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We present results for the binding energies for 4He and 3He nuclei calculated in quenched lattice QCD

at the lattice spacing of a ¼ 0:128 fm with a heavy quark mass corresponding to m� ¼ 0:8 GeV.

Enormous computational cost for the nucleus correlation functions is reduced by avoiding redundancy

of equivalent contractions stemming from permutation symmetry of protons or neutrons in the nucleus and

various other symmetries. To distinguish a bound state from an attractive scattering state, we investigate

the volume dependence of the energy difference between the nucleus and the free multinucleon states by

changing the spatial extent of the lattice from 3.1 to 12.3 fm. A finite energy difference left in the infinite

spatial volume limit leads to the conclusion that the measured ground states are bounded. It is also

encouraging that the measured binding energies and the experimental ones show the same order of

magnitude.
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The atomic nuclei have been historically treated as
collections of protons and neutrons. The great success of
the nuclear shell model since 1949 [1,2], explaining the
nuclear magic numbers and detailed spectroscopy, has
established that protons and neutrons are very good effec-
tive degrees of freedom at the nuclear energy scale of a few
MeV. Nonetheless, 60 years later, we know for certain that
protons and neutrons are made of quarks and gluons whose
laws are governed by QCD. It is a great challenge to
quantitatively understand the structure and property of
known nuclei based on the first principle of QCD. This
direct approach will be more important and indispensable
if we are to extract reliable predictions for experimentally
unknown nuclei in the neutron-rich regions of the nuclear
chart. In this article, we address the fundamental question
in the research in this direction, namely, the binding en-
ergies of nuclei.

Interacting multibaryon systems have been investigated
by several studies in lattice QCD. Nucleon-nucleon scat-
tering was first studied in quenched QCD [3,4]. This work
was followed by a partially quenched mixed action simu-
lation in Ref. [5]. Extraction of nuclear force between two
nucleons has been investigated in quenched and 2þ 1
flavor QCD [6–8]. All these studies assumed that the
deuteron channel is not bound for the heavy pion mass,
m� * 0:3 GeV, employed in the calculations. Very re-
cently, NPLQCD Collaboration has tried a feasibility study
of the three-baryon system, focusing on the quantum num-
ber of �0�0n. They found the interaction to be repulsive
[9]. So far, no evidence supporting bound-state formation
in multibaryon systems has been observed in lattice QCD.
In this article, we examine the helium nuclei, 4He and 3He,

in quenched lattice QCD using a heavy quark mass at a
single lattice spacing.
The binding energy �E of the nucleus, consisting of NN

nucleons with the massmN , is very tiny compared with the
mass M of the nucleus: �E=M�Oð10�3Þ with �E ¼
NNmN �M. This causes a complicated situation in that
it is difficult to distinguish the physical binding energy
from the energy shift due to the finite volume effect in the
attractive scattering system [10]. One way to solve the
problem is to investigate the volume dependence of the
measured energy shift: In the attractive scattering system,
the energy shift is proportional to 1=L3 at the leading order
in the 1=L expansion [10,11], while the physical binding
energy remains at a finite value at the infinite spatial
volume limit. In our simulation, we choose three spatial
extents corresponding to 3.1, 6.1, and 12.3 fm, which are
much larger than those employed in current numerical
simulations so as to provide sufficient room for the inter-
acting multinucleon system.
A major computational problem with multinucleon sys-

tems in lattice QCD is a factorially large number of Wick
contractions of quark-antiquark fields required for evalu-
ations of the nucleus correlation functions. A naive count-
ing would give ð2Np þ NnÞ!ð2Nn þ NpÞ! for a nucleus

composed of Np protons and Nn neutrons, which quickly

becomes prohibitively large beyond a three-nucleon sys-
tem, e.g., 2880 for 3He and 518 400 for 4He.
This number, however, contains equivalent contractions

under the permutation symmetry in terms of the protons or
the neutrons in the interpolating operator. We can reduce
the computational cost by avoiding the redundancy. In case
of the 4He nucleus, which consists of the same number of
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protons and neutrons, the isospin symmetry also helps us
reduce the necessary contractions. After a scrutiny of the
remaining equivalent contractions by a computer, we find
that only 1107 (93) contractions are required for the 4He
(3He) nucleus correlation function. We have made a nu-
merical test that the result with the reduced contractions
reproduces the one with the full contractions on a
configuration.

