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Using a large sample ( � 11800 events) of Dþ ! K��þeþ�e and Dþ ! K��þ�þ�� decays

collected by the CLEO-c detector running at the c ð3770Þ, we measure the helicity basis form factors

free from the assumptions of spectroscopic pole dominance and provide new, accurate measurements of

the absolute branching fractions for Dþ ! �K�0eþ�e and Dþ ! �K�0�þ�� decays. We find branching

fractions which are consistent with previous world averages. Our measured helicity basis form factors are

consistent with the spectroscopic pole dominance predictions for the three main helicity basis form factors

describing Dþ ! �K�0‘þ�‘ decay. The ability to analyze Dþ ! K��þ�þ�� allows us to make the first

nonparametric measurements of the mass-suppressed form factor. Our result is inconsistent with existing

lattice QCD calculations. Finally, we measure the form factor that controls nonresonant s-wave

interference with the Dþ ! �K�0‘þ�‘ amplitude and search for evidence of possible additional non-

resonant d- or f-wave interference with the �K�0.
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I. INTRODUCTION

We present new measurements of the Dþ ! �K�0eþ�e

and Dþ ! �K�0�þ�� absolute branching fractions, their

ratio, and measurements of the semileptonic form factors
controlling these decays.1,2 Exclusive charm semileptonic
decays provide particularly simple tests of decay dynamics
since long distance effects only enter through the hadronic
form factors [1]. A wide variety of theoretical methods
have been brought to bear on the calculation of these
form factors including quark models [2], QCD sum rules
[3], Lattice QCD [4], analyticity [5], and others [6]. Using
a technique developed by FOCUS [7], we present non-
parametric measurements of the q2 dependence of the
helicity basis form factors that give an amplitude for the
K��þ system to be in any one of its possible angular
momentum states where q2 is the invariant mass squared
of the lepton pair in the decay. The ultimate goal of this
study is to obtain a better understanding of the semilep-
tonic decay intensity.

CLEO-c produces D mesons at the c ð3770Þ, which
ensures a pure D �D final state with no additional final state
hadrons. In events where the Dþ ! K��þ‘þ�‘ is pro-
duced against a fully reconstructed D� the missing neu-
trino can be reconstructed with unparalleled precision
using energy-momentum balance. Hence, CLEO-c data
offer unparalleled q2 and decay angle resolution allowing
one to resolve fine details in the structure of these form
factors without the complications of a deconvolution pro-
cedure. The various helicity basis form factors are distin-
guished based on their contributions to the decay angular
distribution.

The amplitude A for the semileptonic decay Dþ !
K��þ‘þ�‘ is described by five kinematic quantities: q2;

the kaon-pion mass (mK�); the kaon helicity angle (�V),
which is computed as the angle between the � and the D
direction in the K��þ rest frame; the lepton helicity angle
(�‘), which is computed as the angle between the �‘ and
theD direction in the ‘þ�e rest frame; and the acoplanarity
angle between the two decay planes (�). The decay angles
are illustrated in Fig. 1. The amplitudeA can be expressed
in terms of four helicity amplitudes representing the tran-
sition to the vector �K�0: Hþðq2Þ, H�ðq2Þ, H0ðq2Þ, Htðq2Þ
and a fifth form factor, h0ðq2ÞH0ðq2Þ describing a non-
resonant, s-wave Dþ ! K��þ‘þ�‘ contribution.
The differential decay width for the 4-body semileptonic

process is

d5�

d cos�‘d cos�Vd�dq
2dm2

K�

¼ jAj2KP‘P
�

256�6m2
D

ffiffiffiffiffi
q2

p
mK�

; (1)

where jAj2 is the decay intensity, K is the K��þ mo-
mentum in the Dþ rest frame, P� is the momentum of the

kaon in theK��þ rest frame, and j ~P‘j is the momentum of
the ‘þ in the ‘þ� rest frame. Upon integration over �, the
differential decay width is proportional to:
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The Htðq2Þ form factor, which appears in the second
term of Eq. (2), is helicity suppressed by a factor ofm2

‘=q
2.

The mass-suppressed terms are negligible for Dþ !
K��þeþ�e but can be measured in Dþ ! K��þ�þ��.

TheHtðq2Þ form factor can only be effectively measured in
Dþ ! K��þ�þ�� decays at low q2 where the mass

suppression effects are least severe. The semimuonic to
semielectric branching ratio is sensitive to the magnitude
of the Htðq2Þ form factor.
We study the form factor of the nonresonant, spin zero,

s-wave component to Dþ ! �K�0�þ�� first described in

Ref. [8]. According to the model of Ref. [9], 2.4% of the
decays in the mass range 0:8 GeV=c2 <mK� <
1:0 GeV=c2 are due to this s-wave component [10], where
mK� is the K��þ mass. The underlined term in Eq. (2)
represents the interference between the s-wave, K��þ
amplitude and the �K�0 amplitude, represented as a simpli-
fied, Breit-Wigner function of the form:

FIG. 1. Definition of the �V , �‘, and � angles.

1Throughout this paper the charge conjugate is implied when a
decay mode of a specific charge is stated.

2We reconstructDþ ! �K�0‘þ�‘ modes asDþ ! K��þ‘þ�‘

decays, and use the Clebsch-Gordan factor 1.5 to correct for
�K�0 ! �K0�0 decays, which we do not detect.
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where P� is the kaon momentum in the K��þ rest frame,
and P�

0 is the value of P
� when the K��þ mass is equal to

the �K�0 mass.3

The s-wave form factor is denoted as h0ðq2Þ in the
underlined piece of Eq. (2). Following Ref. [8] we model
the s-wave contribution as an amplitude with a phase (�)
and modulus (A) that are independent of mK�. We have

dropped the second-order, s-wave intensity contribution
( / jAj2) in Eq. (2) since A � j�j.
The � integration significantly simplifies the intensity

by eliminating all interference terms between different
helicity states of the virtual Wþ with relatively little loss
in form factor information.
The four helicity basis form factors for the Dþ !

�K�0�þ�� component are generally written [11] as linear

combinations of a vector [Vðq2Þ] and three axial-vector
[A1;2;3ðq2Þ] form factors according to

H�ðq2Þ ¼ ðMD þmK�ÞA1ðq2Þ � 2
MDK
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2
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�
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(4)

whereMD is the mass of theDþ andK is the momentum of
the K��þ system in the rest frame of the Dþ. In the
spectroscopic pole dominance (SPD) model [9,11], these
axial and vector form factors are given by

Vðq2Þ ¼ Vð0Þ
1� q2=M2

V

; A1;2;3ðq2Þ ¼ A1;2;3ð0Þ
1� q2=M2

A

; (5)

where MV ¼ 2:1 GeV=c2 and MA ¼ 2:5 GeV=c2. The
SPD model allows one to parametrize the H�ðq2Þ,
Hþðq2Þ, H0ðq2Þ, and Htðq2Þ form factors using just three
parameters, which are ratios of form factors taken at q2 ¼
0: rv � Vð0Þ=A1ð0Þ, r2 � A2ð0Þ=A1ð0Þ, and r3 ¼
A3ð0Þ=A1ð0Þ. There are accurate measurements [9] of rv
and r2, but very little is known about r3, which is an
important motivation for this work.

In this paper, we use a projective weighting technique [7]
to disentangle and directly measure the q2 dependence of
these helicity basis form factors free from parametrization.
We provide information on the six form factor products
H2�ðq2Þ, H2

0ðq2Þ, h0ðq2ÞH0ðq2Þ, H2
t ðq2Þ and H0ðq2ÞHtðq2Þ

in bins of q2 by projecting out the associated angular
factors given by Eq. (2). We next describe some of the
experimental and analysis details used for these
measurements.

II. EXPERIMENTAL AND ANALYSIS DETAILS

The CLEO-c detector [12] consists of a six-layer inner
stereo-wire drift chamber, a 47-layer central drift chamber,
a ring-imaging Cerenkov detector (RICH), and a cesium
iodide electromagnetic calorimeter inside a superconduct-
ing solenoidal magnet providing a 1.0 T magnetic field.
The tracking chambers and the electromagnetic calorime-
ter cover 93% of the full solid angle. The solid angle
coverage for the RICH detector is 80% of 4�.
Identification of the charged pions and kaons is based on
measurements of specific ionization (dE=dx) in the main
drift chamber and RICH information. Electrons are iden-
tified using the ratio of the energy deposited in the elec-
tromagnetic calorimeter to the measured track momentum
(E=p) as well as dE=dx and RICH information. Although
there is a muon detector in CLEO, it was optimized for b-
meson semileptonic decay, and is ineffectual for charm
semileptonic decay since a muon from charm particle
decay will typically range out in the first layer of iron in
the muon shield.
In this paper, we use 818 pb�1 of data taken at the

c ð3770Þ center-of-mass energy with the CLEO-c detector
at the Cornell Electron Storage Ring (CESR) eþe� col-
lider, which corresponds to a (produced) sample of 1:8�
106 DþD� pair events [13].
We select the events containing a D� decaying into one

of the following six decay modes: D� ! K0
S�

�, D� !
Kþ����, D� ! K0

S�
��0, D� ! Kþ�����0, D� !

K0
S�

����þ, and D� ! K�Kþ�� along with a 4-body

semileptonic candidate. To avoid complications due to
having two or more Dþ ! K��þ‘þ�‘ decay candidates
in the event, we select the decay candidate with the small-
est jMbc �MD�j value whereMbc is the beam-constrained

3We are using a p-wave Breit-Wigner form with a width
proportional to the cube of the kaon momentum in the kaon-
pion rest frame. Our Breit-Wigner intensity is proportional to
P�3 as expected for a p-wave Breit-Wigner resonance. Two
powers of P� come explicitly from the P� in the numerator of
the amplitude and one power arises from the 4-body phase space
as shown in Eq. (1). We are not including additional, small
corrections such as the Blatt-Weisskopf barrier penetration
factor.
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mass. The beam-constrained mass Mbc is defined as

Mbcc
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðEbeamÞ2 � c2P2

Dj
q

where Ebeam is the beam en-

ergy and PD is the D-tag momentum. More details on
selecting the tagging D� candidates as well as identifying
�0 and K0

S candidates are described in Ref. [13].

We used extensive Monte Carlo (MC) studies to design
efficient, background-suppressing selections. The Dþ !
K��þ‘þ�‘ reconstruction starts by requiring three well-
measured tracks not associated with the tagging D� decay.
In order to select semileptonic decays, we require a mini-
mal missing momentum and energy of 50 MeV=c and
50 MeV, respectively. Both the minimal missing momen-
tum and energy are calculated using the center-of-mass
momentum and energy. In order to reduce backgrounds
from charm decays with missing �0 ’s, we require an
unassociated shower energy of less than 250 MeV. The
unassociated shower energy refers to electromagnetic
showers, which are statistically separated from all mea-
sured, charged tracks. Charged kaons and pions are re-
quired to have momenta of at least 50 MeV=c and are
identified using dE=dx and RICH information. We require
that the pion deposits a shower energy, which is inconsis-
tent with the electron hypothesis.

Electron candidates are required to have momenta of at
least 200 MeV=c, lie in the good shower containment
region (j cos�j< 0:9), and pass a requirement on a like-
lihood variable that combines E=p, dE=dx, and RICH
information. Our simulations indicate that contamination
of our kaon sample due to pions is less than 0.06% using
this likelihood variable. The only final state particle not
detected is the neutrino in the semileptonic decay. The
neutrino four-momentum vector can be reconstructed
from the missing energy and momentum in the event.
The q2 resolution, predicted by our Monte Carlo simula-
tion, is roughly Gaussian with an r.m.s. width of
0:02 GeV2=c4, which is negligible on the scale that we
will bin our data.

For Dþ ! K��þ�þ�� candidates, it is difficult to

distinguish the �þ track from the �þ track. Because
Dþ ! K��þ�þ�� decay is strongly dominated by
�K�0 ! K��þ, which is a relatively narrow resonance,
we select the positive track with the smallest jmK� �
m �K�0 j as the pion and the other track as the muon. Our
Monte Carlo studies concluded that this �K�0 arbitration
approach was correct 84% of the time and works better
than pion-muon discrimination based on the electromag-
netic calorimeter response.

