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We investigate the relation between the known decompositions of the nucleon spin into its constituents,

thereby clarifying in what respect they are common and in what respect they are different essentially. The

decomposition recently proposed by Chen et al. can be thought of as a nontrivial generalization of the

gauge-variant Jaffe-Manohar decomposition so as to meet the gauge-invariance requirement of each term

of the decomposition. We however point out that there is another gauge-invariant decomposition of the

nucleon spin, which is closer to the Ji decomposition, while allowing the decomposition of the gluon total

angular momentum into the spin and orbital parts. After clarifying the reason why the gauge-invariant

decomposition of the nucleon spin is not unique, we discuss which decomposition is more preferable from

an experimental viewpoint.
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I. INTRODUCTION

After years of theoretical and experimental efforts, it has
been established that only about 1=3 of the nucleon spin
comes from the intrinsic quark spin [1–4]. However, the
following question still remains to be solved. What carries
the remaining 2=3 of the nucleon spin? Is it gluon polar-
ization? Or, is it orbital angular momentum of quarks and/
or gluons? When discussing the spin contents of the nu-
cleon, however, one must be careful about the fact that the
decomposition of the nucleon spin is not necessarily
unique. (One should also keep in mind the scale-dependent
nature of the nucleon spin contents [5–9].) There have been
two popular decompositions of the nucleon spin. One is the
Jaffe-Manohar decomposition [10], while the other is the Ji
decomposition [11]. Recently, still another decomposition
of the nucleon spin has been proposed and advocated by
Chen et al. [12,13]. A natural question is how are they
mutually related and in what respect are they essentially
different?

Since the essential physics seems to be common in two
gauge theories, i.e. QED and QCD, we start by explaining
the problem in the former case, which is theoretically
simpler. The most popular gauge-invariant angular-
momentum decomposition of the coupled electron-photon
system is given by

JQED ¼
Z

c y 1
2
�c d3xþ

Z
c yx� 1

i
Dc d3x

þ
Z

x� ðE�BÞd3x
¼ Se þ Le þ J�; (1)

with D � r� ieA the covariant derivative. This corre-
sponds to the Ji decomposition of the nucleon spin in the
case of QCD [11]. An advantage of this decomposition is

that each piece of the decomposition is separately gauge
invariant. What is lacking, however, is a further decom-
position of the total angular momentum of the photon into
the intrinsic spin and orbital parts. The decomposition of
J� into the spin and orbital parts is known to be made by
adding to Eq. (1) a surface term

Z
rj½Ejðx�AÞ�d3x; (2)

which vanishes after integration. The result is well known:

JQED ¼
Z

c y 1
2
�c d3xþ

Z
c yx� 1

i
rc d3x

þ
Z

E�Ad3xþ
Z

Eix�rAid3x

¼ Se þ Le0 þ S�0 þ L�0: (3)

It corresponds to the Jaffe-Manohar decomposition of
nucleon spin in the case of QCD [10]. It seems natural to
identity the above four terms as the electron spin, electron
orbital angular momentum, photon spin, and photon orbital
angular momentum, respectively. However, the problem is
that, except for the electron spin part, all of the other terms
in this decomposition are gauge dependent so that they
have an obscure physical meaning.
A new proposal by Chen et al. appears to circumvent this

difficulty [12,13]. A principle idea is to decompose the
vector potential A into the two parts, Apure and Aphys,

satisfying the condition

r �Aphys ¼ 0; r�Apure ¼ 0: (4)

As we shall see later in more detail, Aphys and Apure are

nothing but the transverse and longitudial components of
the vector potentialA. By adding to Eq. (1) another surface
term

Z
rj½Ejðx�ApureÞ�d3x; (5)
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they obtain a new decomposition of the angular momentum
in QED:

JQED ¼
Z

c y 1
2
�c d3xþ

Z
c yx� 1

2
Dpurec d3x

þ
Z

E�Aphysd
3xþ

Z
Ejðx�rÞAj

physd
3x

¼ Se þLe00 þ S�00 þL�00; (6)

where Dpure ¼ r� ieApure. A great advantage of this

decomposition is that, while allowing the decomposition
of J� into the spin and orbital parts, each of the four terms
is separately gauge invariant. This statement can easily be
checked by using the gauge transformation property of
Apure and Aphys:

A pure ! A0
pure ¼ Apure þr�; (7)

A phys ! A0
phys ¼ Aphys: (8)

Another remarkable feature of this new decomposition is
that, in a particular gauge, i.e. in the Coulomb gauge, in
which Apure ¼ 0 and A ¼ Aphys, it is reduced to the de-

composition (3), which corresponds to the Jaffe-Manohar
decomposition in the QCD case.