Another technique to save the computational cost is a
modular construction of the nucleus correlation functions.
We first make a block of three quark propagators where a
nucleon operator with zero spatial momentum is con-
structed in the sink time slice. In this procedure, we can
incorporate the permutation symmetry of two up (down)
quarks in a proton (neutron) sink operator. This is a simple
trick to calculate 2NN contractions simultaneously. We also
prepare several combinations of the two blocks, which are
useful for the construction of the nucleus correlators.

We carry out calculations on quenched configurations
generated with the Iwasaki gauge action [12] at� ¼ 2:416,
whose lattice spacing is a ¼ 0:128 fm determined with
r0 ¼ 0:49 fm as an input [13]. We employ the hybrid
Monte Carlo algorithm with the Omelyan-Mryglod-Folk
integrator [14,15]. The step size is chosen to yield reason-
able acceptance rate presented in Table I. We take three
lattice sizes, L3 � T ¼ 243 � 64, 483 � 48, and 963 � 48,
to investigate the spatial volume dependence of the energy
difference between the nucleus and the free multinucleon
states. The physical spatial extents are 3.1, 6.1, and 12.3 fm,
respectively.

We use the tadpole-improved Wilson action with cSW ¼
1:378 [13]. Since it becomes harder to obtain a reasonable
signal-to-noise ratio at lighter quark masses for the multi-
nucleon system, we employ a heavy quark mass at � ¼
0:134 82, which gives m� ¼ 0:8 GeV for the pion mass
and mN ¼ 1:6 GeV for the nucleon mass. Statistics are
increased by repeating the measurement of the nucleus
correlation functions with the source points in different
time slices on each configuration. The numbers for the
configurations and the measurements on each configura-
tion are summarized in Table I. We separate 100 trajecto-
ries between each measurement with � ¼ 1 for the
trajectory length. The errors are estimated by the jackknife
analysis, choosing 200 trajectories for the bin size.

The quark propagators are solved with the periodic
boundary condition in all the spatial and temporal direc-

tions, and using the exponentially smeared source Ae�Bj ~xj
after the Coulomb gauge fixing. On each volume, we
employ two sets of the smearing parameters: ðA; BÞ ¼
ð0:5; 0:5Þ and (0.5, 0.1) for L ¼ 24 and (0.5, 0.5) and
(1.0, 0.4) for L ¼ 48 and 96. Effective mass plots with
different sources, which are shown later, help us confirm
the ground state of the nucleus. Hereafter, the first and the
second smearing parameter sets are referred to as ‘‘S1;2,’’
respectively.
The interpolating operator for the proton is defined as

p� ¼ "abcð½ua�tC�5dbÞu�c , where C ¼ �4�2 and � and a,
b, and c are the Dirac index and the color indices, respec-
tively. The neutron operator n� is obtained by replacing u�c
by d�c in the proton operator. To save the computational
cost we use the nonrelativistic quark operator, in which the
Dirac index is restricted to upper two components.
The 4He nucleus has zero total angular momentum and

positive parity JP ¼ 0þ with the isospin singlet I ¼ 0. We
employ the simplest 4He interpolating operator with the
zero orbital angular momentum L ¼ 0, and hence J ¼ S
with S being the total spin. Such an operator was already

given a long time ago in Ref. [16], 4He ¼ ð ���� � ��Þ= ffiffiffi

2
p

,
where � ¼ ð½þ �þ�� þ ½�þ�þ� � ½þ��þ� �
½�þþ��Þ=2 and ��¼ð½þ�þ��þ½�þ�þ�þ½þ�
�þ�þ½�þþ���2½þþ����2½��þþ�Þ= ffiffiffiffiffiffi

12
p

with
þ=� being the up/down spin of each nucleon. �; �� are
obtained by replacingþ=� in �; �� by p=n for the isospin.
Each nucleon in the sink operator is projected to have zero
spatial momentum. We also calculate the correlation func-
tion of the 3He nucleus, whose quantum numbers are JP ¼
1
2
þ, I ¼ 1

2 , and Iz ¼ 1
2 . We employ the interpolating opera-

tor in Ref. [17] with zero momentum projection on each
nucleon in the sink operator.