We apply a variety of additional requirements to sup-
press backgrounds in Dþ ! K��þ�þ�� candidates. We

require that the muon is inconsistent with the electron
hypothesis according to the electron likelihood variable.
We require that missing momentum (Pmiss) lies within
20 MeV of the missing energy (Emiss). For Dþ !
K��þ�þ�� candidates, we also require �0:01<

M2
miss < 0:015 GeV2=c4. The M2

miss distributions for

muon and electron candidates are illustrated in Fig. 2.
In order to suppress cross-feed from Dþ ! K��þeþ�e

decay to our Dþ ! K��þ�þ�� sample, we construct the

squared invariant mass of the lepton candidate, ~M2
�c

4 ¼
ð2Ebeam � EDtag � E��

� EK � E�Þ2 � ðcP‘Þ2, where

EDtag is the reconstructed energy of the D� produced

against the Dþ ! K��þ‘þ�‘ candidate and EK, E�, P‘

are the reconstructed kaon energy, pion energy, and lepton
momentum. We require 0< ~M2

� < 0:020 GeV2=c4 to

eliminate both Dþ ! K��þeþ�e cross-feed and Dþ !
K��þ�þ�0 decays. In order to suppress backgrounds to
Dþ ! K��þ�þ�� from Dþ ! K��þ�þ decays with

an accompanying bremsstrahlung photon, we require that
cosine of the minimum angle between three charged tracks

FIG. 2. The M2
miss distributions for events satisfying our nomi-

nal Dþ ! K��þ‘þ�‘ selection requirements apart from the
M2

miss requirement. (a) shows the M2
miss distribution for Dþ !

K��þ�þ�� candidates, while (b) shows the M2
miss distribution

for Dþ ! K��þeþ�e candidates. For D
þ ! K��þ�þ�� can-

didates, we require thatM2
miss lies between the vertical lines. This

cut is placed asymmetrically on our semimuonic sample to
suppress cross-feed from Dþ ! K��þeþ�e. In each plot, the
solid histogram shows the signal plus background distribution
predicted by our Monte Carlo simulation, while the dashed
histogram shows the predicted background component.
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and the missing momentum direction be less than 0.90.
This requirement is illustrated in Fig. 3.

We obtain 11801 Dþ ! K��þ‘þ�‘ candidates. The
mK� distribution for these Dþ ! K��þ‘þ�‘ candidates
is shown in Fig. 4. Finally, we require 0:8 GeV=c2 	
mK� 	 1:0 GeV=c2 and select 10865 events.

Two types of Monte Carlo simulations are used through-
out this analysis. The generic Monte Carlo simulation is a
large charm Monte Carlo sample consisting of generic D �D
decays, which is primarily used in this analysis to simulate
the properties of backgrounds to our Dþ ! K��þ‘þ�‘

signal states. The generic Monte Carlo events are gener-
ated by EVTGEN [14] and the detector is simulated using a
GEANT-based [15] program. In much of the form-factor

work, we use an SPD Monte Carlo simulation based on the
SPD model described in Sec. I and summarized by Eqs. (2)
–(5). We use the SPD parameters of Ref. [9], rv ¼ 1:504,
r2 ¼ 0:875, and we set r3 ¼ 0.
The background shapes in Fig. 4 are obtained using

generic Monte Carlo simulations. Our simulation predicts
a 6.5% background for our Dþ ! K��þ�þ�� sample

with 4% due to misidentified Dþ ! K��þeþ�e cross-
feed events and the rest due to various charm decays.
The simulation also predicts a 1% background to our
Dþ ! K��þeþ�e sample with 0.03% due to Dþ !
K��þ�þ�� cross-feed.

FIG. 4. The mK� distributions for events satisfying our nomi-
nal Dþ ! K��þ‘þ�‘ selection requirements. (a) shows the
mK� distribution for Dþ ! K��þ�þ�� candidates, while (b)

shows the mK� distribution for Dþ ! K��þeþ�e candidates.
Over the full displayed mass range, there are 11 801 (6227
semielectric and 5574 semimuonic) events satisfying our nomi-
nal selection. For this analysis, we use a restricted mass range
from 0:8–1:0 GeV=c2, which is the region between the vertical
lines. In each plot, the solid histogram shows the signal plus
background distribution predicted by our Monte Carlo simula-
tion, while the dashed histogram shows the predicted back-
ground component. In this restricted region, there are 10 865
(5658 semielectric and 5207 semimuonic) events. The inserted
figures are on a finer scale to better show the estimated back-
ground contributions.

FIG. 3. Distributions of the largest cosine between missing
momentum vector and any of the three charged tracks from
the semileptonic candidate when all cuts are applied except the
cut on largest cosine. (a) shows the cos�max distribution for
Dþ ! K��þ�þ�� candidates, while (b) shows the cos�max

distribution for Dþ ! K��þeþ�e candidates. We remove all
combinations to the right of the vertical line, which removes the
major part of remaining K�� background for the semimuonic
sample. In each plot, the solid histogram shows the signal plus
background distribution predicted by our Monte Carlo simula-
tion, while the dashed histogram shows the predicted back-
ground component.
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III. ABSOLUTE AND RELATIVE BRANCHING
FRACTIONS

We have measured both the semimuonic to semielectric
relative branching ratio and theDþ ! �K�0eþ�e andD

þ !
�K�0�þ�� absolute branching fractions, which we will

denote as Be and B�, respectively. The B�=Be relative

branching ratio is expected to be less than 1 due to the
reduced phase space available to the semimuonic decay
relative to the semielectric decay. The mass-suppressed
terms in Eq. (2) will change the relative branching ratio
compared to the phase space ratio. In the context of the
SPD model, Eq. (5), the relative branching fraction will
depend on r3 � A3ð0Þ=A1ð0Þ, which controls the strength
of the Htðq2Þ form factor and is essentially unknown. It is
expected that B�=Be will increase with increasing values

of r3.
In order to obtain the semimuonic to semielectric

branching ratio, we write the observed Dþ ! �K�0�þ��

and Dþ ! �K�0eþ�e yields as

ye
y�

� �
¼ �eð ~fÞ c�ð ~fÞ

ceð ~fÞ ��ð ~fÞ

 !
ne
n�

� �
þ be

b�

� �
; (6)

where y�;e are the observed yields, b�;e are non-

semileptonic backgrounds, and n�;e give the number of

produced semileptonic decays in our data sample. The
cross-feed matrix, which multiplies the ne and n� signal

vector, is constructed from ��;eð ~fÞ, which are the Dþ !
�K�0�þ�� and Dþ ! �K�0eþ�e detection efficiencies, and

c�;eð ~fÞ, which are the cross-feed efficiencies. For example,

c�ð ~fÞ is the efficiency for reconstructing a Dþ !
�K�0�þ�� event as a Dþ ! �K�0eþ�e candidate. The y�;e

yields are obtained by counting the number of semimuonic
and semielectric events in our mass range 0:8<mK� <
1:0 GeV=c2. The relative branching ratio is given by
B�=Be ¼ n�=ne.