Extending the analysis to the QCD case, Chen et al.
derived a new gauge-invariant decomposition of the nu-
cleon spin, which is a generalization of (6). As a by-
product of this analysis, they come to propose and advocate
a new gauge-invariant decomposition of the total linear
momentum in QCD given as

P QCD ¼
Z

c y 1
i
Dpurec d3xþ

Z
EiDpureA

i
physd

3x

¼ Pq00 þ Pg00; (9)

with the definition of the covariant derivatives, Dpure ¼
r� igApure and Dpure ¼ r� ig½Apure; ��. This is appar-
ently different from the standardly known decomposition
given by

PQCD ¼
Z

c y 1
i
Dc d3xþ

Z
E� Bd3x;

¼ Pq þ Pg; (10)

with D � r� igA being the convariant derivative con-
taining the full gluon field A. Based on the decomposition
(9), they argue that the standard picture of the nucleon
momentum partition within the framework of the pertur-
bative QCD is drastically modified, thereby being led to a
surprising conclusion that the gluon carries only about 1=5
of the total nucleon momentum in the asymptotic limit
Q2 ! 1 [13], in sharp contrast to the standardly believed
value 1=2. The conflict appears to stem from the fact that
the decomposition of the total momentum into the quark
and gluon parts is not unique even if the gauge invariance is

imposed. The same problem turns out to occur also in the
decomposition of the nucleon spin.
The purpose of the present paper is to clarify the relation

between the known decompositions of the nucleon spin
and to show how they are related and in what respect they
are critically different. We will show that the gauge-
invariance requirement alone does not allow unique de-
composition of the nucleon spin. As can be anticipated, the
ambiguity originates from the quark-gluon interaction,
which cannot simply be separated from the others for a
strongly coupled gauge system. It is shown that there exist
two complete decompositions of the nucleon spin, i.e. the
decomposition into the quark spin, the quark orbital angu-
lar momentum, the gluon spin, and the gluon orbital angu-
lar momentum, each of which is separately gauge
invariant. One is the decomposition proposed by Chen
et al., while the other is a new decomposition proposed
in this paper. Which of these two decompositions is physi-
cally more preferable will be discussed from the standpoint
of observability.

II. QED CASE

To make the essential physics as clear as possible, we
start our analysis with the gauge-invariant decomposition
of the total linear momentum in an interacting electron and
photon system. Here, we rederive the decomposition of
Cheng et al. in a slightly different manner as they did, since
it is expected to clarify the physics meant by their decom-
position. The starting point is the familiar gauge-invariant
decomposition of the total linear momentum:

P QED ¼
Z

c y 1
i
Dc d3xþ

Z
E�Bd3x ¼ Pe þ P�;

(11)

with D ¼ r� ieA. Similarly as Chen et al. did, we
introduce a decomposition of the vector potential A into
the longitudinal and transverse parts as

A ¼ Ak þA?; (12)

with the conditions

r �A? ¼ 0; (13)

and

r�Ak ¼ 0: (14)

Here, we adopt the notationAk andA? for the longitudinal

and transverse components, since it is a more familiar
notation. (The above decomposition is known to be unique,
once the coordinate system is fixed [14–16].) The gauge
transformation property of the relevant fields are given (in
the natural unit) by

A0 ! A00 ¼ A0 � _�ðxÞ; (15)
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A k ! A0
k ¼ Ak � r�ðxÞ; (16)

A? ! A0
? ¼ A?: (17)

In correspondence with the above decomposition ofA, the
electric field E can also be decomposed into the longitu-
dinal and transverse parts as

E ¼ Ek þE?; (18)

where

E k ¼ �rA0 � _Ak; (19)

E? ¼ � _A?: (20)

On the other hand, only the transverse part ofA contributes
to the magnetic field B, since

B ¼ r�A ¼ r�A?: (21)

It is important to recognize that each part ofE, i.e. either of
Ek or E?, is separately invariant under the gauge trans-

formations (16) and (17). This means that the photon
momentum P� in (11) can be gauge invariantly decom-
posed into two parts as [14–16]