TABLE I. Number of configurations (Nconf), number of mea-
surements on each configuration (Nmeas), acceptance rate in the
hybrid Monte Carlo algorithm, pion mass (m�), and nucleon
mass (mN).

L Nconf Nmeas Acceptance (%) m� [GeV] mN [GeV]

24 2500 2 93 0.8000(3) 1.619(2)

48 400 12 93 0.7999(4) 1.617(2)

96 200 12 68 0.8002(3) 1.617(2)
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FIG. 1 (color online). Effective mass of 4He nucleus with S1
(circle) and S2 (square) sources at L ¼ 48 in lattice units. Fit
results with one standard deviation error band are expressed by
solid lines.
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Let us first present the 4He nucleus results. Figure 1
shows the effective mass plots of the 4He nucleus correla-
tors with the S1;2 sources on the ð6:1 fmÞ3 spatial volume.

We find clear signals up to t � 12, beyond which statistical
fluctuation dominates. The effective masses with the differ-
ent sources show a reasonable agreement in the plateau
region. The consistency is also shown in the exponential fit
results in the plateau region as presented in the figure.

In order to determine the energy shift �EL precisely, we
define the ratio of the 4He nucleus correlation function
divided by the fourth power of the nucleon correlation
function, RðtÞ ¼ G4HeðtÞ=ðGNðtÞÞ4, where G4HeðtÞ and

GNðtÞ are obtained with the same source. The effective
energy shift is extracted as lnðRðtÞ=Rðtþ 1ÞÞ ¼ ��Eeff

L ,
once the ground states dominate in both correlators. In
Fig. 2 we present time dependence of ��Eeff

L for the S1;2
sources, both of which show negative values beyond the
error bars in the plateau region of 8 � t � 11. Note that
this plateau region is reasonably consistent with that for the
effective mass of the 4He nucleus correlators in Fig. 1. The
signals of ��Eeff

L are lost beyond t � 12 because of the
large fluctuations in the 4He nucleus correlators. We de-
termine �EL by exponential fits of the ratios in the plateau
region, t ¼ 8� 12 for S1 and t ¼ 7� 12 for S2, respec-
tively. We estimate a systematic error of �EL from the
difference of the central values of the fit results, with the
minimum or maximum time slice changed by �1.

The volume dependence of the energy shift �EL is
plotted as a function of 1=L3 in the upper panel of Fig. 3.
Table II summarizes the numerical values of �EL at three
spatial volumes, where the statistical and systematic errors
are presented in the first and second parentheses, respec-
tively. The results for the S1;2 sources are consistent within
the error bars. In Fig. 3, we plot the combined error of the
statistical and systematic ones added in quadrature. In the

following discussions we use the combined error. We ob-
serve little volume dependence for�EL indicating a bound
state, rather than the 1=L3 dependence expected for a
scattering state, for the ground state in the 4He channel.
The physical binding energy �E defined in the infinite

spatial volume limit is extracted by a simultaneous fit of
the data for the S1;2 sources employing a fit function of
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FIG. 2 (color online). Effective energy shift of 4He nucleus in
a convention of ��Eeff

L with S1 (circle) and S2 (square) sources
at L ¼ 48 in lattice units. Square symbols are slightly shifted to
positive direction in horizontal axis for clarity. Fit results with
one standard deviation error band are expressed by solid lines.

TABLE II. Binding energies of 4He and 3He nuclei on each
spatial volume. Extrapolated results to the infinite spatial volume
limit are also presented. The first and second errors are statistical
and systematic, respectively.