The vector ~f represents parameters that the efficiencies
and cross-feeds can depend on such as the SPD parameters:
rv, r2, and r3 and the s-wave amplitude and phase. The

detection efficiencies, ��;eð ~fÞ, and the cross-feed efficien-

cies, c�;eð ~fÞ, were obtained using our Monte Carlo simu-

lations. We will refer to the use of Eq. (6) to obtain the
relative branching ratio,B�=Be, as the cross-feed method.

We used the double-tag technique, described in
Ref. [13], to measure the Dþ ! �K�0�þ�� and Dþ !
�K�0eþ�e absolute semileptonic branching fractions
(B�;e). We define single tag (ST) events as events where

the D� was fully reconstructed against one of our six tag
modes without any requirement on the recoil Dþ.

We estimate the number of ST events by fitting the �E
distributions, shown in Fig. 5, using a binned maximum

likelihood fit.4 Here �E � ED � Ebeam, where ED is the
energy of the D-tag candidate.
The total number of reconstructed D� ST events is then

niST ¼ NDþD��iSTB
i
tag; (7)

where niST is the number of ST reconstructed events in the

i-th mode,NDþD� is the number of producedDþD� events
in our data sample, �iST is the ST detection efficiency, and

Bi
tag is the tag mode branching fraction.

For double tag (DT) events, we reconstruct D� into one
of our six tagging modes, and require the presence of either
a Dþ ! �K�0�þ�� or Dþ ! �K�0eþ�e candidate. The DT

yields are then

ne;iDT ¼ NDþD�ð�e;iDTBi
tagBe þ c

�;i
DTB

i
tagB�Þ (8)

and

FIG. 5. Distribution of �E for single tag D� candidates when
Dþ andD� candidates have been combined. The distribution for
each of the six tags is shown in (a)–(f). The points with error bars
are the reconstructed yield from the data sample and the curves
show our fit to the signal peak over the dashed background line.

4Our fitting function is a sum of Gaussian and Crystal Ball
line-shape functions [13] over a first order Chebyshev back-
ground polynomial.
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n
�;i
DT ¼ NDþD�ðce;iDTBi

tagBe þ �
�;i
DTB

i
tagB�Þ; (9)

respectively. The yields ne;iDT and n
�;i
DT represent the number

of reconstructed DTevents in semielectric and semimuonic
decay modes after the background subtraction. The effi-

ciencies �e;iDT and �
�;i
DT are the DT event detection efficien-

cies for the semielectric and semimuonic decay modes.

The cross-feed efficiency c�;i
DT describes how often a semi-

muonic decay is reconstructed as a semielectric candidate,

while the cross-feed efficiency ce;iDT describes how often a
semielectric decay is reconstructed as semimuonic candi-
date. The variables Be, B� are the respective Dþ !
�K�0eþ�e and D

þ ! �K�0�þ�� branching fractions, which

we wish to measure.
Dividing Eq. (8) and (9) by Eq. (7), we have:

ne;iDT=n
i
ST

n
�;i
DT=n

i
ST

 !
¼ �e;iDT=�

i
ST c

�;i
DT=�

i
ST

ce;iDT=�
i
ST ��;i

DT=�
i
ST

 !
Be

B�

� �
: (10)

Equation (10) shows how the branching fractions of
Dþ ! �K�0eþ�e andD

þ ! �K�0�þ�� semileptonic modes

depend on the ratio of the DT and the ST yields, the
detection efficiencies, and the cross-feed efficiencies.

Figures 6 and 7 show the�E distributions for our double
tag sample. For both semileptonic decay modes, about half
of our sample comes from the D� ! Kþ���� D-tag
mode. The ST yields for this mode are nearly background
free. The cross-feed fraction for the D� ! K�0e� ��e semi-
leptonic mode is less than 0.02%, while, for the D� !
K�0�� ��� semileptonic mode, the cross-feed fraction is

3.7%. The background level is about 2.5 times smaller for
the D� ! K�0e� ��e mode than for the D� ! K�0�� ���

mode. The semielectric mode is nearly background free
because of the effectiveness of the electromagnetic calo-
rimeter, while our semimuonic mode uses a variety of less
effective kinematic cuts to suppress background and cross-
feed.

Our absolute branching fraction results are summarized
by Tables I and II. Table I gives a ‘‘conditional’’ absolute
branching fraction based only on Dþ ! K��þ‘þ�‘ de-
cays into the mass range 0:8<mK� < 1:0 GeV=c2. This
mass range is required for events entering into Figs. 6 and
7. We find that the total systematic error for the semi-
electric and semimuonic absolute branching fractions, pre-
sented in Table I, are comparable. The dominant
systematic error for the semielectric decay is due to the
1% uncertainty in the efficiency our electron identification
requirements, while the dominant systematic error for the
semimuonic branching fraction is due to the 0.8% uncer-
tainty in the background subtraction. The remaining sys-
tematic error, which is 1.2% for both the semielectric and
semimuonic branching fractions, includes uncertainties in
the final state radiation corrections, as well as uncertainties
in the tracking and particle identification efficiencies for
the kaon and pion tracks. Table II, on the other hand, relies

on models for the �K�0 line-shape to extrapolate outside of
the 200 MeV=c2 wide mass region where our measure-
ments are made in order to report the conventional Dþ !
�K�0‘þ�‘ absolute branching ratios, which includes events
over the entire mK� spectrum. We include an additional,
Clebsch-Gordan factor of 1.5 in order to correct for the
undetected �K�0 ! �K0�0 decay mode.5 Finally, we have
included an additional �0:10% contribution to the quoted
systematic error in Table II based on the difference be-
tween the �K�0 extrapolations made using our Generic and
SPD models. This �0:10% systematic error contribution
includes both distortions to the �K�0 line shape as well as

FIG. 6. Distribution of �E for double tag events for the data,
where D� candidate is reconstructed in one of the six tag modes
[(a)–(f)], and Dþ candidate is reconstructed in �K�0eþ�e mode.
The points with error bars are the reconstructed yield from the
data sample and the curves show our fit to the signal peak over
the dashed background line.

5The central values reported in Table II assume that all of the
signal events in the 0:8<mK� < 1:0 GeV=c2 mass region,
where our �E measurements made, are due to Dþ ! �K�0‘þ�‘
decay.
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uncertainties in level of nonresonant contributions due to
the s-wave amplitude.

Figure 8 and Table III compare our relative B�=Be

obtained using the cross-feed method to the ratio of abso-
lute branching ratios for the six tag states and generic and
SPD Monte Carlo simulations. The cross-feed method is
reasonably consistent with the ratio of absolute branching
fractions.

IV. PROJECTIVE WEIGHTING TECHNIQUE

We extract the helicity basis form factors using the
projective weighting technique more fully described in
Ref. [7]. For a given q2 bin, a weight designed to project
out a given helicity form factor, is assigned to the event
depending on its �V and �‘ decay angles. We use 25 joint
�cos�V ��cos�‘ angular bins: 5 evenly spaced bins in
cos�V times 5 bins in cos�‘.

6

TABLE II. Comparison of our absolute branching fraction
measurements to previously published data. These branching
fractions represent the K� contribution over the full mK�

spectrum and include a systematic error contribution for uncer-
tainties in the �K�0 line shape.

Lumin. [pb�1] Be [%]

These results 818 5:52� 0:07� 0:13
CLEO [10] 56 5:56� 0:27� 0:23
World Average [16] 
 
 
 5:49� 0:31

Lumin. [pb�1] B� [%]

These results 818 5:27� 0:07� 0:14
World Average [16] 
 
 
 5:40� 0:40

TABLE I. Conditional absolute branching fractions. These
branching fractions only represent the K��þ spectrum from
0:8<mK� < 1:0 GeV=c2.

Mode Branching fraction [%]

�ðDþ ! K��þeþ�eÞ=�ðDþÞ 3:19� 0:04� 0:05
�ðDþ ! K��þ�þ��Þ=�ðDþÞ 3:05� 0:04� 0:05

FIG. 8. Results on the relative branching ratio, B�=Be ob-
tained for the six tag states and the error weighted average of
these six values. We compare the relative branching ratio using
the cross-feed method [Eq. (6)] to the ratio of absolute branching
fractions. Table III gives a summary of these results.FIG. 7. Distribution of �E for double tag events, where D�

candidate is reconstructed in one of the six tag modes [(a)–(f)],
and Dþ candidate is reconstructed in �K�0�þ�� mode. The

points with error bars are the reconstructed yield from the data
sample and the curves show our fit to the signal peak over the
dashed background line.

TABLE III. The B�=Be branching ratio for the data based on
relative and absolute measurements.

Method B�=Be [%]

Absolute 95:98� 1:93� 1:30
Cross-feed 94:64� 1:95� 1:03
PDG 2008 98:36� 9:16

6When we use a combined semielectric and semimuonic
sample, we use a 50 component ~N vector with the first 25
angular components reserved for Dþ ! K��þeþ�e candidates
and the second 25 angular components reserved for Dþ !
K��þ�þ�� candidates.
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For each q2i bin, we can write the bin populations ~Ni as a
sum of the expected bin populations ~m	 from each, indi-

vidual form-factor product contribution to Eq. (2). Thus ~Ni

can be written as a linear combination with coefficients
f	ðq2i Þ,
~Ni ¼ fþðq2i Þ ~mþ þ f�ðq2i Þ ~m� þ f0ðq2i Þ ~m0 þ fIðq2i Þ ~mI

þ fTðq2i Þ ~mT þ fTIðq2i Þ ~mTI: (11)

Each of the six f	ðq2i Þ coefficients is associated with one of
the form factor products that we wish to measure. The six
~m	 vectors are computed using SPD Monte Carlo simula-
tions generated with the Eq. (2) intensity but including just
one of the six form factor products. For example, ~mþ is
computed using a simulation generated with an arbitrary
function for Hþðq2Þ (such as Hþðq2Þ ¼ 1) and zero for the
remaining five form factors. The f	ðq2i Þ functions are
proportional to the true H2

	ðq2i Þ along with multiplicative
factors such as G2

FjVcsj2ðq2 �m2
‘Þ and acceptance

corrections.
Reference [7] shows how Eq. (11) can be solved for the

six form factor products H2þðq2Þ, H2�ðq2Þ, H2
0ðq2Þ,

h0ðq2ÞH0ðq2Þ, H2
t ðq2Þ, and H0ðq2ÞHtðq2Þ by making six

weighted q2 histograms. The weights are directly con-
structed from the six ~m	 vectors.

Figure 9 shows the six form factor products multiplied
by q2 obtained from a Monte Carlo simulation using our
selection requirements. Because the isolated Dþ !
K��þeþ�e sample provides no useful information on
the mass-suppressed form factor products H2

t ðq2Þ and
H0ðq2ÞHtðq2Þ, the second point is not plotted for these
two form factor products. The Monte Carlo sample was
generated with our SPD Monte Carlo with r3 ¼ 0 and was
run with 3 times our data sample. The reconstructed form
factor products in the Monte Carlo simulation are a good
match to the input model indicating that the projective
weighting method is reasonably unbiased.

We turn next to a discussion of our normalization con-
vention. Equation (4) tells us that as q2 ! 0, q2H2�ðq2Þ !
0; and q2H2

0ðq2Þ, q2h0ðq2ÞH0ðq2Þ, q2H2
t ðq2Þ,

q2H0ðq2ÞHtðq2Þ all approach the same constant.
Therefore, we normalized the form factor products in
Fig. 9 by scaling the weighted histograms by a single
common factor so that q2H2

0ðq2Þ ¼ 1 as q2 ! 0 based on

the q2H2
0ðq2Þ measured in the combined Dþ !

K��þeþ�e and Dþ ! K��þ�þ�� sample.

Figure 9 shows that the isolated Dþ ! K��þ�þ��

and Dþ ! K��þeþ�e samples produce similar error
bars for the measured H2þðq2Þ, H2�ðq2Þ, and h0ðq2ÞH0ðq2Þ
form factor products, while the H2

0ðq2Þ errors are much

larger for the Dþ ! K��þ�þ�� sample than for the

Dþ ! K��þeþ�e. This is due to the large correlation
between the H2

0ðq2Þ and H2
t ðq2Þ form factors present in

the Dþ ! K��þ�þ�� sample owing to the similarity in

their associated angular distributions. For this reason, the

error bars on the H2
t ðq2Þ form factor product are dramati-

cally reduced when one combines the Dþ ! K��þ�þ��

and Dþ ! K��þeþ�e samples.

V. FORM-FACTOR RESULTS

We turn next to a discussion of our form-factor mea-
surements. Figure 10 compares the h0ðq2ÞH0ðq2Þ distribu-
tion below the nominal pole (a) to that above the nominal
K�0 pole (b). Figure 10 shows that there is no significant
h0ðq2ÞH0ðq2Þ signal above the K�0 pole. The absence of a
h0ðq2ÞH0ðq2Þ signal above the nominal K�0 shows that our
data are consistent with the �s phase obtained in Refs. [7–
9]. A related interference pattern was observed in the
FOCUS [8] discovery of the s-wave interference in Dþ !
K��þ�þ�� decay. We can thus improve our statistical

errors by restricting our h0ðq2ÞH0ðq2Þ measurements to
events with 0:8<mK� < 0:9 GeV=c2. This additional re-

FIG. 9. Nonparametric form factor products obtained for the
SPD Monte Carlo sample (multiplied by q2) for ten, evenly
spaced q2 bins. The reconstructed form factor products are
shown as the points with error bars, where the error bars
represent the statistical uncertainties. The three points at each
q2 value are: filled circles a combined Dþ ! K��þ�þ�� &

Dþ ! K��þeþ�e sample, empty squares Dþ ! K��þeþ�e

only, and empty triangles Dþ ! K��þ�þ�� only. The solid

curves represent our SPD model, which was used to generate the
Monte Carlo sample. The histogram plots are: (a) q2H2þðq2Þ,
(b) q2H2�ðq2Þ, (c) q2H2

0ðq2Þ, (d) q2h0ðq2ÞH0ðq2Þ, (e) q2H2
t ðq2Þ,

and (f) q2H0ðq2ÞHtðq2Þ.
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quirement was applied to the q2h0ðq2ÞH0ðq2Þ plot of
Fig. 11, while the other five form factor products use the
full 0:8<mK� < 1:0 GeV=c2 mass range.

Figure 11 shows the six form factor products multiplied
by q2 obtained for data using our q2H2

0ðq2Þ ¼ 1 as q2 ! 0
normalization convention. The background was subtracted
using our Monte Carlo samples. Although the data are a
reasonably good match to the SPD model for the q2H2

0ðq2Þ
and q2H2�ðq2Þ form factors, the model does not match the
data for q2h0ðq2ÞH0ðq2Þ, and the mass-suppressed form
factors q2H2

t ðq2Þ and q2H0ðq2ÞHtðq2Þ. These disagree-
ments will be discussed in Sec. VI.

Because of our excellent q2 resolution, there is negli-
gible correlation among the ten q2 bins for a given form
factor product, but the relative correlations between differ-
ent form factor products in the same q2 bin can be much
larger. Most of the correlations are less than 30%. There
are, however, some very strong (> 70%) correlations for
H�ðq2Þ with various other form factors—most notably in
the three lowest q2 bins in the correlations between the
H�ðq2Þ and the HTH0 as well as H

2
0 form factor products.

Table IV, a tabular representation of Fig. 11 for the
Dþ ! K��þ�þ�� and Dþ ! K��þeþ�e combined

sample, gives the center of each q2 bin, the measured
form-factor product, its statistical uncertainty (first error)
and its estimated systematic uncertainty (second error).
The biggest source of the systematic uncertainty is from
the background estimation. We separately consider sys-
tematic uncertainties from nonsemileptonic decay back-
grounds, and semileptonic decay backgrounds. The
semileptonic backgrounds include cross-feed as well as
semimuonic events where the pion and muon are
exchanged.

For the background uncertainty, we assign a conserva-
tive systematic error by increasing the level of the non-
semileptonic background and semileptonic background
subtractions by a factor of 1.5 and comparing these form
factor products to the results with the nominal background
subtractions. For H2þðq2Þ and h0ðq2ÞH0ðq2Þ, the nonsemi-
leptonic and semimuonic background subtraction system-
atic uncertainty is less than 20% of the statistical error,
while for the other four form factor products the systematic
error is less than 40% of the statistical error.
We also assess a relative systematic error due to uncer-

tainties in track reconstruction and particle identification
efficiencies. The systematic uncertainty from this source is
rather small since we are reporting form factor shapes
rather than absolute normalization. This uncertainty is
estimated as less than 1.9% for all the form factor products.
Finally, we assess a scale error of 13.4% on the
h0ðq2ÞH0ðq2Þ form factor product due to the uncertainties

FIG. 11. Nonparametric form factor products obtained for the
data (multiplied by q2) for ten evenly spaced q2 bins. The
reconstructed form factor products are shown as the points
with error bars, where the error bars represent the statistical
uncertainties. The three points at each q2 value are: filled circles
a combined Dþ ! K��þ�þ�� & Dþ ! K��þeþ�e sample,

empty squares Dþ ! K��þeþ�e only, and empty triangles
Dþ ! K��þ�þ�� only. The solid curves show our SPD

model. The histogram plots are: (a) q2H2þðq2Þ, (b) q2H2�ðq2Þ,
(c) q2H2

0ðq2Þ, (d) q2h0ðq2ÞH0ðq2Þ, (e) q2H2
t ðq2Þ, and

(f) q2H0ðq2ÞHtðq2Þ.

FIG. 10. We show uncorrected plots of the h0ðq2ÞH0ðq2Þ for
data with Dþ ! K��þ�þ�� and Dþ ! K��þeþ�e com-

bined. (a) is for events below the nominal K�0 pole: 0:8<
mK� < 0:9 GeV=c2. (b) is for events above the nominal pole:
0:9<mK� < 1:0 GeV=c2. There is a strong h0ðq2ÞH0ðq2Þ signal
below the nominal pole but no evidence for a nonzero
h0ðq2ÞH0ðq2Þ form factor above the pole. Note the order of
magnitude difference in the y-axis scales between the left and
right plots.
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in the A and � values reported in Ref. [9]. When this
s-wave scale error is added in quadrature to the subtraction
systematic error, the total systematic error rises to about
85% of the statistical error in the lowest three q2 bins of the
h0ðq2ÞH0ðq2Þ form factor product, but systematic errors on
the form factor shape are less than 20% of the statistical
error.

Figure 12 illustrates our sensitivity to the pole masses in
Eq. (4) by comparing measurements of the q2H2�ðq2Þ form
factor product to a model with spectroscopic axial and
vector pole masses versus a model with infinite pole
masses, implying constant axial and vector form factors.
Our data favor the spectroscopic pole masses given in
Eq. (5), for the high q2 bins of the H2�ðq2Þ form factor
product. The other five form factor products are consistent
with either pole mass choice.

It is of interest to search for the possible existence of
additional nonresonant amplitudes of higher angular mo-
mentum. It is fairly simple to extend Eq. (2) to account for
potential d-wave or f-wave interference with the �K�0
Breit-Wigner amplitude. We search specifically for a pos-
sible zero helicity d-wave or f-wave piece that interferes
with the zero helicity �K�0 contribution. One expects that

such potential hðdÞ0 ðq2Þ and hðfÞ0 ðq2Þ form factors would

peak as 1=
ffiffiffiffiffi
q2

p
near q2 ! 0 as is the case for the other

zero helicity contributions H0ðq2Þ and h0ðq2Þ. If so, the
zero helicity contributions should be much larger than
potential d- or f-wave �1 helicity contributions. The

d-wave projectors are based on an additional interference
term of the form

4sin2�‘ð3cos2�V � 1ÞH0ðq2ÞhðdÞ0 ðq2ÞRefAde
�i�d�g: (12)

To search for the presence of zero helicity d-wave ampli-

TABLE IV. Summary of form factor product results for ten, evenly spaced q2 bins for the Dþ ! K��þ�þ�� and Dþ !
K��þeþ�e combined sample. The first and second errors are statistical and systematical uncertainties, respectively. The numbers
are normalized using the condition: q2H2

0ðq2Þ ¼ 1 as q2 ! 0.

q2 q2 H2þðq2Þ q2 H2�ðq2Þ q2 H2
0ðq2Þ

0.05 0:0013� 0:0061� 0:0010 0:0398� 0:0304� 0:0099 1:1979� 0:0737� 0:0276
0.15 0:0417� 0:0135� 0:0026 0:2467� 0:0380� 0:0146 1:0598� 0:0616� 0:0253
0.25 0:0993� 0:0209� 0:0036 0:4242� 0:0471� 0:0221 1:1160� 0:0656� 0:0274
0.35 0:1079� 0:0259� 0:0039 0:6704� 0:0535� 0:0175 1:0520� 0:0690� 0:0217
0.45 0:1401� 0:0290� 0:0031 0:8822� 0:0575� 0:0120 0:9556� 0:0721� 0:0203
0.55 0:2140� 0:0358� 0:0026 1:0809� 0:0605� 0:0025 1:0941� 0:0832� 0:0181
0.65 0:3874� 0:0457� 0:0057 1:2094� 0:0692� 0:0017 0:9692� 0:0891� 0:0165
0.75 0:3907� 0:0548� 0:0060 1:4181� 0:0830� 0:0085 1:0531� 0:1030� 0:0195
0.85 0:5670� 0:0759� 0:0090 1:2612� 0:0982� 0:0164 1:3298� 0:1415� 0:0307
0.95 0:7475� 0:1495� 0:0084 1:5113� 0:1952� 0:0263 1:4912� 0:2539� 0:0421
q2 q2 h0ðq2ÞH0ðq2Þ q2 H2

t ðq2Þ q2H0ðq2ÞHtðq2Þ
0.05 1:5263� 0:2649� 0:2068 �0:1535� 1:0530� 0:2330 �0:4717� 0:4033� 0:1983
0.15 1:3410� 0:2081� 0:1802 0:3069� 0:8381� 0:3261 �1:1157� 0:7390� 0:3345
0.25 1:5601� 0:2470� 0:2092 �0:9425� 1:0708� 0:4993 �1:0842� 0:8925� 0:2879
0.35 0:3432� 0:2450� 0:0657 �2:8312� 2:2685� 1:1741 1:0604� 1:2657� 0:3050
0.45 1:0085� 0:2927� 0:1378 5:0488� 3:2535� 1:3110 1:4500� 2:2843� 0:5273
0.55 0:7593� 0:3344� 0:1186 �3:5770� 4:0787� 1:6076 �1:2391� 3:1060� 0:3136
0.65 0:5340� 0:3524� 0:0906 �0:1290� 5:8905� 2:2112 �1:1319� 4:1718� 0:2507
0.75 0:3474� 0:3856� 0:0758 6:2982� 7:6928� 2:1522 9:9457� 7:8013� 0:7991
0.85 �0:0682� 0:3905� 0:0538 �16:9593� 10:8847� 3:1543 �13:1707� 11:6553� 0:0672
0.95 0:1968� 0:8383� 0:0266 �75:1674� 33:6395� 4:8926 �2:1058� 16:0185� 0:0680