P � ¼ P�
long þ P�

trans; (22)

with

P �
long ¼

Z
Ek � Bd3x ¼

Z
Ek � ðr �A?Þd3x; (23)

P �
trans ¼

Z
E? � Bd3x ¼

Z
E? � ðr�A?Þd3x: (24)

Using the transverse condition r �A? ¼ 0, P�
trans can

readily be transformed into the form

P �
trans ¼

Z
Ej
?rAj

?d
3x: (25)

On the other hand, after partial integration and dropping

the surface term, Plong
� can be written as

P �
long ¼

Z
ðrEj

kÞAj
?d

3xþ
Z
ðr �EkÞA?d3x: (26)

Here, by using the transverse condition r �A? ¼ 0, the
first term can be shown to vanish after partial integration.
(The proof is elementary if one notices the fact that Ek is
represented as a gradient of some scalar function. This is
self-evident in the Coulomb gauge in whichAk ¼ 0 so that
Ek ¼ �rA0. However, it also holds in arbitrary gauge

connected with the Coulomb gauge through general gauge
transformation.) Then, by using the Gauss law r �E ¼
r �Ek ¼ �, P�

long can be written as

P �
long ¼

Z
�A?d3x: (27)

Since the charge density is given as � ¼ ec yc by the

electron field, P
long
� can also be expressed as

P �
long ¼

Z
c yeA?c d3x: (28)

To sum up, the total momentum of an interacting electron
and photon system is given by

P QED ¼
Z

c yðp� eAÞc d3xþ
Z

c yeA?c d3x

þ
Z

Ej
?rAj

?d
3x; (29)

where p is the canonical momentum operator given by p ¼
1
i r. If one combines the 1st and 2nd terms of the above

equation, one obtains

PQED ¼
Z

c yðp� eAkÞc d3xþ
Z

Ej
?rAj

?d
3x;

� Pe00 þ P�00; (30)

which precisely corresponds to the decomposition advo-
cated by Chen et al. in the QED case. (Note that this is a
gauge-invariant decomposition.)
On the other hand, of one includes the 2nd term of (29)

into the photon part, one obtains

P QED ¼ Pe þ P�; (31)

where

P e ¼
Z

c yðp� eAÞc d3x; (32)

P � ¼
Z

Ej
?rAj

?d
3xþ

Z
�A?d3x: (33)

One must then conclude that there exist two gauge-
invariant decompositions, i.e. (30) and (31), of the total
momentum of the coupled electron-photon system. This
arbitrariness of the decomposition arises, since each term
of (29) is separately gauge invariant, so that the gauge-
invariance requirement alone cannot answer the question
which of the electron or photon part the 2nd term of (29)
should be incorporated into. Chen et al. advocated to
include it into the electron momentum part. This however
appears to contradict the standard understanding of the
electrodynamics. As already emphasized by Ji [17], the
kinetic or dynamical momentum of a charged particle is
� ¼ p� qA not p� qAk. (By the term kinetic or dy-

namical momentum, we mean the momentum accompany-
ing the mass flow of a moving charged particle.) This
seems clear from the fact that � appears in the quantum-
mechanical version of the Lorentz force equation control-
ling motion of a charged particle. (See, for example, [18].)
The decomposition (31) does not suffer from this problem,
in the sense that the dynamical momentum legitimately
appears in the electron part. In return for this advantage,
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however, the photon part is forced to contain an extra piece,
i.e.

R
c yeA?c d3x ¼ R

�A?d3x. A key question is there-
fore the physical meaning of this extra piece in the photon
momentum P�. Remember that it originates from P�

long

given by (23). It therefore seems clear that this momentum
is associated with the longitudinal electric field created by
the electrons. To back up this interpretation further, let us
consider the case in which the matter field is a collection of
moving charged particles with the charges qi, which in-
dicates the replacement

ec yðxÞc ðxÞ ! X
i

qi�ðx� riÞ: (34)

In this case, we find that

P �
long ¼

Z
c yðxÞeA?c ðxÞd3x ! X

i

qiA?ðriÞ: (35)

One then confirms that qiA?ðriÞ is the momentum asso-
ciated with the longitudinal (photon) field created by the
charged particle i. To borrow Konopinski’s words [19], one
may say, just as q� serves as a ‘‘store’’ of field energy,
qA? measures a store of field momentum available to the
charge’s motion. He even advocated a viewpoint: Those
who prefer to call q� a potential energy might adopt the
name ‘‘potential momentum’’ for qA?. In any case, we
now clearly recognize the fact that the existence of two
gauge-invariant decompositions of the total momentum in
QED is connected with the arbitrariness that the potential
momentum can be assigned to either of a part of the
electron momentum or as a part of the photon momentum.
Obviously, it is a problem inherent in the strongly coupled
gauge system, in which the interaction between the con-
stituents cannot be separated in a trivial way.