L �EL [MeV]
4HeðS1Þ 4HeðS2Þ 3HeðS1Þ 3HeðS2Þ

24 28(14)(11) 46.8(7.3)(1.6) 19.0(6.3)(6.0) 23.2(3.2)(0.5)

48 27(14)(05) 36(12)(04) 16.6(6.9)(3.2) 19.5(5.6)(2.3)

96 24(18)(12) 24(14)(03) 19.0(7.6)(4.9) 18.4(6.1)(1.9)

1 27.7(7.8)(5.5) 18.2(3.5)(2.9)
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FIG. 3 (color online). Spatial volume dependence of ��EL ¼
M� NNmN in GeV units for 4He (upper) and 3He (lower) nuclei
with S1 (open circle) and S2 (open square) sources. Statistical
and systematic errors are added in quadrature. Square symbols
are slightly shifted to positive direction in horizontal axis for
clarity. Extrapolated results to the infinite spatial volume limit
(filled circle) and experimental values (star) are also presented.
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�Eþ C=L3 with �E and C free parameters. Since �EL

may be contaminated by the scattering states, which are
Oð1=L3Þ effects, we add a possible 1=L3 term. A system-
atic error is estimated from the difference of the central
values of the fit results using the data with the different fit
ranges in the determination of �EL. The result for �E is
0.0180(62) in lattice units, which is 2:9	 away from zero
as shown in Fig. 3. We also try a pure bound-state fit,
allowing for an exponentially small finite size correction:
�E and �Eþ C1e

�C2L with �E and C1;2 free parameters.

We find that all the results are in agreement with reason-
able values of �2.

Based on these analyses, we conclude that the ground
state of the measured four-nucleon system is bounded. An
encouraging finding is that �E ¼ 27:7ð9:6Þ MeV with
a�1 ¼ 1:54 GeV agrees with the experimental value of
28.3 MeV. However, we do not intend to stress the con-
sistency because our calculation is performed at the un-
physically heavy pion mass, m� ¼ 0:8 GeV, and the
electromagnetic interactions and the isospin symmetry
breaking effects are neglected.

We also calculate �EL for the 3He nucleus with the S1;2
sources, whose results are presented in Fig. 3 and Table II.
The trend of the volume dependence is similar to the 4He
nucleus case. A simultaneous fit of the data for the S1;2
sources with a fit function of �Eþ C=L3 yields a finite
value of �E ¼ 18:2ð4:5Þ MeV, which means the existence
of a bound state in the 3He nucleus channel. Our result for
�E is about twice larger than the experimental value of
7.72 MeV. A main reason could be the heavy pion mass
employed in this calculation.

As an alternative way to view this result, we compare the
binding energies normalized by the atomic number:
�E=NN ¼ 6:9ð2:4Þ MeV and 6.1(1.5) MeV for the 4He
and 3He nuclei, respectively. At our unphysically heavy
pion mass, the three- and four-nucleon system does not

show the experimental feature that the binding is stronger
for 4He than for 3He.
We have addressed the issue of nuclear binding for the

4He and 3He nuclei. We have shown that the current
computational techniques and resources allow us to tackle
this issue. Albeit in quenched QCD and for unphysically
heavy pion mass, we are able to extract evidence for the
bound-state nature of the ground state and the binding
energies for these nuclei.
A future direction of primary importance is to investi-

gate the quark mass dependence of the binding energies of
the nuclei. There are several model studies of the quark
mass dependence of the nuclear binding energies [18]
which suggest that the quark masses play an essential
role in a quantitative understanding of the binding ener-
gies. Another important issue is the development of a
strategy to calculate nuclei with larger atomic numbers.
The required number of the Wick contractions quickly
diverges as the atomic number increases, even if the re-
dundancies are removed with various symmetries. We
leave it to future work.

Numerical calculations for the present work have been
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Information Technology Center of the University of
Tokyo and on the PACS-CS computer under the
Interdisciplinary Computational Science Program of the
Center for Computational Sciences, University of
Tsukuba. We thank our colleagues in the PACS-CS
Collaboration for helpful discussions and providing us
the code used in this work. This work is supported in
part by Grants-in-Aid for Scientific Research from the
Ministry of Education, Culture, Sports, Science and
Technology (No. 18104005, No. 18540250,
No. 20105002, No. 21105501, No. 22244018).
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