FIG. 12. Evidence for finite pole masses. We show the mea-
sured q2H2�ðq2Þ form factor shown in Fig. 11 overlayed with two
models. (a) uses the same SPD model shown in Fig. 11 while
(b) overlays the data with a SPD model where the axial and
vector poles [MA and MV in Eq. (2)] are set to infinity. We show
the data with Dþ ! K��þ�þ�� and Dþ ! K��þeþ�e com-

bined. The slight scale difference between the data points in the
two plots is an artifact of our q2H2

0ðq2Þ ¼ 1 as q2 ! 0 normal-

ization scheme, which is based on the two different pole mass
predictions for the H2

0ðq2Þ form factor product.
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tude we use the technique of Ref. [7] to construct a pro-
jector which is orthogonal to the projectors for each of the
six terms in Eq. (2). The f-wave weights are based on an
additional interference term of the form

4sin2�‘ð5cos3�V � 3 cos�VÞH0ðq2ÞhðfÞ0 ðq2ÞRefAfe
�i�f�g:

(13)

Averaging over the Breit-Wigner intensity, the interference

should be proportional to Ad;f sin�d;fh
ðd;fÞ
0 ðq2ÞH0ðq2Þ and

will disappear when the nonresonant amplitude is orthogo-
nal to the average, accepted �K�0 amplitude. Figure 13

shows the q2hðd;fÞ0 ðq2ÞH0ðq2Þ form factor products obtained

in the data using projective weights generated assuming a
phase of zero. The projective weights are normalized so

that q2hðd;fÞðq2ÞH0ðq2Þ ¼ 1 in the limit q2 ! 0 if the pu-
tative d, f -wave amplitude had the same strength as the
s-wave amplitude relative to the �K�0 Breit-Wigner ampli-
tude. There is no evidence for either a d-wave or f-wave
component with this phase.

Figure 14 shows our amplitude and limits for 16 phase
assumptions. As illustrated by Fig. 10, our ability to mea-
sure a nonresonant amplitude can depend critically on its
phase relative to the average, accepted �K�0 phase. In order
to maximize our sensitivity to the nonresonant amplitude,
for each phase assumption and q2 bin we made our mea-
surement based on three mK� mass regions: 0:8<mK� <
0:9 GeV=c2, 0:8<mK� < 1:0 GeV=c2, and 0:9<mK� <
1:0 GeV=c2, which puts the average �K�0 reference phase at
roughly 3�=4, 3�=2, and 7�=4 for these three mass re-
gions, respectively. We chose the mass region with the
smallest expected error according to the Monte Carlo

simulation. Under the assumption hðd;fÞ0 ðq2Þ ¼ H0ðq2Þ,
used in Ref. [9], we performed a �2 fit of Fig. 13 to the
form Ad;f sin�d;fH

2
0ðq2Þ over the region q2 < 0:6 GeV2=c4

to find the amplitude and limits shown in Fig. 14.

Figure 14 shows that this ‘‘mass selection’’ method
produced nonamplitude limits, which are reasonably inde-
pendent of assumed phase. If, on the other hand, one used
the full 0:8<mK� < 1:0 GeV=c2 mass range for all 16
phase assumptions, one would get dramatically poorer
limits for phase choices orthogonal to the Breit-Wigner
amplitude phase. It is apparent from Fig. 14 that we have
no compelling evidence for either a d-wave, or an f-wave
component.

VI. SUMMARY

We present a branching fraction and form factor analysis
of the Dþ ! K��þ‘þ�‘ decay based on a sample of
approximately 11800 Dþ ! K��þeþ�e and Dþ !
K��þ�þ�� decays collected by the CLEO-c detector

running at the c ð3770Þ. We find BeðDþ ! �K�0eþ�eÞ ¼
ð5:52� 0:07� 0:13Þ% and B�ðDþ ! �K�0�þ��Þ ¼
ð5:27� 0:07� 0:14Þ%. Our direct measurement of the
relative semimuonic to semielectric branching ratio using
Eq. (6) is B�=Be ¼ ð94:64� 1:95� 1:03Þ%.

We also present a nonparametric analysis of the helicity
basis form factors that control the kinematics of the Dþ !
K��þ‘þ�‘ decays. We used a projective weighting tech-
nique that allows one to determine the helicity form factor
products by weighted histograms rather than likelihood
based fits. We find consistency with the spectroscopic
pole dominance model for the dominant H2þðq2Þ, H2�ðq2Þ,
and H2

0ðq2Þ form factors. Our measurement on the

h0ðq2ÞH0ðq2Þ form factor product suggests that the h0
form factor falls faster than H0 with increasing q2. The
form factors determined using Dþ ! K��þ�þ�� decays

are consistent with those determined using Dþ !
K��þeþ�e decays and are consistent with our earlier

FIG. 13. Measurements of the d-wave form factor product
(a) and f-wave form factor product (b) for an assumed phase
of 0 radians relative to the �K�0 Breit-Wigner amplitude.

FIG. 14. Search for d-wave, (a) and (b), and f-wave, (c) and
(d), interference effects for each phase assumption as described
in the text. The phases �d and �f represent the phase of possible

d and f -wave contributions relative to the phase of the �K�0
Breit-Wigner amplitude. They are measured in radians.
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study [17] of Dþ ! K��þeþ�e. Our measured H2�ðq2Þ
form factor data are more consistent with axial and vector
form factors with the expected spectroscopic pole domi-
nance q2 dependence than with constant axial and vector
form factors.

Our measurements of theH2
t ðq2Þ andH0ðq2ÞHtðq2Þ form

factor suggests a much smaller Htðq2Þ form factor than
expected in lattice gauge theory models [4]. Within the
context of the spectroscopic pole dominance model Eq. (5)
, our H0ðq2ÞHtðq2Þ measurements are most consistent with
a small Htðq2Þ form factor contribution implying a very
negative value for r3 � A3ð0Þ=A1ð0Þ, such as r3 ¼ �10,
which would place the predicted B�=Be relative branch-

ing ratio close to the phase space estimate of 91%. Finally,
we have searched for possible d-wave or f-wave nonreso-
nant interference contributions to Dþ ! K��þ‘þ�‘. We

have no statistically significant evidence for d-wave or
f-wave interference, but are only able to limit these terms
to roughly less than 1.0 and 1.5 times the observed s-wave
interference for d-wave and f-wave, respectively.
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