Next, we turn to a more interesting case of angular-
momentum decomposition in QED. We start with the
familiar gauge-invariant decomposition given as

JQED ¼
Z

c y 1
2
�c d3xþ

Z
c yx� ðp� eAÞc d3x

þ J�; (36)

with

J � ¼
Z

x� ðE� BÞd3x: (37)

We decompose J� into two parts as

J � ¼ J�
long þ J�

trans; (38)

with

J �
long ¼

Z
x� ðEk � BÞd3x

¼
Z

x� ½Ek � ðr �A?Þ�d3x; (39)

J �
trans ¼

Z
x� ðE? � BÞd3x

¼
Z

x� ½E? � ðr �A?Þ�d3x: (40)

After straightforward algebra, i.e. partial integration with
the surface term dropped, J�

long can be rewritten in the

following form:

J�
long ¼

Z
½Ej

kðx�rÞAj
? þ ðx�A?Þr �Ek

þEk �A?�d3x: (41)

Using one of the Maxwell equations

r �Ek ¼ � ¼ ec yc ; (42)

we thus obtain

J�
long ¼

Z
c yx� eA?c d3xþ

Z
½Ej

kðx�rÞAj
?

þEk �A?�d3x: (43)

It can be shown that the 2nd term of the above equation
identically vanishes, i.e.

Z
½Ej

kðx�rÞAj
? þEk �A?�d3x ¼ 0: (44)

The proof is easiest in the Coulomb gauge in which Ak ¼
0 and Ek ¼ �rA0, but the result itself is correct in arbi-

trary gauge in which Ek is expressed as a gradient of some

scalar function. As a consequence, we find that

J �
long ¼

Z
c yx� eA?c d3x: (45)

On the other hand, J�
trans can be rewritten as

J �
trans ¼

Z
½E? �A? þ Ej

?ðx�rÞAj
?�d3x: (46)

Here, use has been made of the relation r �E? ¼ 0. To
sum up, we obtain

J� � J�
long þ J�

trans

¼
Z

c yx� eA?c d3xþ
Z
½E? �A?

þ Ej
?ðx�rÞAj

?�d3x: (47)

Because of the relation (44), the above J� can equivalently
be expressed as

J� ¼
Z

x� ðE�BÞd3x

¼
Z

c yx� eA?c d3xþ
Z
½E�A?

þ Ejðx�rÞAj
?�d3x: (48)

SinceE andA? are both gauge invariant, it is obvious that
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each term of the above equation is separately gauge invari-
ant. In particular, the 2nd and 3rd terms of the above
decomposition correspond to the intrinsic spin and orbital
angular momentum of a photon. (To be more precise, those
of an isolated photon. See the discussion below.) It is
widely believed that a gauge-invariant decomposition of
the total photon angular momentum into the spin and
orbital parts is impossible. This statement appears to
need a slight modification. Such decomposition is not
impossible, although it contains an extra piece inherent
in a strongly coupled gauge system. The extra piece is

J�
long ¼

Z
x� ðEk �BÞd3x ¼

Z
c yx� eA?c d3x

¼
Z

�x�A?d3x; (49)

which might well be called the ‘‘potential angular momen-
tum’’ as a generalization of Konopinski’s potential mo-
mentum. A new gauge-invariant decomposition of JQED by

Chen et al. is obtained by including this term into the
electron orbital angular-momentum part, which leads to

JQED ¼
Z

c y 1
2
�c d3xþ

Z
c yx� ðp� eAkÞc d3x

þ
Z

E�A?d3xþ
Z

Ejðx�rÞAj
?d

3x

� Se þLe00 þ S�00 þL�00: (50)

However, this is not the only possibility. Another gauge-
invariant decomposition is obtained by including the term
J�
long into the photon orbital angular-momentum part:

J QED ¼ Se þ Le þ S� þL�; (51)

with

L e ¼
Z

c yx� ðp� eAÞc d3x; (52)

S � ¼
Z

E�A?d3x; (53)

L � ¼
Z

Ejðx�rÞAj
?d

3xþ
Z

�x�A?d3x: (54)

Here, S� ¼ S�00. (We could have included the term J�
long

into the photon spin part in the new decomposition as well.
However, we believe that our choice is natural, since the
term �x�A? takes the form of a vector product of the
coordinate vector x and the potential momentum �A? a la
Konopinski.) By construction, the sum of S� and L� just
reduces to the total photon angular momentum J� ¼R
x� ðE�BÞd3x, up to a surface term. However, note

that (51) realizes a gauge-invariant decomposition of J�

into the spin and orbital parts. Again, we are led to the
conclusion that the gauge invariance alone does not allow
unique decomposition of the total angular momentum of

the strongly coupled electron-photon system.We prefer the
decomposition (51), since the dynamical orbital angular
momentum appears legitimately in the electron part. In
spite of this standard view, which decomposition is physi-
cally appealing must after all be judged from the stand-
point of observability. We shall come back to this point
when discussing the nucleon spin problem in QCD in the
next section.

III. QCD CASE

Now, we turn to the QCD case of our primary concern,
In this case, some additional complication arises due to the
non-Abelian nature of the relevant gauge theory.
Fortunately, as long as the problem in question is con-
cerned, the essential physics does not seem to change
from the QED case, as we shall see below. Let us start
again with the most popular gauge-invariant decomposi-
tion of the nucleon spin:

JQCD ¼
Z

c y 1
2
�c d3xþ

Z
c yx� 1

i
Dc d3x

þ
Z

x� ðEa � BaÞd3x
¼ Sq þLq þ Jg; (55)

where E ¼ EaTa and B ¼ BaTa with Ta being the color
SU(3) generators. We first notice that, by using the equa-
tion

B a ¼ r�Aa þ 1
2gfabcA

b �Ac; (56)

for the color magnetic field, we can prove the following
identity:

ðEa � BaÞi ¼ EajriAaj þ ðD �EÞaAai �rjðEajAaiÞ:
(57)

Here

ðD �EÞa � ðr �E� ig½A;E�Þa
¼ r �Ea þ gfabcA

b �Ec: (58)

Using the above identity, we thus obtain

Z
x� ðEa �BaÞ ¼

Z
Eajðx�rÞAajd3x

þ
Z
ðD �EÞax�Aad3x

þ
Z

Ea �Aad3x

�
Z

rj½Eajðx�AÞ�d3x: (59)

Next, using the Gauss law

ðD �EÞa ¼ �a ¼ gc yTac ; (60)

and simply dropping the last surface term in (59), we
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obtain

Z
x� ðEq � BaÞd3x ¼

Z
gc yx�Ac d3x

þ
Z

Ea � Bad3x

þ
Z

Eajðx�rÞAajd3x: (61)

Combining this with the quark parts, we are then led to

JQCD ¼
Z

c y 1
2
�c d3xþ

Z
c yx� 1

i
rc d3x

þ
Z

Ea �Bad3xþ
Z

Eajðx�rÞAajd3x

¼ Sq þ Lq0 þ Sg0 þLg0; (62)

which is nothing but the Jaffe-Manohar decomposition of
the nucleon spin. As already pointed out, an unpleasant
feature of this decomposition is that each term is not
separately gauge invariant except for the intrinsic quark
spin part.

Generalizing the longitudinal and transverse decompo-
sition of the photon field in QED, Chen et al. proposed a
decomposition of the gluon field into two parts as A� ¼
A
�
pure þ A

�
phys, with A

�
pure a pure-gauge term transforming in

the same way as the full A� does, and always giving null
field strength (i.e. F

��
pure � @�A

�
pure � @�A

�
pure þ

ig½A�
pure; A�

pure� ¼ 0), and A�
phys a physical part of A

� trans-

forming in the same manner as F�� does, i.e. covariantly.
They argue that this decomposition is basically unique,
once Aphys is chosen to satisfy either of the defining

equations:

½Aphys;E� ¼ 0; (63)

or

D pure �Aphys ¼ 0; (64)

with D�
pure � @� � ig½A�

pure; ��.
To be fair, we should mention here the existence of

several criticism to this decomposition [17,20,21]. (See
also the objections to these criticisms [22–24].) For in-
stance, the Lorentz-frame-dependent as well as nonlocal
nature of this decomposition was criticized by Ji. In our
opinion, this noncovariant feature of the treatment is not an
essential trouble of the decomposition. In fact, the physical
significance of the corresponding decomposition in the
QED case was well established by now. (See, for instance,
the textbook [16].) What is not still completely confident to
us is the uniqueness of the decomposition in the case of
non-Abelian gauge theory. Another question is whether the
frequently used manipulation, i.e. the neglect of the surface
term, is justified also in the case of QCD. The answer to
this question may not be trivial, because we know the
existence of Gribov ambiguity for the nonperturbative

non-Abelian gauge field configuration, and because the
gluon field configuration with nontrivial topology might
play some unexpected role in the nucleon structure. These
difficult problems would be answered only after one can
accomplish the proper (nonperturbative) quantization of
gauge field in the canonical form or, using the Fadeev-
Popov trick, in the path integral formulation, and they are
beyond the scope of the present investigation. Nonetheless,
one should keep in mind the fact that there still remains a
lot of questions to be answered on the above decomposi-
tion of the non-Abelian gauge field.
In the following discussion, we assume that this decom-

position is unique. Then, another decomposition of the
nucleon spin can be obtained by the following procedure.
That is, in the 4th surface term of (59), we drop only the
part containing the physical part of A, which is equivalent
to retaining the surface term given by

�
Z

rj½Eajðx�Aa
pureÞ�d3x; (65)

in (59). Using the relation

r �Ea þ gfabcA
b
pure �Ec ¼ �a; (66)

which follows from the standard Gauss law

ðD �EÞa � r �Ea þ gfabcA
b �Ec ¼ �a; (67)

combined with the condition

½Aphys;E� ¼ Aphys �E�E �Aphys ¼ 0; (68)

we can then prove the following identity:

Z
rj½Eajðx�Aa

physÞ�d3x ¼
Z

gc yx�Apurec d3x

þ
Z

Ea �Aa
pured

3x

þ
Z

Eajðx�rÞAaj
pured3x:

(69)

Here, we have used the relation �aðx�Aa
pureÞ ¼ gc yx�

Apurec . Using it, we get

Z
x� ðEa � BaÞd3x ¼

Z
gc yx�Aphysc d3x

þ
Z

Ea �Aa
physd

3x

þ
Z

Eajðx�rÞAaj
physd

3x; (70)

which is a generalization of (48) in the QED case. Note that
each term of this decomposition of Jg is separately gauge
invariant. This fact can easily be convinced, if one remem-
bers the covariant transformation property of Aphys, i.e.

A phys ! A0
phys ¼ UðxÞAphysU

yðxÞ: (71)
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Since A�Aphys ¼ Apure, the nucleon spin decomposition

of Chen et al. is obtained by including the 1st term of (59)
into the quark orbital angular-momentum part:

JQCD ¼
Z

c y 1
2
�c d3xþ

Z
c yx� ðp� gApureÞc d3x

þ
Z

Ea �Aa
physd

3x

þ
Z

Eajðx�rÞAaj
physd

3x

¼ Sq þ Lq00 þ Sg00 þLg00: (72)

A noteworthy fact, which was pointed out by Chen et al., is
that, in a particular gauge ½A;E� ¼ 0, i.e. in what they call
the generalized Coulomb gauge (together with possible
supplementary conditions to completely fix the gauge),
the decomposition (72) is reduced to the gauge-variant
decomposition of Jaffe and Manohar. Since each term of
the decomposition (72) is separarely gauge invariant, this
already implies that the numerical value of each term
obtained from the decomposition (72) is nothing different
from the answer of the Jaffe-Manohar decomposition.

However, one should remember the fact that the term
gc yx�Aphysc , that can also be expressed as �aðx�
Aa

physÞ, is a correspondent of �ðx�A?Þ in the QED

case, which has been interpreted as a store of angular
momentum generated by the charge’s motion. To include
this term into the quark angular momentum would not be
justified in view of our standard understanding of the
electrodynamics, in which the kinematical or dynamical
momentum of a charged particle is� ¼ p� gA, not p�
gAk.

We therefore propose to include this term into the orbital
angular momentum carried by the gluon field. This leads to
a new decomposition of the nucleon spin given as

J QCD ¼ Sq þ Lq þ Sg þ Lg; (73)

where

S q ¼
Z

c y 1
2
�c d3x; (74)

L q ¼
Z

c yx� ðp� gAÞc d3x; (75)

S g ¼
Z

Ea �Aa
physd

3x; (76)

L g ¼
Z

Eajðx�rÞAaj
physd

3xþ
Z

�aðx�Aa
physÞd3x:

(77)

We emphasize once again that each piece of this decom-
position is separately gauge invariant.

After all, we now have two gauge-invariant decomposi-
tions of the nucleon spin, i.e. (72) and (73), both of which

enables the separation of the gluon total angular momen-
tum into the spin and orbital parts. Clearly, the gauge
principle alone cannot judge which decomposition is pref-
erable. We shall now develop an argument in favor of the
latter decomposition. First, as repeatedly emphasized, the
knowledge of the standard electrodynamics tells us that the
orbital angular momentum accompanying the mass flow of
the charged particle motion is the dynamical orbital angu-
lar momentum x�� ¼ x� ðp� gAÞ, not x� ðp�
gAkÞ. (The latter can be thought of as a nontrivial general-
ization of the canonical orbital angular momentum x� p.)
Notice that the quark part of (73) is nothing different from
the Ji decomposition. It is a widely known fact that the total
angular momentum Jq � Sq þLq carried by the quark
field in the nucleon can in principle be measured through
the analysis of unpolarized generalized parton distributions
(GPD) Eqðx; �; tÞ [25]. Since the intrinsic quark spin part
Sq is already well known from the polarized deep-inelastic
scatterings [1–4], the orbital angular momentum of quarks
as defined by (73) is clearly a measurable quantity,
although somewhat indirectly.
What about the gluon part, then? Certainly, an experi-

mental decomposition of the gluon angular momentum is
much more delicate than the quark part. At this point, we
think it useful to remember the investigation by Bashinsky
and Jaffe [26]. They invented a method of constructing
gauge-invariant quark and gluon distributions describing
abstract QCD observables and apply it for analyzing an-
gular momentum of the nucleon. In addition to the known
quark and gluon polarized distribution functions, they gave
a definition of gauge-invariant distributions for quark and
gluon orbital angular momenta. They further argue that the
1st moments of these distribution functions should give the
total quark/gluon spin/orbital momenta in the nucleon in
the infinite momentum frame, and that the sum of these
first moments satisfies the angular-momentum sum rule of
the nucleon. Very interestingly, although each term of this
1st moment sum rule is separately gauge invariant, it was
shown to reduce to the Jaffe-Manohar decomposition of
the nucleon spin in a particular gauge, i.e. the light-cone
gauge Aþ ¼ 0 and in the infinite momentum frame. As
pointed out in their paper, this implies that the gluon spin
part of the Jaffe-Manohar decomposition can be measured
through the polarized deep-inelastic-scattering processes,
as is naively expected. (Also noteworthy here is the follow-
ing observation. As we have already pointed out, the gluon
spin part in Chen et al.’s decomposition was claimed to
reduce that of the Jaffe-Monohar in a particular gauge, i.e.
in what they call the generalized Coulomb gauge. Note
also that the gluon spin part is common in Chen et al.’s
decomposition and our present decomposition. These ob-
servations altogether strongly indicate that at least the
gluon spin part is common in all four decompositions,
i.e. the Jaffe-Manohar decomposition, the Bashinsky-
Jaffe one, the decomposition by Chen et al., and our
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present one, except for unphysical degrees of freedom of
gauge transformation.)

However, Bashinsky and Jaffe could not offer any prac-
tical experimental means that can be used to measure the
x distributions of quark and gluon orbital angular momenta
appearing in their defining equation. This may have some
connection with the fact that the quark orbital angular
momentum appearing in the Jaffe-Manohar decomposition
is the canonical orbital angular momentum and not the
dynamical orbital angular momentum. (The problem here
is not the gauge-variant nature of the Jaffe-Manohar de-
composition, since this decomposition can now be thought
of as a gauge-fixed form of the gauge-invariant Bashinsky-
Jaffe decomposition or that of the Chen et al.’s decompo-
sition.) We have already indicated that the quark orbital
angular momentum, which can be measured through the
GPD analysis, is the dynamical orbital angular momentum
Lq appearing in our new decomposition (73), or in the
famous Ji decomposition, not Lq0 appearing in the decom-
position (72) of Chen et al. (This seems understandable if
one remembers the following fact. We have already
pointed out that the momentum accompanying the mass
flow of a charged particle is the dynamical momentum
� ¼ p� gA containing the full gauge field and not p�
gApure. Similarly, the angular momentum accompanying

the mass flow is the dynamical angular momentum, not the
canonical angular momentum or its gauge-invariant gen-
eralization. Such flows of mass would in principle be
detected through the coupling with the gravitational field.
The appearance of the gravito-electric and gravito-
magnetic form factors in Ji’s nucleon spin sum rule would
not be a mere coincidence in this sense.)

It is clear by now that the difference between these two
types of decompositions is just concerned with the orbital
angular momenta of quark and gluon. The relation between
them is

L q þLg ¼ Lq00 þLg00; (78)

with

Lg �Lg00 ¼ �ðLq �Lq00Þ ¼
Z

�aðx�Aa
physÞd3x

� potential angular momentum: (79)

Here, Lq and Lg are the quark and gluon orbital angular
momenta in our new decomposition (73). On the other
hand, Lq00 and Lg00 are the corresponding orbital angular
momenta in the decomposition (72) of Chen et al. (The
latter should be numerically equal to those of Jaffe and
Manohar, in view of the fact that the latter can be thought
of as a gauge-fixed form of the former.) The gluon orbital
angular momentum Jg � Sg þ Lg defined in the decom-
position (73), or more precisely the nucleon matrix element
of Jg3 � Sg3 þ Lg

3 , is expected to be measured through the

GPD analysis, or at the least it can be extracted from the
relation hJg3 i ¼ 1=2� hJq3 i. Here h i is an abbreviation of

the appropriate nucleon matrix element. On the other hand,
as our argument above strongly indicates, the nucleon
matrix element of Sg3 is essentially the same quantity as

extracted from the polarized deep-inelastic-scattering mea-
surements. (To make this statement more precise, we cer-
tainly need some additional works.) It means that hLg

3i is
extracted from hJg3 i by subtracting hSg3i. This gives another
support to Ji’s procedure advocated in [11] to define and
extract the gluon orbital angular-momentum contribution
to the nucleon spin. On the other hand, no such measure-
ment is known yet for extracting the quark and gluon

orbital angular momenta hLq00
3 i and hLg00

3 i appearing in the

decomposition (72). This also means that we do not have
any experimental means to separate the contribution of the
potential angular momentum to the nucleon spin. (We
point out that a toy model analysis recently made by
Burkardt and BC [27] may be thought of as a theoretical
challenge to estimate the magnitude of this potential
angular-momentum term.)

IV. SUMMARYAND CONCLUSION

It has been widely recognized by now that the decom-
position of the nucleon spin is not necessarily unique. In
fact, this led to several proposals for the nucleon spin
decomposition. They are the Jaffe-Manohar decomposi-
tion, the Ji decomposition, the Bashinsky-Jaffe decompo-
sition, and the new decomposition by Chen et al. Since the
Jaffe-Manohar decomposition can now be thought of as a
gauge-fixed form of either of the Bashinsky-Jaffe decom-
position or the decomposition proposed by Chen et al., one
can say that these three belong to the same family from the
physical viewpoint, i.e. except for unphysical gauge de-
grees of freedom. On the other hand, the new decomposi-
tion proposed in the present paper and the Ji decomposition
fall into another family, although the former accomplishes
full gauge-invariant decomposition of the nucleon spin
including the gluon part, which is given up in the latter.
As fully explained in the present paper, the critical

difference between the two types of nucleon spin decom-
positions is concerned with the treatment of the quark-
gluon interaction inherent in the strongly coupled gauge
system. We have taken out this term in a gauge-invariant
way, and named it the contribution of potential angular
momentum as a generalization of Konopinski’s potential
momentum. Since this part is solely gauge invariant, the
gauge principle alone cannot uniquely dictate which part of
the decomposition this term should be included into. In the
decomposition of Chen et al., this term is combined with
the quark orbital angular momentum. On the other hand, in
our new decomposition, it is included as a part of the gluon
orbital angular momentum. An advantage of our decom-
position is that dynamical orbital angular momentum and
not the canonical orbital angular momentum (or its gauge-
invariant generalization) appears legitimately in the quark
part as is the case in the Ji decomposition. A practical
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consequence of this advantage is that the quark and gluon
orbital angular momenta appearing in the present decom-
position can in principle be extracted from the GPD analy-
ses in combination with the analyses of the polarized deep-
inelastic-scattering cross sections.
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