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Decay rates of unpolarized top quarks into longitudinally and transversally polarized W bosons are

calculated to second order in the strong coupling constant �s. Including the finite bottom quark mass and

electroweak effects, the standard model predictions for theW-boson helicity fractions are F L ¼ 0:687ð5Þ,
Fþ ¼ 0:0017ð1Þ, and F� ¼ 0:311ð5Þ.
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There has been a continuing interest in the measurement
of the helicity fractions of the W boson from top quark
decays from the CDF Collaboration [1–7] and from the D0
Collaboration [8–11] at the Tevatron at Fermilab.

In the standard model (SM) the top quark decays pre-
dominantly into a Wþ boson and a bottom quark.
Interesting observables, independent of the production
rate that is difficult to predict precisely for a hadron col-
lider, are the fractions of the three possible W helicities:
F L (longitudinal), Fþ (transverse plus) and F� (trans-
verse minus). In the leading order (LO) in the strong
coupling constant �s (that is, without any gluon correc-
tions), and in the limit of a massless bottom quark one has
[12]

F L:Fþ:F� ¼ 1

1þ 2x2
:0:

2x2

1þ 2x2
; (1)

with F L þFþ þF� ¼ 1 and x � mW=mt. Using
mW ