum type of the line
with momentum p. The symbol ‘‘�’’ means that quantities are of the same order. For purposes of power counting, anH line behaves as
a soft line with �S � 1. The rules for attachment when k is ~C� are the same as the rules for attachment when k is C�. If k is S, and the
lines to which it attaches have momentum pi and pj, then pi and pj cannot both be C

þ or C�. If k is C�, then at least one of pi and pj

is C�. Analogous conditions exist for the attachments of gluons with Cl momenta.

knp S C� ~C�

S �Sk � �Sp ��p ð
�
p Þ2 & �Sk 
 ��p ��p ~
�

p & �Sk 
 ��p

knp S C� ~C� CC

C� ��k � �Sp ��p ð
�
p Þ2 & ��k & ��p ��p ~
�

p & ��k & ��p ��k � �CCp

CC �CCk
� �Sp ��p ð
�

p Þ2 & �CCk

 ��p ��p ~
�

p & �CCk

 ��p �CCk

� �CCp
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The constraints in Eq. (33) imply that an attachment of a
gluon to a given line is allowed only if the virtuality that it
produces on that line is of order or greater than the virtual-
ity that is produced by the gluons that attach to that line to
the outside of the attachment in question. If a gluon with

momentum k of type C�, ~C�, S, C�, or CC attaches to a
C� line from an on-shell external quark or antiquark, then
it adds virtuality Q2��k ð
�

k Þ2, Q2��k ~
�
k , Q

2�Sk , Q
2��k , or

Q2�CCk
, respectively.

C. Topologies of the leading regions

Now let us specify the diagrammatic topology that
corresponds to the leading regions.

The topology of the leading regions for eþe� annihila-
tion into two quarkonia is shown in Fig. 1. In this topology,
there is a hard subdiagram that includes the lowest-order
process, a soft subdiagram, and a jet subdiagram for each
of the two collinear regions, which correspond to the two
quarkonia. In the hard subdiagram, all propagator denom-
inators are of order s. The soft subdiagram includes gluons
with soft momenta and loops involving quarks and ghosts
with soft momenta. The soft subdiagram attaches to the jet
subdiagrams through any number of soft-gluon lines. Each
jet subdiagram contains the quark and antiquark lines for a
given quarkonium, as well as gluons and loops involving
quarks and ghosts with momenta collinear to the meson or
quarkonium. The J� subdiagram attaches to the hard sub-
diagram through the quark and antiquark lines and through
any number of C� gluons. As was pointed out in Ref. [16],
because gluons with C� momenta of arbitrarily low energy
can contribute at leading power in Q, the J� subdiagram
also attaches to the soft and J� subdiagrams through any
number of C� gluons.

There are two distinct topologies in the case of B-meson
decays: one in which the B-meson and light-meson spec-
tators participate in the hard interaction and another
in which they do not. These two topologies are shown
in Figs. 2(a) and 2(b), respectively. The topology of
Fig. 2(a) is appropriate when the light-meson-antiquark
momentum is outside the end-point region, and the topol-

ogy of Fig. 2(b) is appropriate when the light-meson-
antiquark momentum is in the end-point region.
In each topology in Fig. 2, there is a hard subdiagram

that includes the lowest-order parton-level process, there is
a soft subdiagram, and there is a jet subdiagram for each of
the two collinear regions, which correspond to the light
meson and the quarkonium. In the hard subdiagram, all
propagator denominators are of order m2

b or mb�QCD. The

soft subdiagram includes gluons with soft momenta and
loops involving quarks and ghosts with soft momenta. The
soft subdiagram attaches to the jet subdiagrams and to the
B-meson quark and antiquark quark lines through any
number of soft gluon lines. The Jþ subdiagram contains
the quarkonium quark and antiquark lines; the J� subdia-
gram contains the light-meson quark and antiquark lines;
the Jl subdiagram contains the B-meson spectator-quark
line. In addition, the jet subdiagrams contain gluons and
loops involving gluons, quarks, and ghosts with momenta
in the C�, or Cl regions. Each jet subdiagram contains the
active- and spectator-quark lines for a given meson or
quarkonium as well as gluons and loops involving gluons,
quarks, and ghosts with momenta collinear to the meson or
quarkonium. A J� or Jl subdiagram attaches to the hard
subdiagram through the active- and spectator-quark lines in
the topology of Fig. 2(a), through the active quark lines in
the topology of Fig. 2(b) and through any number of
gluons. (We have not shown explicitly the attachments of
the Jl jet subdiagram that involve gluons with Cl mo-
menta.) As we have already mentioned, because gluons
with Ci momenta of arbitrarily low energy can contribute
at leading power in Q, the J� subdiagram also attaches to
the soft, J�, and Jl subdiagrams through any number ofC�
gluons, and the Jl subdiagram also attaches to the soft and
J� subdiagrams through any number of Cl gluons [16].
In the case of the topology of Fig. 2(b), we show

explicitly a gluon that is marked with an asterisk. This is
the gluon that was mentioned in our discussion of the end-
point region in Sec. III B 2. We choose the momentum
routing so that it always carries the momentum of the
B-meson antiquark and the (end-point) momentum of the

FIG. 1 (color online). Leading regions for double-charmonium
production in eþe� annihilation. The wavy line represents the
virtual photon.

FIG. 2 (color online). Leading regions for the B-meson-decay
case. The collinear region Jþ corresponds to the charmonium
and collinear region J� corresponds to the light meson.
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light-meson antiquark, both of which are of order �QCD.

Therefore, we consider this gluon to be part of the soft
subdiagram. However, we single it out because it must be
present in our model in order for the light antiquarks
(spectators) to be connected to the remainder of the dia-
gram and because its momentum is fixed by the B-meson
and light-meson antiquark momenta. Soft gluons and low-
energy C� gluons can connect to the marked gluon,
although we have not shown these connections explicitly.
We show the marked gluon connecting to the hard subdia-
gram because its allowed connections to the jet subdia-
grams or the b-quark line result in propagators with
semihard virtualities, of order mb�QCD, which are part of

the hard subdiagram. As we have said, the topology of
Fig. 2(b) applies to the end-point region, in which the
marked gluon has virtuality of order �2

QCD. Away from

the end-point region, the marked gluon itself has virtuality
of order mb�QCD and can be incorporated into the hard

subdiagram, resulting in the topology of Fig. 2(a).

D. Topologies of the singular regions

In the massless sector of QCD, there are singularities
that are associated with soft and collinear divergences.
(See, for example, Refs. [25–28].) In the present case,
the masses of charm quarks and antiquarks cut off some
of the collinear divergences. Some potential soft divergen-
ces are also cut off because they are associated with a gluon
that attaches to a line that cannot go precisely to its mass
shell because a quark mass cuts off a collinear divergence.
Nevertheless, as we have mentioned, we wish to consider
not only actual divergences, but also divergences that
appear only in the limit mc=Q ! 0 with qi fixed, because
such divergences are associated with logarithmic enhance-
ments. These divergences are associated with singularities
in the domain of integrations. We call the infinitesimal
neighborhoods of such singularities ‘‘singular regions.’’
In the remainder of the discussion of the factorization of
the contributions of the singular regions, we assume that
we have taken the limit mc=Q ! 0 with qi fixed.

The topologies of the singular regions follow from the
power-counting rules that are given in Sec. III B. These
topologies have been discussed in Ref. [16]. Here, we
recapitulate that discussion, describing the relationships
of the topologies of the singular regions to the topologies
of the leading regions in Figs. 1, 2(a), and 2(b).

The Ci singular region is situated in the outermost part
of the Ji subdiagram. (Here, ‘‘out’’ means toward the
external-fermion lines.) We call this part of the Ji subdia-
gram the ~Ji subdiagram. (We denote the part of the Ji

subdiagram that excludes the ~Ji subdiagram as the Ji �
~Ji subdiagram.) The S singular region is situated in the
outermost part of the S subdiagram. We call the S singular

part of the S subdiagram the ~S subdiagram. (We denote the

part of the S subdiagram that excludes the ~S subdiagram as

the S� ~S subdiagram.) S singular gluons connect the ~S

subdiagram only to the ~Ji subdiagrams and to the external
b-quark line. The gluon that is marked with an asterisk in

the topology of Fig. 2(b) is not part of the ~S subdiagram
because its momentum components are fixed to be of order
�QCD. That is, it is S but not S singular. The ~Ji subdiagrams

connect to the Ji, S, and H subdiagrams via Ci gluons. We
denote by ~H the union of all of the subdiagrams in our

topology except for ~S, ~Jþ, ~J�, and ~Jl. We note that the

connections of the ~J� subdiagrams to the ~S subdiagram via
Ci gluons were not considered in the discussions in
Refs. [25,26]. Otherwise, the general structure of the top-
ologies of the singular regions that we consider are the
same as in Refs. [25,26], provided that we identify the hard
subdiagram in those references with ~H.

E. Collinear approximation

We now describe the collinear approximations, which
are useful in factoring the Ci singular contributions. We
follow the notation of Ref. [16].
Suppose that there is a gluon with momentum in the Ci

singular region that attaches to a line that is not in ~Ji. Then,
we can apply a collinear approximation to that gluon [24–
26] without loss of accuracy. The Ci approximation con-
sists of replacing g�� in the gluon-propagator numerator as

follows:

g�� !

8>>>><
>>>>:

k�~n1�
k	~n1�i" ðCþÞ;
k�~n2�

k	~n2þi" ðC�Þ;
k�~nl�

k	~nl�i" ðClÞ:
(34)

Here, the index � corresponds to the attachment of the
gluon to the line with momentum not in the Ci singular
region, and the index � corresponds to the attachment of
the gluon to the Ji subdiagram. We always use the con-
vention that k flows out of a Cþ or Cl line and into a C�
line. There is a large amount of freedom in choosing the
auxiliary vectors ~n1, ~n2 and ~nl in Eq. (34). We need only
have ~n1 	 p1q > 0 (or ~n1 	 p1 �q > 0), ~n2 	 p2q > 0 (or ~n2 	
p2 �q > 0), and ~nl 	 pl > 0 in order to reproduce the ampli-

tude in the collinear singular region. Our choice is to take
~n1, ~n2, and ~nl to be lightlike vectors in the minus, plus, and
minus directions, respectively:

~n1 ¼ �n1 � ð1= ffiffiffi
2

p Þð0; 1; 0?Þ; (35a)

~n2 ¼ �n2 � ð1= ffiffiffi
2

p Þð1; 0; 0?Þ; (35b)

~nl ¼ �n1: (35c)

In order for the Ci approximation to be exact in the Ci

limit, j 	 k must be equal to j�k�, where j is the current to
which the � index of the gluon with momentum k attaches
and ni is a unit lightlike vector in the Ci direction. This
requirement is met provided that the gluon does not attach
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with its� index to a line that is also carrying momentum in
the Ci singular region. That is, the Ci approximation holds
in the collinear limit if j is a current in any of the subdia-
grams except for the ~Ji subdiagram. We note that, in the Ci

approximation, the gluon’s polarization is longitudinal,
i.e., proportional to the gluon’s momentum. This fact is
essential to the application of graphical Ward identities to
derive decoupling relations. We note also that the collinear
approximation is exact, not only for the collinear singular-
ity, but also for the associated collinear logarithmic
enhancement.

F. Soft approximation

We now describe the soft approximation, which is useful
in factoring the S singular contributions. Again, we follow
the notation of Ref. [16].

Suppose that there is a gluon with momentum k in the S
singular region that attaches to a line carrying momentum
p that lies outside the S singular region. Then we can apply
the soft approximation to that gluon without loss of accu-
racy. The soft approximation [29,30] consists of replacing
g�� in the gluon-propagator numerator as follows:

g�� ! k�p�

k 	 p ; (36)

where the index � corresponds to the attachment of the
gluon to the line with momentum p.

Unlike the collinear approximation, the soft approxima-
tion depends on the momentum of the line to which the
gluon attaches. However, it is convenient to apply the same
soft approximation to all of the lines in the ~J� subdiagram.
The lines in the ~J� subdiagram are collinear either to the
momentum of the quark or the momentum of the antiquark
in the jet. In the case of the light-quark jet, the quark and
antiquark momenta are parallel, up to corrections of rela-
tive order �QCD=Q. In the case of the quarkonium jet(s),

the quark and antiquark momenta piq and pi �q are parallel

up to corrections of relative order mcv=Q. In both cases,
we neglect the difference between the quark and antiquark
momenta and define a ‘‘modified soft approximation’’ for
each jet that corresponds to the soft approximation for the
average of the quark and antiquark momenta. The leading
errors that arise in applying the modified soft approxima-
tion to the light-meson, charmonium-1, and charmonium-2
jets are of relative order qk?=p�

K ��QCD=Q, q1?=Pþ
1 �

mcv=Q, and q2?=P�
2 �mcv=Q, respectively.

It is convenient, for purposes of discussing the decou-
pling relations in Sec. III G, to choose lightlike vectors for
the soft approximation that correspond to the average of
the quark and antiquark momenta in the limits �QCD=Q !
0 and mc=Q ! 0. In making this choice, we introduce an
error of relative order �2

QCD=Q
2 in the case of the light-

meson jet and of relative order m2
c=Q

2 in the case of the
quarkonium jet(s). These errors are negligible in compari-
son with the errors that we make in neglecting the differ-

ence between the quark and antiquark momenta. Then, for
both the light-meson and quarkonium jets we have the
same soft approximations.
For the attachment of the gluon with momentum k to any

line with momentum in the Cþ (C�) singular region, the
(modified) soft approximation consists of the following
replacements in the gluon-propagator numerator:

g�� ! k�n1�
k 	 n1 þ i"

ðSþÞ; (37a)

g�� ! k�n2�
k 	 n2 � i"

ðS�Þ; (37b)

where n1 is a lightlike vector that is proportional to P1 and
n2 is a lightlike vector that is proportional to P2 or pK. We
normalize n1 and n2 so that they are the parity inverses of
the vectors �n1 and �n2 in Eq. (35), respectively:

n1 � ð1= ffiffiffi
2

p Þð1; 0; 0?Þ; (38a)

n2 � ð1= ffiffiffi
2

p Þð0; 1; 0?Þ: (38b)

The index� contracts into the line carrying the momen-
tum of type Cþ (C�). As we have mentioned, the modified
soft approximation in Eq. (37) accounts for the contribu-
tions in the S singular region up to corrections of relative
order �QCD=Q in the case of the light-meson jet and up to

corrections of relative order mcv=Q in the case of quark-
onium jets. We note also that the soft approximation is
valid at this accuracy not only for the soft singularity, but
also for the associated soft logarithmic enhancement.
We do not apply soft approximations to the B meson

because the eikonal vectors that are associated with soft
approximations for Jl and the b-quark line are not approxi-
mately proportional to each other. That is, a common soft
approximation cannot be applied to the B meson. In con-
sequence, the cancellations of the soft contributions that
apply in the cases of the quarkonia and the light meson
(described in Sec. III I 1) fail in the case of the B meson.

G. Decoupling relations

Oncewe have implemented a collinear approximation or
a soft approximation, the associated gluons are longitudi-
nally polarized. This allows us to make use of decoupling
relations to factor gluons with momenta in the soft or
collinear singular regions from certain parts of the ampli-
tude. The general graphical form of the decoupling rela-
tions for longitudinally polarized gluons is shown in Fig. 3.
A decoupling relation of this form applies when any num-
ber of longitudinally polarized gluons attach to a subdia-
gram in all possible ways, provided that the gluon
momenta are all proportional to each other.6

6In the case of an Abelian theory, such as quantum electro-
dynamics, a decoupling relation of this form holds even if the
gluon momenta are not proportional to each other.
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If the external gluons all have momenta in one of the Ci

singular regions, then the gluon momenta are all propor-
tional to each other, and a decoupling relation of the form
in Fig. 3 holds, once the Ci approximation has been im-
plemented to render the gluon polarizations longitudinal.
The subdiagram can have any number of truncated legs and
any number of untruncated on-shell external legs (not
shown in the figure), provided that the polarizations of
the untruncated on-shell gluons are orthogonal to their
momentum. The eikonal (double) lines in this decoupling
relation have the Feynman rules in the Cþ, C�, or Cl cases
that a vertex is �igTa �n1�, �igTa �n2�, or igTa �nl� and a

propagator is i=ðk 	 �n1 � i"Þ, i=ðk 	 �n2 þ i"Þ, i=ðk 	 �nl �
i"Þ, respectively, where the upper (lower) sign in the vertex
is for eikonal lines that attach to quark (antiquark) lines.
Here, Ta is an SUð3Þ color matrix in the fundamental
representation. (Our convention is that a QCD gluon-quark
vertex is igTa��.) We call these eikonal lines ‘‘Ci eikonal

lines.’’ The Feynman rules for the eikonal lines in these
decoupling relations are summarized in the first, second,
and third lines of Table II.

If the external gluons all have momenta in the S singular
region, then the decoupling requirement that the gluon
momenta be proportional to each other is not necessarily
satisfied. However, if the subdiagram into which the S
singular gluons enter is a ~Jþ (~J�) subdiagram, then a
soft momentum k entering that subdiagram contracts
only into currents proportional to n1 (n2), up to corrections
of relative order qk2=p

�
K ��QCD=Q for a light-meson jet

and relative order q1?=Pþ
1 � q2?=P�

2 �mcv=Q for a
charmonium jet. Consequently, at these levels of accuracy,
we can make the replacement

k ! ~k1 ¼ �n1
n1 	 k
n1 	 �n1 (39a)

in the ~Jþ subdiagram and associated soft approximation
and the replacement

k ! ~k2 ¼ �n2
n2 	 k
n2 	 �n2 (39b)

in the ~J� subdiagram and associated soft approximation
[25,26]. Since

n1 	 ~k1 ¼ n1 	 k; (40a)

n2 	 ~k2 ¼ n2 	 k; (40b)

these replacements do not change the amplitude, up to
corrections of relative order mc=Q and �QCD=Q. In sub-

sequent discussions, we consider these replacements to be
part of the modified soft approximation. After these re-
placements have been made, the gluon momenta entering
the ~Jþ (~J�) subdiagram are all proportional to each other,
and a decoupling relation of the form in Fig. 3 holds. In
these decoupling relations, the eikonal lines have the
Feynman rules that a vertex is �igTan1� (� igTan2�)

and a propagator is i=ðk 	 n1 þ i"Þ½i=ðk 	 n2 � i"Þ� when
the subdiagram is Cþ (C�). These rules follow from
Eq. (40). We call these eikonal lines Sþ and S� eikonal
lines, respectively. The Feynman rules for the eikonal lines
in the soft decoupling relations are summarized in the
fourth and fifth lines of Table II, respectively.

H. Factorization of the singular regions

Now we summarize the factorization of the singular
regions. We refer the reader to Ref. [16] for detailed
arguments.
In analyzing the singular regions, we wish to identify the

momentum configurations that yield singular contribu-
tions. We can do so by making use of the power-counting
rules that we have outlined in Sec. III B and invoking the
following specific interpretations of those rules: the sym-
bol � and the phrase ‘‘of the same order’’ mean that
quantities differ by a finite factor, while the phrases
‘‘much less than’’ and ‘‘much greater than’’ mean that
quantities differ by an infinite factor. It follows that, for
gluons in the singular regions, our convention that an

FIG. 3. Graphical representation of the decoupling relations
for collinear gluons and the decoupling relations for soft gluons.
The applicability of these decoupling relations is described in the
text. The relations show the decoupling of longitudinally polar-
ized gluons, which are represented by curly lines. The longitu-
dinally polarized gluon lines are to be attached in all possible
ways to the Green’s function that is represented by an oval. The
factors k� �n�i =ðk 	 �niÞ [k�n�i =ðk 	 niÞ] that appear in the collinear
(soft) approximations are represented by the arrows on the gluon
lines. The external lines with hash marks are truncated. In
addition, the subdiagram can include any number of untruncated
on-shell external legs, provided that the polarizations of the on-
shell gluons are orthogonal to their momentum. The pi are
momenta, and the ai are color indices. The double lines are
Cþ, C�, Sþ, or S� eikonal lines, as is described in the text.

TABLE II. Feynman rules for the collinear (C� and Cl) and
soft (S�) eikonal lines. The upper (lower) sign is for the eikonal
line that attaches to a quark (antiquark) line.

Type Vertex Propagator

Cþ �igTa �n1�
i

k	 �n1�i"

C� �igTa �n2�
i

k	 �n2þi"

Cl igTa �nl�
i

k	 �nl�i"

Sþ �igTan1�
i

k	n1þi"

S� �igTan2�
i

k	n2�i"
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allowed attachment of a gluon cannot change the essential
nature of the momentum of the line to which it attaches has
the following meaning: The attaching gluon cannot have an
energy that is greater by an infinite factor than the energy
of the line to which it attaches.

The rules in Sec. III B lead to complicated relationships
between the allowed momenta of gluons in a given dia-
grammatic topology. However, there is a general principle,
which we have already mentioned, that allows us to organ-
ize the discussion: The attachments of gluons to a given
line must be ordered so that a given attachment produces a
virtuality along the line that is of order or greater than the
virtualities that are produced by the attachments that lie to
the outside of it. In particular, the virtuality that a Ci, or S
singular gluon produces on a Cj line with j � i or an S line
is of order the energy of gluon times the energy of the line
to which it attaches.

Our goal is to factor C� contributions from all subdia-
grams except ~J�, to factor all Cl singular contributions
from all subdiagrams except ~Jl and the external b-quark
line and to factor all S singular contributions from the ~J�
subdiagrams. We will show that the factored soft contribu-
tions that are associated with the external-quark and
external-antiquark lines in ~J� ultimately cancel.

Note that we do not factor S singular contributions from
~Jl or from the external b-quark line. Nor do we factor Cl

singular contributions from the external b-quark line in the
B-meson subdiagram. In principle, we could carry out such
factorizations. However, because the soft approximations
are different for the b quark and the light antiquark in the B
meson, we do not expect the factored soft contributions
that are associated with the b-quark and light-antiquark
lines to cancel. Furthermore, it will prove convenient, for
purposes of expressing our results in terms of a B-meson
light-cone distribution, not to factor the Cl singular con-
tributions from the b-quark line in the B-meson
subdiagram.

In the singular limits �S ! 0,
i ! 0, �i ! 0, an infinite
hierarchy of energy scales emerges. The energy scales of
the various levels in the hierarchy are separated by infinite
factors. We characterize each level in the hierarchy by the
energy scale of the S singular gluons in that level. We call
this scale the nominal energy scale of that level. Collinear
singular gluons in a level may have energies that are of the
nominal energy scale or energies that are infinitely larger
than the nominal scale, but still infinitesimal in comparison
with the nominal energy scale of the next higher level. We
call the latter gluons ‘‘large-scale collinear singular glu-
ons.’’ We carry out the factorization iteratively, starting
with the level with the largest nominal energy scale. As we
shall see, this ordering of the factorization procedure is
convenient because it allows us to apply the decoupling
relations rather straightforwardly to decouple gluons
whose connections lie toward the inside of the Feynman
diagrams before we decouple gluons whose connections lie
to the outside of the Feynman diagrams.

We will illustrate the factorization of the large-scale
collinear gluons and the nominal-scale soft and collinear
gluons for the case of double-charmonium production in
eþe� annihilation by referring to the diagram that is shown
in Fig. 4. In this diagram, we have suppressed gluons with
energies that are much less than the nominal scale. These
gluons have connections that lie to the outside of the
connections of the gluons that are shown explicitly. In
the diagram in Fig. 4, each gluon represents any finite
number of gluons, including zero gluons. For clarity, we
have suppressed the antiquark lines in each meson and we
have shown explicitly only the connections of the gluons to
the quark line in each meson and only a particular ordering
of those connections. However, we take the diagram in
Fig. 4 to represent a sum of many diagrams, which include
all of the connections that we specify in the arguments
below of the singular gluons to the quark and antiquark in
each meson, to other singular gluons, and to the ~H
subdiagram.

1. Factorization of the large-scale Ci singular gluons

First, we factor the large-scale Ci singular gluons. In the
first step of the iteration, these include gluons with finite
energies, as well as infinitesimal energies. In subsequent
steps, only gluons with infinitesimal energies are involved.
There is a hierarchy in the energy scales of the large-scale
Ci singular gluons. We factor these gluons iteratively,
beginning with the largest energy scale.
We apply the Ci approximations and the Ci decoupling

relations. In applying the C� decoupling relations, we
include the attachments that are allowed by our conven-
tions to all subdiagrams outside of ~J�, and, in applying the
Cl decoupling relations, we include the attachments that
are allowed by our conventions to all subdiagrams outside

FIG. 4 (color online). Diagram to illustrate the factorization of
large-scale collinear gluons and nominal-scale soft and collinear
gluons for the case of double-charmonium production in eþe�
annihilation. Ci

LS denotes a large-scale Ci singular gluon, Ci
NS

denotes a nominal-scale Ci singular gluon, and SNS denotes a
nominal-scale S singular gluon.
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of ~Jl and the external b-quark line. We also include,
formally some attachments that may yield vanishing con-
tributions in the singular limits. These are attachments to ~H
and attachments that lie to the inside of the allowed attach-
ments to ~Jj for j � i. We include in this class attachments
to the interior of Cj eikonal lines. (‘‘Interior’’ means to the
inside of attachments of Cj gluons.)

The outermost allowed attachment of Ci gluon to a Cj

singular line in ~Jj (i � j) generally lies to the inside of
attachments of additional gluons that have infinitesimally
smaller energy scales. While the propagator immediately
to the outside of the outermost allowed attachment of Ci

gluon is not precisely on the mass shell, it is on the mass
shell, up to relatively infinitesimal corrections.
Furthermore, if it is a gluon propagator, then its polariza-
tion is orthogonal to its momentum, up to relatively infini-
tesimal corrections. Therefore, when we apply the Cþ
decoupling relation, no eikonal-line contribution appears
at this point.

The result of the application of the Ci decoupling rela-
tions to the large-scale Ci singular gluons with the largest
energies is that the connections of these gluons to subdia-
grams other than ~Ji and the b-quark line are replaced with
connections to Ci eikonal lines. The C� eikonal lines
attach to the C� external-fermion lines just to the outside
of ~H. (Here, and in subsequent discussions, ‘‘external-
fermion lines’’ denote the fermion lines that originate in
the external quarks and antiquarks that are associated with
the mesons in our model.) TheCl eikonal lines attach to the
external b-quark line and the external light-quark line from
the B meson just to the outside of ~H.

We can iterate this procedure for large-scale Ci singular
gluons with successively lower energy scales. After each
iteration, there is a new Ci eikonal line that attaches to each
Ci external-fermion line just to the inside of the Ci eikonal
line from the previous iteration. It is easy to see that, for
each external-fermion line, the new eikonal line can be
combined with the eikonal line from the previous iteration
to form a single eikonal line, on which the Ci singular
gluons with lower energy scale attach to the outside of the
Ci singular gluons with higher energy scales. Other order-
ings of the attachments yield vanishing contributions. We
continue iteratively in this fashion until we have factored
all of the large-scale Ci gluons. After this decoupling step,
the sum of diagrams represented by Fig. 4 becomes a sum
of diagrams represented by Fig. 5.

2. Initial factorization of the nominal-scale Ci gluons

Next, we factor the nominal-scale Ci singular gluons. In
addition to the attachments enumerated in the case of the
large-scale Ci gluons, we include attachments to the
nominal-scale S gluons. Then, the application of the C�
decoupling relations leads toC� eikonal lines that attach to
the following locations: to the C� external-fermion lines
just to the inside of the large-scale C� eikonal lines from

the previous step; to the nominal-scale S singular gluon
lines just to the inside of the connections of those lines to
the C� external-fermion lines. After this decoupling step,
the sum of diagrams represented by Fig. 5 becomes a sum
of diagrams represented by Fig. 6. Application of the Cl

decoupling relation leads to Cl eikonal lines that attach to
the following locations: to the external-fermion lines from
the B meson just to the inside of the large-scale Cl eikonal
lines from the previous step; to the nominal-scale S sin-
gular gluon lines just to the inside of the connections of
those lines to the external-fermion lines from the Bmeson.
The Cl eikonal line that attaches to a given external-
fermion line from the B meson can be combined with the
large-scale Cl eikonal line from the previous step to form a
single Cl eikonal line.

FIG. 5 (color online). Diagram representing the sum of dia-
grams that occurs after one applies the decoupling of the large-
scale collinear gluons that is described in Sec. III H 1.

FIG. 6 (color online). Diagram representing the sum of dia-
grams that occurs after one applies the initial decoupling of the
nominal-scale collinear gluons that is described in Sec. III H 2.
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3. Factorization of the nominal-scale S gluons

We now wish to apply the soft decoupling relations to
factor the nominal-scale soft gluons. In order to do this, we
implement the S� approximations for the allowed attach-
ments of the soft gluons to ~J�. (Recall that we do not apply
the soft approximations or the soft decoupling relations to
the attachments of the soft gluons to the external b-quark
line or to ~Jl.) On the connections to the ~J� subdiagrams,
we modify the soft approximation in the following way:
We combine the momentum of the nominal-scale soft
gluon with the total momentum of the attached nominal-
scale C� eikonal line from the previous step. Then, when
we implement the S� decoupling relations, the nominal-
scale C� eikonal lines are carried along with the nominal-
scale soft-gluon attachments. We apply the S� decoupling
relations to the allowed attachments of the soft gluons to
~J�. We also include vanishing connections of the nominal-
scale soft gluons to the interior of the large-scale C�
eikonal lines [25]. The propagator that lies to the outside
of the outermost allowed connection of a nominal-scale
soft gluon to a line in ~J� is on shell, up to relative
corrections of infinitesimal size. Furthermore, if it is a
gluon propagator, its polarization is transverse to its mo-
mentum, up to relative corrections of infinitesimal size.
Therefore, when we apply the S� decoupling relations, no
S� eikonal lines appear at those points.

The result of applying the S� decoupling relations is that
soft gluons attach to S� eikonal lines, to the external
b-quark line and to ~Jl. The S� eikonal lines attach to the
C� external-fermion lines just to the outside of the
nominal-scale C� eikonal lines and just to the inside of
the large-scale C� eikonal lines. Associated with each
connection of a nominal-scale soft gluon to an S� eikonal
line is a C� eikonal line. Associated with each connection
of a nominal-scale soft gluon to the external b-quark line or
to ~Jl is a Cl eikonal line. Our sample diagram is now given
by Fig. 7.

4. Further factorization of the nominal-scale C� gluons

We next factor the nominal-scale C� gluons from the S�
eikonal lines. In order do this, we include formally the
vanishing contributions that arise when one connects the
nominal-scale C� gluons to all points on the S� eikonal
lines that lie to the inside of the outermost connection of
the nominal-scale soft gluons. We also make use of the
following facts: a nominal-scale C� eikonal line that at-
taches to one of the C� external-fermion lines is identical
to the eikonal line that one would obtain by applying the
C� decoupling relation to the attachments of the nominal-
scale C� gluons to an on-shell fermion line (that does not
have exactly C� momentum); a nominal-scale C� eikonal
line that attaches to a nominal-scale gluon is identical to
the eikonal line that one would obtain by applying the C�
decoupling relation to the attachments of nominal-scale
C� gluons to an on-shell nominal-scale soft-gluon line.

Then, applying the C� decoupling relation, we find that the
nominal-scale C� gluons attach to C� eikonal lines that
attach to the external-fermion lines just to the inside of the
large-scale C� eikonal lines. This situation is represented
by the diagram that is shown in Fig. 8.
The nominal-scale C� eikonal lines can then be com-

bined with the large-scale C� eikonal lines. After perform-
ing those steps we arrive at the final factorized form for our
sample diagram, which is given in Fig. 9.

5. Completion of the factorization

Now we can iterate the procedure that we have given in
Secs. III H 1–III H 4, taking the nominal scale to be the next
smaller soft-gluon scale. In these subsequent iterations, we
include the connections of Sand collinear gluons that have

FIG. 7 (color online). Diagram representing the sum of dia-
grams that occurs after one applies the decoupling of the
nominal-scale soft gluons that is described in Sec. III H 3.

FIG. 8 (color online). Diagram representing the sum of dia-
grams that occurs after one applies the further decoupling of the
nominal-scale collinear gluons that is described in Sec. III H 4.
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already been described. In addition, we include formally, in
the steps of Secs. III H 1 and III H 2, the vanishing contri-
butions from the connections of the large-scale and
nominal-scale Ci gluons to the soft gluons of higher en-
ergies and to the S� eikonal lines that are associated with
those soft gluons.

Proceeding iteratively through all of the soft-gluon
scales, we produce new nominal-scale S� eikonal lines at
each step that connect to the external C� fermion lines just
to the outside of the existing S� eikonal lines. Each gluon
that attaches to a nominal-scale S� eikonal line has at-
tached to it a C� eikonal line. In addition, there are
nominal-scale C� eikonal lines from the steps of
Sec. III H 2 that attach to the C� external-fermion lines
just to the inside of the nominal-scale S� eikonal lines.
After the further factorization of the nominal-scale C�
gluons that is described in Sec. III H 4, both of the S�
eikonal lines that attach to a given external-fermion line
can be combined into a single S� eikonal line.

At each step in the iteration, new Cl eikonal lines appear
that attach to the external-fermion lines from the B meson
just to the inside of the Cl eikonal lines from the previous
step. For each external-fermion line, the new Cl eikonal
line can be combined with the Cl eikonal line from the
previous step to form a single eikonal line. Similarly, at
each step in the iteration, new Cl eikonal lines appear that
attach to the nominal-scale S singular gluon lines that
attach to the external fermion lines from the B meson.
These new Cl eikonal lines attach just to the inside of the
Cl eikonal lines from the previous iteration. Again, for
each external-fermion line, the new Cl eikonal line can
be combined with the previous Cl eikonal line to form a
single Cl eikonal line.

Following this procedure, we arrive at the factorized

form for the singular contributions. The ~S subdiagram
now connects only to S� eikonal lines, to the external

b-quark line, and to ~Jl. The S� eikonal lines attach to the
C� external-fermion lines just outside of ~H. All of the C�
singular contributions are contained in the J� subdiagram
and the associatedC� eikonal lines, which attach to the C�
external-fermion lines just outside of the S� eikonal lines.
All of the Cl contributions are contained in the ~Jl subdia-
gram and associated Cl eikonal lines. These Cl eikonal
lines attach to the external-fermion lines from the Bmeson
just to the outside of the ~H subdiagram and to S singular
gluon lines just to the inside of the connections of those
lines to the b-quark line and to ~Jl. This factorization is
illustrated, for the case of eþe� annihilation, in Fig. 10.

I. Forms of the ~S and ~J� functions and cancellations of
eikonal lines

1. Cancellations of the soft eikonal lines

At this point, in the case of eþe� annihilation into two

quarkonia, the ~S subdiagram and associated soft eikonal
lines, which we call �S, take the form of the vacuum-
expectation value of a time-ordered product of four eikonal
lines:

�Sðx1q; x1 �q; x2q; x2 �qÞ ¼ h0jTf½x1 �q;1þ�½1þ; x1q�
� ½x2 �q;1��½1�; x2q�gj0iS; (41)

where xiq and xi �q are the points at which the eikonal lines

attach to the quark and antiquark external lines frommeson
1 and meson 2, respectively. ½y; x� is the eikonal line that is
defined in Eq. (6),1þ ¼ ð1; 0; 0?Þ, and1� ¼ ð0;1; 0?Þ.
The symbol� indicates a direct product of the color factors
that are associated with the soft-gluon attachments to
meson 1 and the soft-gluon attachments to meson 2. The
S subscript on the matrix element indicates that only the
contributions from the S singular region are kept.

In the case of B-meson decays, the ~S subdiagram is still
connected to the B meson and takes the form

FIG. 9 (color online). Diagram representing the sum of dia-
grams that occurs after one completely decouples the large-scale
collinear gluons and the nominal-scale soft and collinear gluons.

FIG. 10 (color online). Illustration of the factorization for the
case of eþe� annihilation. After the use of the decoupling
relations, gluons with momenta in the S singular region attach
to S� eikonal lines and gluons with momenta in the C� singular
regions attach to C� eikonal lines.
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�S Bðx1q; x1 �q; x2q; x2 �qÞ ¼ h0jTf½x1 �q;1þ�½1þ; x1q�
� ½x2 �q;1��
� ½1�; x2q�g ��l�Bm�bjBiS:

(42)

Here, we have suppressed the Cl eikonal lines that are
associated with the Bmeson. No soft gluons attach to those
lines.

Because the ~H subdiagram is insensitive to a momentum
in the S singular region that flows through it, one can
ignore the difference between x1q and x1 �q and the differ-

ence between x2q and x2 �q. Therefore, in consequence of the

fact that the external mesons are color singlets, the Sþ
quark and antiquark eikonal lines cancel, and the S� quark
and antiquark eikonal lines cancel. In the case of eþe�
annihilation into two quarkonia, this cancellation implies

that the ~S subdiagram is completely disconnected, and,
therefore, can be ignored. In the case of B-meson decays,

the remaining ~S subdiagram now connects only to the
external b-quark line and to ~Jl.

2. Rearrangement of the B-meson singular contributions

As we have noted, there are Cl eikonal lines associated
with the B meson. These Cl eikonal lines attach to the
external-fermion lines from the Bmeson just to the outside
of the ~H subdiagram and to S singular gluon lines just to
the inside of the connections of those lines to the external
b-quark line and to ~Jl. We can now remove the latter class

of eikonal lines as follows. We note that, because the ~S
subdiagram now connects only to the external b-quark line
and to ~Jl, the Cl eikonal lines that attach to the S singular
gluons are precisely the Cl eikonal lines that would appear
if one were to factor connections of Cl singular gluons

from ~S. (One can carry out the factorization iteratively,
level-by-level, factoring the nominal-scale Cl gluons from
the nominal-scale S singular gluons.) Therefore, we restore

the connections of the Cl singular gluons to ~S and drop the
Cl eikonal lines that attach to S singular gluons.

3. Forms of the meson distributions

We make a Fierz rearrangement to decouple the color
structures of the ~J� subdiagrams, the b-quark and ~Jl sub-
diagram, and their associated collinear eikonal lines. Then,
these subdiagrams and their eikonal lines are given by the
following matrix elements:

�J þ
��ð �q1Þ ¼

Z þ1

�1
d4ð2xÞ exp½�2i �q1 	 x�

� hH1ðP1Þj ���ðxÞTf½x;1��
� ½1�;�x�g��ð�xÞj0iCþ (43)

for the Cþ quarkonium,

�J �
��ð �q2Þ ¼

Z þ1

�1
d4ð2xÞ exp½�2i �q2 	 x�

� hH2ðP2Þj ���ðxÞTf½x;1þ�
� ½1þ;�x�g��ð�xÞj0iC� (44)

for the C� quarkonium,

�J K��ð�rkÞ ¼
Z þ1

�1
d4ð2xÞ exp½�2i�rk 	 x�

� hKðpKÞj ���ðxÞTf½x;1þ�
� ½1þ;�x�g��ð�xÞj0iC� (45)

for the light meson, and

�JB��ð �plÞ ¼
Z þ1

�1
d4x exp½i �pl 	 x�h0j ��l�ðxÞTf½x;1��

� ½1�; 0�g�b�ð0ÞjBðpBÞiS;Cl : (46)

for the B meson. In Eqs. (43)–(46), � and � are Dirac

indices. It is understood that the fields � and �� in each
matrix element are in a color-singlet state. In these distri-
butions, the arguments �q1, �q2, and �rk are each half the
difference between the quark momentum and the antiquark
momentum at the points at which they enter ~H, and the
argument �ql is the antiquark momentum at the point at
which it enters ~H. We have suppressed the dependences on
the total meson momenta P1, P2, pK, and pB in the argu-
ments on the left sides of Eqs. (43)–(46). The subscripts S,
Cþ, C� and Cl on the matrix elements indicate that we are
retaining only the S,Cþ,C�, andCl singular contributions.

4. Light-cone distributions and cancellations of
the collinear eikonal lines

Away from the end-point region, we can simplify the
factorized expression further.
In ~H, away from the end-point region, we can approxi-

mate the momenta of the quark and antiquark in the light
meson by their minus components. The leading relative
errors in this approximation are of order qk=pK �
�QCD=Q. Then, integrating �JK over �rþk and �rk?, we obtain

�J K��ðyÞ � p�
K

2�

Z þ1

�1
d�rþk d

2 �rk?
ð2�Þ3

�JK��ð �rkÞ

¼ p�
K

�

Z þ1

�1
dxþ exp½�ið2y� 1Þp�

Kx
þ�

� hKðpKÞj ���ðxþÞTf½xþ;1þ�
� ½1þ;�xþ�g��ð�xþÞj0iC� : (47)

The quantity ~H has been analyzed in the context of soft-
collinear effective theory (SCET) for the case of B-meson
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decays into a lepton pair plus a photon [31] and for the
contribution to B-meson decays into two light mesons
that arises away from the end-point region [22]. The con-
clusion of these analyses is that ~H is given, to leading
order in �QCD=Q, by a matrix element of a SCET oper-

ator that depends only on the plus component of the
momentum of the light antiquark in the B meson.7

Furthermore, the SCET operator has a Dirac-matrix struc-
ture such that only the B-meson light-cone distribution
�B1 contributes. We assume that a similar SCET analysis
holds in the case of B meson decays to a quarkonium plus
a light meson away from the end-point region. Then,
integrating �JB over p�

l and pl?, we obtain

�J B��ð�Þ � pþ
B

2�

Z þ1

�1
dp�

l d
2 �pl?

ð2�Þ3
�JB��ðplÞ

¼ pþ
B

2�

Z þ1

�1
dx� exp½i�pþ

B x
��

� h0j ��l�ðx�ÞTf½x�;1��
� ½1�; 0�g�b�ð0ÞjBðpBÞiCþ ; (48)

where � ¼ pþ
l =Q.

We do not approximate the momenta of the heavy quark
and heavy antiquark in the quarkonia by their dominant
momentum components because, in so doing, we would
introduce errors of relative order mcv=Q for each quark-
onium. As we will explain in Sec. III K, such an error
would be larger than the errors that arise from the approx-
imations that we have used to derive the factorization
result.

Now, we can see that there is a partial cancellation of
the C� quark and antiquark eikonal lines in Eq. (47) and
a partial cancellation of the Cl quark and antiquark
eikonal lines in Eq. (48). The cancellations would be
complete, were it not for the fact that the ~H subdiagram
is sensitive the routing of collinear momenta through it.
This sensitivity corresponds to the separation in space-time
of the points xþ and�xþ in Eq. (47) and the points x� and
0 in Eq. (48). The quark and antiquark eikonal lines in
Eqs. (47) and (48) cancel where they overlap, leaving an
eikonal line that runs directly between the quark and the
antiquark:

�JK��ðyÞ ¼ p�
K

�

Z þ1

�1
dxþ exp½�ið2y� 1Þp�

Kx
þ�

� hKðpKÞj ���ðxþÞP½xþ;�xþ���ð�xþÞj0iC�

� X
j

�KjðyÞ½�Kj���; (49a)

�JB��ð�Þ ¼ pþ
B

2�

Z þ1

�1
dx� exp½i�pþ

B x
��

� h0j ��l�ðx�ÞP½x�; 0��b�ð0ÞjBðpBÞiCþ

� X
m

�Bmð�Þ½�Bm���; (49b)

where we have written the time-ordered product of the
exponentiated line integral as a path-ordered product.8

The expressions in Eqs. (49) have the form of the conven-
tional light-meson and B-meson light-cone distributions,
but, at this stage, they contain only the singular contribu-
tions to those light-cone distributions. Since the integra-
tions over y and � have a finite range of support in ~H, the
typical separation of the points xþ and �xþ in Eq. (49a)
and the points x� and 0 in Eq. (49b) is of order 1=Q.

J. Factorized form

1. Factorization of the logarithmic enhancements

At this point, we have established that the contributions
from the soft singular region decouple completely from the
~J� subdiagrams (leaving no residual eikonal lines). We
have also established that the contributions from the col-
linear singular regions factor from the ~H subdiagram and
are contained entirely in the �J�, �JK and �JB subdiagrams.
As we have mentioned, in the case of eþe� annihilation

into two quarkonia, the ~S subdiagram is now completely
disconnected, and can be ignored. In the case of B-meson

decays, the ~S subdiagram is still connected to the external
b-quark line and to ~Jl (i.e. to �JB).
Now let us restore mc to its nonzero physical value.

Then, some of the soft and collinear singularities become
would-be soft and collinear singularities. However, the
would-be singularities are still contained in the �J�, �JK
and �JB subdiagrams. Therefore, there are no actual or
would-be collinear singularities in the ~H subdiagram.
Furthermore, there are no actual or would-be soft singu-
larities in the ~H subdiagram. In the case of B-meson
decays, there are, however, soft contributions from the

end-point region in the S� ~S subdiagram, and, hence, in
the ~H subdiagram. As we have emphasized, these end-
point contributions are associated with the topology of
Fig. 2(b).
Next let us redefine �J�, �JK and �JB by extending the

ranges of integration from the infinitesimal C�, Cl singular
7These analyses are based on Lorentz (reparametrization)

invariance and power counting in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCD=Q

q
. The next-to-

leading-order spectator-scattering contributions to B-meson de-
cays to light mesons have been computed in Refs. [32–36] and
confirm the general analysis for this process.

8Reference [15] contains an incorrect statement that the eiko-
nal lines in Eq. (49) cancel completely.
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regions and, in the case of �JB, the S singular region, to
finite regions that are defined by an ultraviolet cutoff�F �
Q on the logarithmic integrals. ~H is then redefined to be the
remainder of the amplitude. One can think of �F as an
infrared cutoff on the soft and collinear enhancements in
~H. This redefinition has the effect of absorbing the col-
linear logarithmic enhancements that are associated with
the collinear singularities into �J�, �JK and �JB. It also has the
effect of absorbing soft enhancements that are associated
with soft singularities into �JB.

One might worry that, in making such an extension, we
could introduce new singularities and logarithmic en-
hancements in �J�, �JK, and �JB that are associated with their
collinear eikonal lines. The lightlike eikonal lines that are
parametrized by the vectors �n1, �n2, and �nl could, in prin-
ciple, be sources of gluons that are collinear to the minus,
plus, and �el directions, respectively, as well as sources of
soft gluons. In fact, this does not happen in the case of the
light-meson light-cone distribution [Eq. (49a)] or the
B-meson light-cone distribution [Eq. (49b)]. As we have
noted, there is a partial cancellation between the quark and
antiquark eikonal lines in these light-cone distributions.
The remaining eikonal-line segment is typically of length
1=Q. Therefore, only modes with virtuality of order Q can
propagate along it, and no collinear or soft singularities or
logarithmic enhancements are associated with it.

In the case of the �J� distributions in Eqs. (43) and (44)
and the �JK and �JB distributions in Eqs. (45) and (46), which
are appropriate when the light-meson momentum is in the
end-point region, we make use of a trick to prevent col-
linear singularities and enhancements from developing
along the eikonal lines: In each case, we replace the light-
like eikonal lines with spacelike eikonal lines. That is, we
replace the eikonal-line vectors �n1, �n2, and �nl with a vector

nz ¼ ð1= ffiffiffi
2

p Þð1;�1; 0?Þ, which points in the z direction.
Because of the freedom in choosing the collinear eikonal
vectors that we described in Sec. III E, this replacement has
no effect on the Cþ, C�, and Cl singular contributions in
�Jþ, �J�, �JK, and �JB, respectively. Furthermore, the soft
singularities (and enhancements) that arise from soft-gluon
attachments to the quark and antiquark eikonal lines in
Eqs. (43)–(46) cancel. This cancellation derives from the
following facts: The S-singular attachments lie to the ex-
terior of any non-S-singular attachments to the eikonal
lines; any non-S-singular attachments are within 1=Q of
the eikonal-line end points; the end points �x and x in
Eqs. (43)–(45) and x and 0 in Eq. (46) are within 1=Q of
each other. Hence, one can argue, as in Sec. III I 1, that the
segments of the quark and antiquark eikonal lines that
contain S-singular-gluon attachments cancel.

We have argued that there are neither soft nor collinear
logarithmic enhancements in the ~H subdiagram. Therefore,
in the cases of eþe� annihilation and B-meson decay in the
topology of Fig. 2(a), the ~H subdiagram involves only
momenta of order Q. The lower-virtuality momenta are

contained in the distributions �J� in Eqs. (43) and (44),�K

in Eq. (49a), and �B in Eq. (49b).

2. Further factorization of the end-point contributions

In the case of B-meson decays in the topology of
Fig. 2(b), the ~H subdiagram is also free of soft and col-
linear logarithmic enhancements, but it still contains glu-
ons with momenta of order �QCD that arise from the end-

point region. These gluons consist of the gluon that is
marked with an asterisk in Fig. 2(b) and gluons that are

radiated from it. They are the part of S� ~S that remains

after ~S has been extended to include soft enhancements.
They can connect to active-quark or active-antiquark lines
(those that participate in the weak interaction). However,
they cannot connect to any part of the �Jþ or �J� subdia-
grams, which reside to the outside of the connections of the
soft gluons to the active-quark or active-antiquark lines.
Because these soft gluons connect the B meson and light
meson to the quarkonia, they potentially violate the fac-
torized form in the second term of Eq. (2).
However, we can make a further decoupling of the

connections of the end-point soft gluons from the active-
quark and active-antiquark lines in the quarkonium. We
apply a modified soft approximation to these gluons.
Because the soft gluons have a finite soft momentum of
order �QCD, rather than a soft singular momentum, there

are errors associated with the application of the soft ap-
proximation to the quark or antiquark line that are order
�QCD=Q. These errors are negligible in comparison with

the errors that are associated with the modified soft ap-
proximation for the average of the quark and antiquark
momenta. Next we apply the Sþ decoupling relation. Then,
the soft gluons attach to eikonal lines that attach to the
heavy-quark and heavy-antiquark lines just outside the ~H
subdiagram. Because the remaining part of ~H is insensitive
to routing of the soft momenta through it, the quark and
antiquark eikonal lines cancel, up to corrections of order
�QCD=Q. Then, the end-point contributions are contained

entirely in a subdiagram BK, which consists of S� ~S (after
~S has been extended to include soft enhancements), the
parts of the B-meson and light-meson quark and antiquark

lines to which S� ~S attaches, �JK in Eq. (45), and �JB in Eq.
(46). The ~H subdiagram now contains only momenta of
order Q. Consequently, we can contract ~H to a point with
respect to the soft interactions in BK. Then, decoupling the
Dirac and color indices of BK from ~H by making Fierz
rearrangements, we obtain the B-meson-to-light-meson
form factors in Eq. (3) from BK and short-distance coef-
ficients ~He from ~H.

3. NRQCD decomposition of the quarkonium distribution
amplitudes

At this stage, we have achieved the factorized forms of
Eqs. (1) and (2), except that the quarkonium factors are
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expressed in terms of quarkonium distribution amplitudes,
instead of NRQCDmatrix elements. We now argue that the
quarkonium distribution amplitudes can be expanded as a
sum of products of NRQCD matrix elements times short-
distance coefficients.

The �J� distribution amplitude describes the local
creation of a quark-antiquark pair, followed by its evolu-
tion, through QCD interactions, into a quarkonium. The
gluons in the �J� distribution amplitude, which have C�
momentum in the eþe� CM frame or the B-meson rest
frame, have hard, soft, and threshold (potential) momenta
in the quarkonium rest frame. If the �J� distribution ampli-
tude involved only a heavy quark, a heavy antiquark, and
any number of gluons and light-quark-antiquark pairs, then
it is clear that it could be written as a standard NRQCD
decomposition of a full QCD amplitude. That is, it could be
written as a sum over products of short-distance coeffi-
cients times matrix elements of local NRQCD operators.
Lines with virtualities of order mc or greater lie to the
inside of the lower virtuality lines, and could be integrated
out to yield the local NRQCD operators times short-
distance coefficients. Lines with virtualities less than of
order mc are well described by NRQCD and would be
accounted for by the NRQCD matrix elements of these
local operators between the vacuum state and the quark-
onium state.

A complication to this picture arises because the distri-
bution amplitudes also contain eikonal lines, which are
not a part of QCD. However, the attachments of the
eikonal lines to the external heavy-quark and heavy-
antiquark lines at the points xiq and xi �q are separated in

space-time by a distance of order 1=Q. Hence, only
high-virtuality modes can propagate on these lines.
Therefore, they too can be integrated out to yield local
operators times short-distance coefficients. These opera-
tors would involve the gauge field, as well as the quark
and antiquark fields.

Therefore, we can write

�Jþð �q1Þ ¼
X
i

a1ið �q1ÞhH1jOij0i; (50a)

�J�ð �q2Þ ¼
X
i

a2ið �q2ÞhH2jOij0i; (50b)

where a1i and a2i are short-distance coefficients. a1i and
a2i each have two Dirac indices, corresponding to the
quark line and the antiquark line in �Jþ and �J�, respec-
tively. We suppress those indices. We then make the fol-
lowing identifications for the cases of eþe� annihilation, B
decay in the topology of Fig. 2(a), and B decay in the
topology of Fig. 2(b), respectively:

Aij ¼
Z d4 �q1

ð2�Þ4
d4 �q2
ð2�Þ4

~Hð �q1; �q2Þa1ið �q1Þa2jð �q2Þ; (51a)

A0
ijeðy; �Þ ¼

Z d4 �q1
ð2�Þ4

~Hjeð �q1; y; �Þa1ið �q1Þ; (51b)

Aie ¼
Z d4 �q1

ð2�Þ4
~Hea1ið �q1Þ: (51c)

Here, we have also suppressed the Dirac indices on ~H,
which are contracted into the (suppressed) Dirac indices on
a1i and a2j. The identifications in Eq. (51) lead directly to

the factorization formulas in Eqs. (1) and (2).

K. Corrections to factorization

Now let us discuss the corrections to the factorized form.
The most important corrections to the factorized form arise
because of the approximate nature of the cancellations of
the couplings of soft-singular gluons to the color-singlet
quarkonia. These cancellations hold only up to the errors in
the modified soft approximation. We wish to compare the
sizes of these errors relative to the factorized contributions.
In some cases, the contributions from the modified soft
approximation, which ultimately cancel, simply scale with
mc, Q, and v in the same way as the factorized contribu-
tion. However, there can be exceptions to this scaling
because of the specific quantum numbers of the final states
in a given process. We give some examples of such ex-
ceptions below.
Note that, in the case of eþe� annihilation into two

quarkonia, violations of factorization arise only in contri-
butions involving the corrections to the modified soft ap-
proximation for both quarkonia. The reason for this is that,

if the ~S subdiagram decouples from quarkonium i, but not

from quarkonium j, then the ~S subdiagram can be absorbed
into the definition of the ~J subdiagram for meson j. (See
Ref. [16] for a more detailed discussion of this point.)
Now let us discuss the dependence of the relative size of

the corrections to factorization on the orbital angular mo-
menta of the produced quarkonia. The leading errors in the
modified soft approximation are proportional to qi?=Pi �
mcv=Q. Because of their proportionality to qi?, the lead-
ing errors in the modified soft approximation contribute
one unit of orbital angular momentum. Consequently, in
order to yield a Q �Q pair in the quarkonium angular-
momentum state, they must be accompanied by an addi-
tional factor qi?=mc � v from the short-distance produc-
tion process in the case of an S-wave quarkonium and an
additional factor ðqi?=mcÞL�1 � vL�1 from the short-
distance production process in the case of an L-wave
quarkonium with L > 0. The factorized contributions con-
tain a factor vL for each L-wave quarkonium. Therefore,
the factorization-violating contributions are suppressed,
relative to the factorized contributions, by a factor fi �
mcv

2=Q for each quarkonium i in an S-wave state and by a
factor fi �mc=Q for each quarkonium i in a higher
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orbital-angular-momentum state.9 The suppressions of the
factorization-violating contributions that we find here are
consistent with those that were found in Ref. [15].
However, in Ref. [15], powers of v in the factorization-
violating contributions were ignored.

The relative sizes of the corrections to factorization can
depend on additional quantum numbers, beyond the orbital
angular momenta of the quarkonia. Let us mention a few
examples. In the case of production of S-wave quarkonia,
the factorized production process can be suppressed by
powers of mc=Q if it involves a helicity flip. (See, for
example, Ref. [8].) However, we expect such a helicity
suppression to apply to the factorization-violating contri-
butions, as well, and so it should not affect the relative size
of the factorization-violating contributions. In order �0

s ,
B-meson decays do not produce a �c0 or �c2 charmonium
(a J ¼ 0 or J ¼ 2 P-wave state). Those processes are
allowed only in order �s. On the other hand, the
factorization-violating corrections to B-meson decays do
produce �c0 and �c2 charmonia in order �0

s . Therefore, the
factorized process for �c0 or �c2 production is suppressed
by a power of �s, relative to the factorization-violating
process, and may not be dominant. Since the factorization-
violating contributions arise from diagrams in which at
least one gluon has been added to the leading-order pro-
cess, there can also be a dependence of the relative size of
the factorization-violating contributions on the color struc-
ture of the hard subprocess.

In perturbation theory, the factorization-violating con-
tributions may be enhanced by logarithms of Q2=m2

c.
Furthermore, they are infrared divergent. In reality, these
infrared divergences are cut off by nonperturbative effects
associated with confinement. Our analysis does not deter-
mine the size of these factorization-violating contributions:
It only shows that they vanish as one or two powers of f as
f approaches zero. One might use the small parameter f as
an estimate of the size of the factorization-violating con-
tributions. However, the size of the factorization-violating
contributions is an issue that, at present, must be settled
through experiment or, perhaps, lattice simulations.

We note that, at lowest order in v, one sets qi ¼ 0, and
the cancellation of the couplings of soft-singular gluons to

each quarkonium is exact.10 At lowest order in v, only
S-wave quarkonium production is possible. An explicit
calculation of the one-loop corrections to S-wave quark-
onium production in B-meson decays at lowest order in v
[13] confirms our expectation that these corrections are
free of infrared divergences. In the case of double quark-
onium production in eþe� annihilation, the exact cancel-
lation of the couplings of soft-singular gluons holds for
each quarkonium that is treated at lowest order in v. If only

one quarkonium is treated at lowest order in v, then ~S can
be absorbed into a re-definition of the distribution function
of the remaining quarkonium, and the cancellation of
factorization-violating infrared divergences is expected to
be exact. This expectation is confirmed by an explicit
calculation of the one-loop corrections to �½eþe� !
J=c þ �cJ�, where the J=c is treated at lowest order in
v [37]. Even in the case of S-wave quarkonium production,
we expect infrared divergence to appear at higher orders in
v, accompanied by a suppression factor f, as discussed
above.
Finally, we mention that we could have written the col-

linear functions �J� that are associated with each quark-
onium in terms of light-cone distributions instead of
NRQCD matrix elements. The derivation of this result
would entail the use of collinear approximations for the
momenta of the heavy-quark and heavy-antiquark in me-
son 1 (2) in which one neglects the minus (plus) and
transverse components in comparison with the plus (mi-
nus) components. These approximations introduce an error
of relative order fi for each quarkonium, and, in the case of
double-quarkonium production, these errors must be
added, rather than multiplied, in order to obtain the error
for the complete amplitude. In the resulting factorized
expression, no power-suppressed soft divergences would
appear in ~H because, when the quark and antiquark mo-
menta in each quarkonium are taken to be collinear to each,
the cancellation of soft divergences between the quark and
antiquark in each quarkonium is exact. In contrast, in the
factorized expressions involving NRQCD matrix elements
that we have presented, power-suppressed soft divergences
do appear in ~H and must be discarded in order to obtain the
factorized expression. However, as we have said, these
divergences are suppressed as fifj (rather than fi þ fj)

in double-quarkonium production. Hence, in the case of
double-quarkonium production, a factorized expression
involving light-cone distributions for the quarkonia would
be less accurate than the expression involving NRQCD
matrix elements that we have presented.

IV. ONE-LOOP EXAMPLES

In this section, we illustrate some of the features of the
factorization result by presenting some one-loop examples

9In the case of the factorized form for B-meson decays in the
first term of Eq. (2), there are also errors in the cancellation of
the couplings of the soft-singular gluons to the light meson.
These errors are of order qk=Q��QCD=Q relative to the fac-
torized contributions. In addition, there are errors of relative
order �QCD=Q that arise when one expresses the amplitude in
terms of the light-cone distributions for the light meson [Eq. (47)
] and Bmeson [Eq. (48)]. These errors arise because one neglects
in ~H the plus and transverse components of the momenta of the
quark and the antiquark in the light meson and the minus and
transverse components of the momentum of the antiquark in the
B meson. We neglect these errors in comparison with the errors
in the cancellation of the couplings of soft-singular gluons to the
quarkonia.

10This result falsifies the conjecture in Ref. [15] that the soft
cancellation might be inexact in higher orders in �s, even at
lowest order in v.
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for double-charmonium production in eþe� annihilation
and for production of a charmonium and a light meson in
B-meson decay. In our examples, we wish only to identify
the soft divergences, and so we consider the loop gluon to
be soft, and we make use of the soft approximation in our
calculations.

A. Soft approximation

In the general factorization argument, we have taken the
soft approximation to be the replacement

g�� ! k�p�

k 	 p (52)

in the gluon-propagator numerator. Recall that k is the soft-
gluon momentum, that p is the momentum of the line in the
collinear subdiagram, and that � and � correspond to the
attachments of the gluon to the collinear and soft subdia-
grams, respectively. Consider now, for instance, an initial-
state quark with momentum p that absorbs a gluon with
soft momentum k. Then, we can make use of the graphical
Ward identity (Feynman identity) to rewrite the soft ap-
proximation:�

k�p�

k 	 pþ i"

� ðp6 þ k6 Þ þm

ðpþ kÞ2 �m2 þ i"
��uðpÞ

¼ p�

k 	 pþ i"

ðp6 þ k6 Þ þm

ðpþ kÞ2 �m2 þ i"

� ½p6 þ k6 �m� ðp6 �mÞ�uðpÞ
¼
�

p�

k 	 pþ i"

�
uðpÞ: (53)

Since we are interested only in identifying the soft diver-
gences, we eliminate any ultraviolet divergences in loop
integrals, without affecting the soft divergences, by rein-
troducing the k2 terms in the quark and antiquark denom-
inators. That is, we make the substitution

2k 	 pþ i" ! k2 þ 2k 	 pþ i" (54)

in the denominator of the last line of Eq. (53). This is the
form of the soft approximation that we will use. Therefore,
if a quark or antiquark line with physical momentum pi

absorbs a gluon with soft momentum k, color a, and vector
index �, then the full amplitude is approximated as

A½QðpiÞ þ gðkÞ� � gsT
a 2bip

�
i

k2 þ 2aik 	 pi þ i"

�A½QðpiÞ�; (55)

where

ai ¼
�þ1 initial-state particle

�1 final-state particle
; (56a)

bi ¼
�þ1 quark

�1 antiquark
: (56b)

Some of the calculations that we present below involve
soft-gluon loop corrections in which a gluon can be emitted
or absorbed by two particles, each of which can be a quark
or an antiquark. (See Figs. 11 and 12(a)–12(d)). If we
choose the sense of the loop momentum k such that it is
absorbed by the line with momentum pi, then application
of Eq. (55) yields the soft loop factor

Iðpi; pjÞ ¼ �ig2s
Z ddk

ð2�Þd
4bibjpi 	 pj

½k2 þ 2aik 	 pi þ i"�½k2 � 2ajk 	 pj þ i"�½k2 þ i"� ; (57)

where we have regulated the soft divergence by using
dimensional regularization, with d ¼ 4� 2�. The
infrared-divergent part of the multiplicative correction fac-
tor from this soft loop factor is given by

Iðpi;pjÞ¼ �s

4��IR

aiajbibj
��ij

�
ln

�
1� ��ij

1þ ��ij

�
þ2�iij

�
; (58)

where pi is the physical momentum of the particle i,

��ij � ��ðpi; pjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

i p
2
j

ðpi 	 pjÞ2
vuut ; (59a)

ij ¼ 1
2ð1þ aiajÞ: (59b)

(See also Ref. [5]).

B. Exclusive double quarkonium production

In this section we consider double quarkonium produc-
tion in eþe� annihilation, �� ! H1ðP1Þ þH2ðP2Þ.H1 and
H2 are the produced quarkonium states. For definiteness,

we will assume that the produced quarkonia are charmo-
nium states.
Recall that there are QCD and QED contributions to the

Born-level hard-scattering process for double-quarkonium
production in eþe� annihilation. (See Ref. [8] for details.)
However, since this is an exclusive process, only color-
singlet Q �Q pairs can contribute. Therefore, the soft-gluon
loop corrections to the QED diagrams are zero at one loop.
Nonvanishing corrections to the QED diagrams appear
only at two-loop order.
We now write the amplitude as

A soft
1 ¼ RH1þH2

A0C; (60)

where C is the appropriate color factor and RH1þH2
is the

soft loop factor, which is given by

RH1þH2
¼ Iðp1q; p2qÞ þ Iðp1 �q; p2qÞ þ Iðp1q; p2 �qÞ

þ Iðp1 �q; p2 �qÞ: (61)
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We obtain Iðp1i; p2jÞ from Eq. (58). Retaining only those

terms with one or fewer factors of q1 or q2 and discarding
terms containing two or more powers of z ¼ 4m2

c=s, we
obtain

Iðp1i; p2jÞ ¼ �s

4��IR

�
2bibj�iþ bibjð2 lnzþ 4zÞ

� 4bi
P1 	 q2
P1 	 P2

� 4bj
P2 	 q1
P1 	 P2

� 8
q1 	 q2
P1 	 P2

þ 8
P1 	 q2P2 	 q1
ðP1 	 P2Þ2

�
; (62)

where bi is defined in Eq. (56b).

Now let us evaluate the various scalar products that
appear in Eq. (62). From Eqs. (20), (22), and (23), we have

P1 	 P2 ¼ 1
2ðs�M2

1 �M2
2Þ; (63a)

P1 	 q2 ¼ � Q

M2

PCMq̂
z
2; (63b)

P2 	 q1 ¼ þ Q

M1

PCMq̂
z
1; (63c)

q1 	 q2 ¼ �
�
ðP2

CM þ E1E2Þ q̂z1q̂
z
2

M1M2

þ q1? 	 q2?
�

¼ �P1 	 P2

q̂z1q̂
z
2

M1M2

� q1? 	 q2?; (63d)

where

P2
CM ¼ 1

4s
½ðs�M2

1 �M2
2Þ2 � 4M2

1M
2
2�: (64)

Thus, we see that all of the invariants are of order Q2 ¼ s
and that the various terms in Eq. (62) are of order ðmc=QÞ0.
If we add the contributions of Figs. 11(a) and 11(b) or
Figs. 11(c) and 11(d), then the first, second, and third terms
in Eq. (62) cancel. Similarly, if we add the contributions of
Figs. 11(a) and 11(c) or Figs. 11(b) and 11(d), then the first,
second, and fourth terms in Eq. (62) cancel. Therefore, we
obtain

RH1þH2
¼ 8�s

��IR

�
� q1 	 q2
P1 	 P2

þ q1 	 P2q2 	 P1

ðP1 	 P2Þ2
�
: (65)

Now,

� q1 	 q2
P1 	 P2

¼ q̂z1q̂
z
2

M1M2

þ 2q1? 	 q2?
s�M2

1 �M2
2

; (66a)

q1 	 P2q2 	 P1

ðP1 	 P2Þ2
¼ � q̂z1q̂

z
2

M1M2

4sP2
CM

½s�M2
1 �M2

2�2
: (66b)

Therefore, we have

RH1þH2
¼ 16�s

��IR

�
q1? 	 q2?

s�M2
1 �M2

2

þ q̂z1q̂
z
2

2M1M2

½s�M2
1 �M2

2�2
�

� 16�s

��IR

q1? 	 q2?
M2

z� ðmcvÞ2
s

; (67)

where we have used the fact that the components of qi? are
of order mcv. Equation (67) shows explicitly the suppres-
sion of the soft divergence that is expected from the
factorization proof.
We can see that the soft divergent terms are proportional

to one power of q1 and one power of q2. Therefore,
double-S-wave production (�� ! J=c þ 
c) and
S-wave/P-wave production (�� ! J=c þ �c, 
c þ hc)
at one-loop and at leading order in v are free of soft
divergences. This is confirmed by the explicit one-loop
calculations of Refs. [37,38], for the J=c þ 
c and J=c þ
�c cases.

FIG. 11 (color online). One-gluon corrections to the double-
quarkonium production amplitude. The blob labeled H repre-
sents the lowest-order hard-scattering process in which two
heavy quark-antiquark pairs are created.

FIG. 12 (color online). One-gluon corrections to the lowest-
order B decay amplitude. The black square represents the
electroweak interaction.
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Note that, if we consider only the contributions from the
diagrams of Figs. 11(a) and 11(b) or Figs. 11(c) and 11(d),
then the fourth term in Eq. (62) survives. Similarly, if we
consider only the contributions from the diagrams of
Figs. 11(a) and 11(c) or Figs. 11(b) and 11(d), then the
third term in Eq. (62) survives. Each of these terms are of
order ðmc=QÞ0. At first sight, this seems puzzling, since we
expect soft divergences to cancel up to terms of order
mc=Q when we add the contributions from the connections
of a soft gluon to the quark and antiquark in a quarkonium.
The failure of that cancellation in the present case can be
understood because the soft approximation that we have
taken contains enhancements that arise when the gluon
momentum is nearly collinear to either of the quarkonia
momenta. Actual collinear divergences (logarithms of mc)
are absent in the third and fourth terms in Eq. (62) because,
in the one-loop case, they appear with equal strength in the
contributions in which the gluon connects to the quark or
the antiquark in a quarkonium. However, a residual finite
piece of the collinear enhancement survives because the
soft approximations for the quark and antiquark lines are
not equal when the gluon momentum is in the collinear
region. This failure of the soft cancellation when the soft
function contains collinear enhancements was noted in
Ref. [16]. In the proof of factorization that we have given,
such collinear enhancements are removed from the soft
function S and reside in the J� functions and associated
eikonal lines. In our one-loop example, we have neglected
the dependence of the hard function on the momentum of
the gluon. Therefore, the Cþ eikonal lines that arise from
the Cþ enhancements in the diagrams of Figs. 11(a) and
11(c) or Figs. 11(b) and 11(d) cancel, and the C� eikonal
lines that arise from the C� enhancements in the diagrams
of Figs. 11(a) and 11(b) or Figs. 11(c) and 11(d) cancel.
The sum of all four diagrams in Fig. 11 is therefore free of
collinear enhancements that could spoil the soft cancella-
tion and is in accord with the results of the factorization
proof.

C. B-meson decays

In this section we consider decay of a B meson into a
light meson plus a charmonium state. For definiteness, we
take the light meson to be a K meson. Therefore, we have
the process BðpBÞ ! HðP1Þ þ KðpKÞ. H is the produced
charmonium state, which we take to be a 3PJ state. The
one-soft-gluon corrections to the lowest-order decay am-
plitude are represented in Fig. 12. We refer to
diagrams (a)–(d) as vertex corrections and to
diagrams (e) and (f) as spectator contributions.

1. Vertex corrections

In discussing soft contributions to the vertex corrections,
we assume that the light quark has a small massms, and we
work in the limitms ! 0. In order to make contact with the
results in Ref. [39], we neglect qk ¼ �ypK þ pkq in com-

parison with pK, and we neglect qB ��QCD in comparison

with mb. We keep terms containing zero or one power of
q1.
For the vertex corrections in which the soft gluon at-

taches to the light-quark line [Figs. 12(c) and 12(d)], we
obtain

��ðpkq; p1qð �qÞÞ ¼ 1� 8
m2

cm
2
s

y2ðm2
b � 4m2

cÞ2

�
�
1� 8

pb 	 q1
m2

b � 4m2
c

�
: (68)

The upper sign corresponds to the quark with momentum
p1q, and the lower sign corresponds to the antiquark with

momentum p1 �q. The soft loop factor is then given by

Iðpkq; p1qð �qÞÞ ¼ � �s

4��IR

�
ln

�
8

m2
cm

2
s

y2ðm2
b � 4m2

cÞ2
�

� 8
pb 	 q1

ðm2
b � 4m2

cÞ
þ 2�i

�
: (69)

This expression contains collinear divergences, which
manifest themselves when we take ms ¼ 0. The divergen-
ces arise because the soft expressions contain contributions
from C� momentum. However, as we have explained in
Sec. IVB, at one-loop order, the collinear divergences
cancel when one sums over the connections to the quark
and the antiquark in the charmonium. Computing that sum,
we obtain

Iðpkq; p1qÞ þ Iðpkq ; p1 �qÞ ¼ � 16�s

4��IR

pb 	 q1
ðm2

b � 4m2
cÞ

¼ � 16�s

4��IR

pb 	 q1
m2

bð1� zÞ ; (70)

where, again, z ¼ 4m2
c=m

2
b.

For the vertex corrections in which the soft gluon at-
taches to the b-quark line [Figs. 12(a) and 12(b)], we obtain

��ðpb; p1qð �qÞÞ ¼ �1ð1� �1Þ; (71)

with

�1 ¼ m2
b � 4m2

c

m2
b þ 4m2

c

; �1 ¼ 64m2
cm

2
bpb 	 q1

ðm2
b þ 4m2

cÞðm2
b � 4m2

cÞ2
:

(72)

The corresponding soft loop factors are given by

Iðpb; p1qð �qÞÞ ¼ �s

4��IR

�
� 1

�1

ln

�
1þ �1

1� �1

�

þ �1

�1

�
ln

�
1� �1

1þ �1

�
þ 2�1

1� �2
1

��
: (73)

Summing over both diagrams in Figs. 12(a) and 12(b), we
obtain
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Iðpb; p1qÞ þ Iðpb; p1 �qÞ ¼ 2�s

4��IR

�1

�1

�
ln

�
1� �1

1þ �1

�

þ 2�1

1� �2
1

�

¼ 16�s

4��IR

pb 	 q1
m2

b

2z

ð1� zÞ3

�
�
lnzþ 1� z2

2z

�
: (74)

As we have explained in Sec. IVB, it is necessary to add
the contributions of all four diagrams in order obtain the
suppression of the infrared-divergent terms because the
soft expressions contain Cþ contributions that spoil the
soft cancellation. Those Cþ contributions, which corre-
spond to Cþ eikonal lines in the general factorization
proof, cancel at one-loop order when one sums over the
connections to the b quark and the light quark. When we
add the contributions of all four diagrams, i.e., Eqs. (70)
and (74), the leading term does indeed cancel, and we
obtain

Iðpkq; p1qÞ þ Iðpkq ; p1 �qÞ þ Iðpb; p1qÞ þ Iðpb; p1 �qÞ

¼ 16�s

4��IR

pb 	 q1
m2

b

2z
1� zþ lnz

ð1� zÞ3 : (75)

The remaining infrared-divergent terms are suppressed at
least as z lnz. We generally expect a suppression of the
factorization-violating contributions by only a factor

ffiffiffi
z

p
.

However, as we have mentioned in Sec. III K, the suppres-
sion factor can become z for production of P-wave quar-
konia if one neglects the transverse momenta of the
constituents of the B meson and the light meson, as we
are doing in the present example. As was noted in
Ref. [39], the expression in Eq. (75) gives a nonvanishing
contribution to the production of a 3PJ charmonium only if
J ¼ 0 or J ¼ 2. The Born-level cross section to produce a
3PJ charmonium with J ¼ 0 or J ¼ 2 vanishes, and so the
violations of factorization are suppressed only as z lnz=�s

with respect to the leading factorizing terms.
Finally, we mention that, when we include the Born

factors in the amplitude, along with the soft factor, and
decompose q1 and the quarkonium spin polarization �?

into the J ¼ 0 and J ¼ 2 angular-momentum tensors, then
we obtain agreement with the results in Eqs. (14) and (16)
of Ref. [39].

2. Spectator contributions

In the spectator contributions of Figs. 12(e) and 12(f),
we initially assume that pl, qk and �ypK are all of order
�QCD. Then, because the gluon in Figs. 12(e) and 12(f)

carries momentum pk �q
� pl ��QCD, the heavy-quark or

heavy-antiquark propagator is off shell by order mb�QCD.

That is, its momentum is in the semihard region. Therefore,
in this example, we are discussing the further factorization

of the gluons with end-point soft momenta that was de-
scribed in Sec. III J 2. Eventually, we wish to make contact
with the results in Ref. [39]. In that work, qk ¼ �ypK � pk �q

was neglected in comparison with �ypK. Neglecting qk
generates end-point divergences in �y that are cut off in
our model when �ypK � qk ��QCD. Our discussion in this

example also applies to the cancellation of those end-point
divergences.
Since the gluon in Figs. 12(e) and 12(f) carries momen-

tum of order �QCD or less, we can apply the soft approxi-

mation to the connections of the gluon to the heavy-quark
and heavy-antiquark lines. Keeping terms up to order q1,
we find that the soft factor for the heavy quark and anti-
quark lines for sum of the diagrams in Figs. 12(e) and 12(f)
is

S� ¼ 1

ðpk �q
� plÞ2

4

P1 	 ðpk �q
� plÞq

0
�; (76)

where

q0 ¼ q1 � P1

q1 	 ðpk �q
� plÞ

P1 	 ðpk �q
� plÞ ; (77)

and we have included the factor 1=ðpk �q
� plÞ2 from the

gluon propagator in S�. We note that S� is proportional to

q�mcv. We will concern ourselves only with the contri-
butions to the production a P-wave quarkonium at leading
order in v. Therefore, we can retain only terms of leading
order in v in the remaining factors that are associated with
the heavy quarkonium.
In computing the remaining factors in the spectator

amplitudes, we make use of the quark-antiquark spin-
projection operators that are given in the Appendix. In
the projector for heavy quark and antiquark, we take the
spin-triplet case, which corresponds to the calculation for
the �cJ in Ref. [39]. The projector for a charm-quark pair
production can be obtained by setting mq ¼ m �q ¼ mc and

Eq þ E �q ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ q̂2i

q
in Eq. (A9b). Retaining only the

terms of leading order in v and using relativistic normal-
ization, we have

�� onium
3 � � 1

2
ffiffiffi
2

p 6�?ðP6 1 þ 2mcÞ: (78)

We obtain the B-meson projector by setting mq ¼ mb,

Eq ¼ mb,m �q ¼ ml, and E �q ¼ El in Eq. (A6) and retaining

the terms of leading order in �QCD. Using relativistic

normalization, we have

�B
1 � CBðp6 b þmbÞ�5

�
1� p6 l

ml

�
; (79)

where the light-antiquark massml is of order�QCD and the

factor CB is defined by

CB ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml

mbð1þ El=mlÞ
s

: (80)
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Similarly, we obtain the K-meson projector by retaining
the terms in Eq. (A9a) of leading order in �QCD. Using

relativistic normalization, we have

�K
1 � CK

��
1þ

�
m �q

mq

� 1

�
y

�
p6 K�5 � 1

mq

p6 Kq6 k�5

�
; (81)

where we have retained small masses mq and m �q of order

�QCD for the quark and antiquark, respectively. The coef-

ficient CK is defined by

CK ¼ mqðEq þmq þ E �q þm �qÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEq þmqÞðE �q þm �qÞ

q
ðEq þ E �qÞ

: (82)

Now, the trace over the heavy quark and antiquark lines
is

U� ¼ Tr½�onium
3 ��ð1� �5Þ� � �2

ffiffiffi
2

p
mc�

?
�: (83)

The factor ��ð1� �5Þ comes from the V � Aweak vertex.

The trace over the B-meson and light-meson quark and
antiquark lines is

L�
� ¼ Tr½�K

1 ��ð1� �5Þ�B
1�

��
� CBCK Tr

��
p6 K�5 � 1

m
p6 Kq6 k�5

�
��ð1� �5Þ

� ðp6 b þmbÞ�5

�
1� p6 l

m

�
��

�
; (84)

where the factor ��ð1� �5Þ comes from the V � A weak

vertex, and, for simplicity, we have set mq ¼ m �q ¼ ml ¼
m. The complete amplitude corresponding to the diagrams
in Figs. 12(e) and 12(f) is

Aspectator ¼ �ig2CFCEW

N3=2
c

S�U
�L�

�

� �ig2CFCBCKCEW

N3=2
c

8
ffiffiffi
2

p
mc

ðpl � pk �q
Þ2P1 	 ðpk �q

� plÞ

� Tr

��
�p6 K�5 þ p6 Kq6 k�5

m

�
6��ð1� �5Þ

� ðp6 b þmbÞ�5

�
1� p6 l

m

�
q6 0
�
: (85)

Here, CEW ¼ ðGF=
ffiffiffi
2

p Þ½VcbV
�
csC1 � VtbV

�
tsðC4 þ C6Þ�,

where GF is the Fermi constant, the Vq1q2 are the

Cabibbo-Kobayashi-Maskawa matrix elements, and the
Ci are the Wilson coefficients of the effective electroweak
Hamiltonian. (See, for example, Ref. [39] for details.)

In Eq. (85), the terms proportional to the spatial compo-
nents of pl vanish upon integration over the angles that are
associated with those spatial components. Then, using the
fact that �0 � p6 b=mb, up to terms of relative order
�QCD=mb, we can write

Aspectator � �ig2CFCBð1þ El=mÞCKCEW

N3=2
c

� 8
ffiffiffi
2

p
mc

ðpk �q
� plÞ2P1 	 ðpk �q

� plÞ

� Tr

��
�p6 K�5 þ p6 Kq6 k�5

m

�
6��ð1� �5Þ

� ðp6 b þmbÞ�5q6 0
�
: (86)

The gamma-matrix factors in this expression that are asso-
ciated with the B meson correspond to the leading-twist
B-meson light-cone�B1 in Eq. (5). Expanding terms inside
the trace, we have

Aspectator � �ig2CFCBð1þ El=mÞCKCEW

N3=2
c

� 8
ffiffiffi
2

p
mc

ðpk �q
� plÞ2P1 	 ðpk �q

� plÞ
� f�Tr½p6 K 6��ð1� �5Þp6 bq6 0�
� ðmb=mÞTr½p6 Kq6 k 6��ð1� �5Þq6 0�g

� �ig2CFCBð1þ El=mÞCKCEW

N3=2
c

� 8
ffiffiffi
2

p
mc

ðpk �q
� plÞ2P1 	 ðpk �q

� plÞ
ðT1 þ T2Þ: (87)

In evaluating the sizes of the contributions to Aspectator,
we make use of the orders of magnitude of the components
of the various four vectors in the B-meson rest frame. Some
of these are given in Eqs. (15a), (18), (25), and (88). In the
case of q0, we see from Eq. (22) that, in the B-meson rest
frame,

ðq0Þþ � vmc; (88a)

ðq0Þ� � vm2
c=mb; (88b)

q0? � vmc: (88c)

This is in contrast with either P or q, which, as can be seen
from Eq. (25), have plus components that are of order mb

and vmb, respectively. The suppression of the plus compo-
nent of q0 is a consequence of the soft cancellation.
Now consider the contribution of T1 in Eq. (87). T1

comes from the �p6 K�5 term in the first parenthesis in
Eq. (86), which corresponds to the leading-twist light-
meson light-cone distribution. The contribution of T1 is
proportional to the one that was considered in Ref. [39].
Evaluating the trace in T1, we obtain

T1 ¼ �4ðpK 	 �?pb 	 q0 � pK 	 pb�
? 	 q0

þ pK 	 q0�? 	 pb � i�����pk��
?
�pb�q

0
�Þ; (89)

where we have used the convention Tr½�5a6 b6 c6 d6 � ¼
4i�����a

�b�c�d�, with �0123 ¼ ��0123 ¼ 1. It is now

easily seen that the terms in Eq. (89) are of order vm3
b,
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vmcm
2
b, vm

3
b, and vmcm

2
b, respectively. We can compare

this contribution with the individual contributions that
appear before we apply the soft cancellation or with the
contributions in which the gluon in Figs. 12(e) and 12(f)
attaches at its upper end to the quark lines from the B
meson or the K meson. In the cancelling contributions, q0
in T1 is replaced with P, and T1 becomes of order m4

b=mc.

Thus, we see that Eq. (89) is suppressed as vmc=mb

relative to the cancelling contributions, in agreement with
what we expect for the soft cancellation from the general
factorization proof. In the contributions in which the gluon
in Figs. 12(e) and 12(f) attaches at its upper end to the
quark lines from the B meson or the K meson, which are
factorizing contributions that contribute to the
B-meson-K-meson form factor, q0 in T1 is replaced with
pb or pK. With this replacement, T1 is again of order
m4

b=mc. However, as we have mentioned, the Born-level

factorizing contributions to the production of a 3PJ char-
monium with J ¼ 0 or J ¼ 2 vanish, and so the contribu-
tions of Eq. (89) are suppressed as mcv=ð�smbÞ relative to
the leading factorizing contributions.

Next consider the contribution of T2 in Eq. (87), which
comes from the p6 Kq6 k�5=m term in the first parenthesis in
Eq. (86). The leading contributions in T2 are of order vm

3
b

and are suppressed by a factor mcv=ð�smbÞ relative to the
factorizing terms. However, the leading contributions in T2

are proportional to the transverse components of qk. Upon
integration of T2 over the angles of the transverse compo-
nents of qk, these leading contributions vanish. From Eq.
(18), we see that the minus component of qk vanishes and
that the plus component of qk is suppressed by a factor
�QCD=mb relative to the transverse components. Hence,

the contributions of T2 are suppressed by a factor
�QCDmcv=ð�sm

2
bÞ relative to the factorizing terms, and

are negligible in comparison with the other factorization-
violating contributions.

Now let us retain only the leading contribution to
Aspectator, which is proportional to T1. As we have men-
tioned, this contribution is the one that was considered in
Ref. [39]. In that calculation, light-quark masses were
taken to be zero, qk ¼ �ypK � pk �q

was neglected in com-

parison with �ypK, and pl was taken to have only a plus
component, which is written as pþ

l ¼ �pþ
B � �pþ

b . Under

these assumptions, pk �q
¼ �ypK, which has only a minus

component that is nonzero, q0 ¼ q1 � P1ðq1 	 pKÞ=ðP1 	
pKÞ, and ðq0Þþ ¼ 0. Then, the resulting contribution is

Aspectator � �ig2CFCBð1þ El=mÞCKCEW

N3=2
c

� 16
ffiffiffi
2

p
mc

� �y2pK 	 pbP1 	 pK

� ðpK 	 �?pb 	 q0 � pK 	 pb�
? 	 q0

� i�����pk��
?
�pb�q

0
�Þ; (90)

which yields an end-point divergence, owing to the factor
�y2 in the denominator. The terms in parentheses in Eq. (90)
are all of order vmcm

2
b. That is, there is a suppression

factor, relative to the cancelling terms, of order m2
c=m

2
b.

From the arguments of Sec. III K, we expect such a sup-
pression because we are neglecting the transverse momenta
of the constituents of the B meson and the light meson. In
order to make contact with the calculation of Ref. [39], we
make the replacements CBð1þ El=mÞ ! ð�i=4ÞfB�Bð�Þ
and CK ! ði=4ÞfK�KðyÞ, multiply by a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�c

=ð2mcÞ2
q

� ffiffiffiffiffiffiffiffiffiffiffi
1=mc

p
to compensate for the normal-

ization of the quarkonium state relative to the normaliza-
tions of the quark and antiquark states, multiply by a
P-wave quarkonium spatial wave function, and integrate
over the wave-function momentum. Then, decomposing q
and �? into J ¼ 0 and J ¼ 2 angular-momentum tensors,
we obtain agreement between Eq. (90) and the divergent
terms in Eqs. (15) and (17) of Ref. [39].11 We find in the
J ¼ 1 case that

fII ¼ � 4
ffiffiffi
2

p
�� 	 pbz

m2
bð1� zÞ2

Z 1

0
d�

�Bð�Þ
�

Z 1

0
dy

�KðyÞ
�y2

; (91)

where fII is defined in Ref. [39] and we have retained only
the infrared-divergent terms.

V. SUMMARYAND DISCUSSION

In this paper, we have given detailed proofs, valid to all
orders in �s, of factorization theorems for two exclusive
quarkonium-production processes: the production of two
quarkonia in eþe� annihilation and the production of a
charmonium and a light-meson in B-meson decays. We
have supplemented our proofs with one-loop examples of
the factorization and cancellation of soft singularities. (See
Sec. IV.) Proofs of these factorization theorems were
sketched in Ref. [15]. In the present paper, we have pro-
vided more detailed arguments. The proofs in Ref. [15] did
not consider the possibility that on-shell lines could emit
gluons with arbitrarily small momenta. Such a possibility
arises, for example, when one computes short-distance
coefficients by making use of on-shell matching condi-
tions. In the present paper, we have shown that factoriza-
tion still holds when one takes into account this possibility.
We have also given more refined estimates of the violations
of factorization than were given in Ref. [15], by consider-
ing the dependence of such violations on the velocity v of
the heavy quark or antiquark in the quarkonium rest frame.
We note that, although our proofs are demonstrated in
models in which external lines are taken to be on the
mass shell, the methods of these proofs would apply to

11We have also checked that, if we keep the exact expression,
rather than taking the soft approximation, then we obtain the
finite terms in Eqs. (15) and (17) of Ref. [39].
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off-shell models as well, provided that the models maintain
gauge invariance.

In the proofs of factorization, our general strategy has
been to identify soft singularities, collinear singularities,
and would-be collinear singularities that appear in the limit
of zero heavy-quark mass. By demonstrating the factoriza-
tion of these singularities and would-be singularities, we
are able to argue that the associated logarithmic enhance-
ments also factorize. Once the logarithmic enhancements
have been removed, the remainder of the production am-
plitude can depend only on the hard scale and, hence, is
perturbatively calculable.

In demonstrating the factorization of singularities and
would-be singularities, we have made use of standard
techniques (see, for example, Refs. [25–28]), but we have
had to augment them in order to deal with the situation in
which low-energy collinear gluons attach to soft gluons.
For this purpose, we made use of the approach developed
in Ref. [16] in the context of the production of light mesons
in eþe� annihilation. The methods of proof that we have
given here should, generally, be applicable to proofs of
factorization for other exclusive processes in QCD.

Our factorized form for exclusive production of two
quarkonia in eþe� annihilation is given in Eq. (1). The
expression in Eq. (1) has been used in leading-order and
next-to-leading-order calculations of exclusive double-
charmonium production. It is generally referred to as the
‘‘NRQCD factorization’’ formula.

Our factorized form for the exclusive production of a
charmonium and a light meson in B decays is given in Eq.
(2). An expression of the form in Eq. (2) was suggested in
Ref. [12] on the basis of an analysis of B-meson decays to
light mesons. (In Ref. [12], the factorized form was written
in terms of the quarkonium light-cone distribution, rather
than in terms of NRQCD matrix elements.) In Ref. [12], it
was conjectured that the violations of factorization should
vanish in the limit mc ! 0, but a detailed analysis of the
scaling of the violations of factorization withmc,mb, and v
was not given.

We find, generally, that the violations of factorization are
suppressed by a factor fi ¼ mcv

2=Q for each charmonium
i in an S-wave state and by a factor fi ¼ mc=Q for each
charmonium i in a higher orbital-angular-momentum state,
where Q ¼ ffiffiffi

s
p

is the CM energy in eþe� annihilation and
Q ¼ mB in B-meson decays. Because the violations of
factorization are proportional to v, they vanish (up to
corrections that are proportional to �QCD=Q) if one works

to order v0 in one charmonium. This statement has been
confirmed in calculations at order �s (Refs. [13,37]).

In the case of B-meson decays, the error-suppression
factors for S-wave and P-wave charmonia are fi ¼
v2mc=mb and fi ¼ mc=mb, respectively. These are not
particularly small, and the violations of factorization may
well be comparable to the factorized contributions. In the
case of eþe� annihilation, the error-suppression factors are

smaller by a factor mb=
ffiffiffi
s

p
than in the case of B-meson

decays. Furthermore, there is a suppression factor for each
quarkonium in the process. Hence, in the case of eþe�
annihilation, the errors are likely to be sufficiently small
that the factorization formula would be useful. Since the
coefficients of the suppression factors are nonperturbative
quantities, their sizes must be determined, at present,
through phenomenological studies.
In special cases, the relative sizes of the violations of

factorization may be enhanced because of quantum-
number considerations. For example, in B-meson decays,
the production of 3P0 or

3P2 charmonia through factorized

contributions is not allowed in order �0
s . The production of

3P0 or
3P2 charmonia through factorization-violating con-

tributions does occur in order �0
s . Therefore, in these cases,

the violations of factorization are enhanced by a factor
1=�s relative to the factorized contributions.
Finally, we mention that we could have written the col-

linear functions �J� that are associated with each quark-
onium in terms of light-cone distributions instead of
NRQCD matrix elements. As we have explained in
Sec. III K, such an approach yields a hard-scattering func-
tion ~H that is manifestly free of soft divergences. In con-
trast, in the factorized expressions involving NRQCD
matrix elements that we have presented, power-suppressed
soft divergences do appear in ~H and must be discarded. In
the case of double-charmonium production, these soft
divergences are suppressed as fifj, while the corrections

to the light-cone-distribution factorization formula are sup-
pressed only as fi þ fj. Therefore, in the case of double-

charmonium production, the factorized expression involv-
ing NRQCD matrix elements that we have presented is
more accurate than a factorized expression involving light-
cone distributions for the quarkonia.
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APPENDIX: SPIN PROJECTORS

In this appendix we derive quark-antiquark spin projec-
tors for the case in which the quark and antiquark have
different masses. We take the momentum of the quark to be
pq and the momentum of the antiquark to be p �q, with both

the quark and the antiquark on shell: p2
q ¼ m2

q, p
2
�q ¼ m2

�q.

Therefore, in the quark-antiquark CM frame we have
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p̂q ¼ ðEq;þq̂Þ; (A1a)

p̂ �q ¼ ðE �q;�q̂Þ; (A1b)

where Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ q̂2
q

, E �q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�q þ q̂2
q

, and q̂ is the

quark three-momentum in the CM frame. It follows that

pq ¼
Eq

Eq þ E �q

Pþ q; (A2a)

p �q ¼
E �q

Eq þ E �q

P� q; (A2b)

where P ¼ pq þ p �q and, in the CM frame, P and q are

given by

P̂ ¼ ðM; 0Þ; (A3a)

q̂ ¼ ð0; q̂Þ; (A3b)

where M ¼ Eq þ E �q.

The quark and antiquark spinors are given by

uðpq; sqÞ ¼ Nq

ðEq þmqÞ�ðsqÞ
q 	 ��ðsqÞ

 !
; (A4a)

vðp �q; s �qÞ ¼ N �q

�q 	 �
ðs �qÞ
ðE �q þm �qÞ
ðs �qÞ

 !
; (A4b)

where the normalization factors are

Ni ¼
� ½2EiðEi þmiÞ��ð1=2Þ nonrelativistic;
½Ei þmi��ð1=2Þ relativistic

(A5)

for i ¼ q or �q. Here, �ðsqÞ and 
ðs �qÞ are the two-

component spinors for the spin states sq and s �q, respec-

tively, with 
 in a representation that is conjugate to that of
�. It then follows straightforwardly that the spin-singlet
projector is given by

�1ðpq;mq;p �q;m �qÞ ¼
X
sq;s �q

uðpq; sqÞ �vðp �q; s �qÞ
�
1

2
sq;

1

2
s �q

								00



¼� NqN �q

2ðEq þE �qÞ
ffiffiffi
2

p ðp6 q þmqÞ

� ðP6 þEq þE �qÞ�5ðp6 �q �m �qÞ

¼ �ðEq þmq þE �q þm �qÞNqN �q

2
ffiffiffi
2

p ðEq þE �qÞ
� ðp6 q þmqÞ�5ðp6 �q �m �qÞ; (A6)

and the spin-triplet projector is given by

�3ðpq;mq;p �q;m �q;	Þ¼
X
sq;s �q

uðpq;sqÞ �vðp �q;s �qÞ
�
1

2
sq;

1

2
s �q

								1	



¼ NqN �q

2ðEqþE �qÞ
ffiffiffi
2

p ðp6 qþmqÞ

�ðP6 þEqþE �qÞ6�ð	Þðp6 �q�m �qÞ;
(A7)

where �ð	Þ is the polarization vector of the spin-triplet
state whose components in the quarkonium rest frame are

�ð�Þ ¼ � 1ffiffiffi
2

p ð1;�i; 0Þ; (A8a)

�ð0Þ ¼ ð0; 0; 1Þ: (A8b)

The results in Eqs. (A6) and (A7) are equivalent, in the
equal-mass case to those in Ref. [40].
Note that the spin projectors �i in Eqs. (A6) and (A7)

are for the decay of a q �q pair. The projectors ��i for the
production of a q �q pair can be obtained in a similar manner
as

��1ðpq;mq; p �q; m �qÞ ¼
X
sq;s �q

�
1

2
sq;

1

2
s �q

								00


vðp �q; s �qÞ �uðpq; sqÞ

¼ NqN �q

2ðEq þ E �qÞ
ffiffiffi
2

p ðp6 �q �m �qÞ�5ðP6 þ Eq þ E �qÞðp6 q þmqÞ

¼ ðEq þmq þ E �q þm �qÞNqN �q

2
ffiffiffi
2

p ðEq þ E �qÞ
ðp6 �q �m �qÞ�5ðp6 q þmqÞ; (A9a)

��3ðpq;mq; p �q; m �q; 	Þ ¼
X
sq;s �q

�
1

2
sq;

1

2
s �q

								1	


vðp �q; s �qÞ �uðpq; sqÞ

¼ NqN �q

2ðEq þ E �qÞ
ffiffiffi
2

p ðp6 �q �m �qÞ6��ð	ÞðP6 þ Eq þ E �qÞðp6 q þmqÞ: (A9b)

The relationship between �i and
��i is

�� i ¼ �0�y
i �

0: (A10)
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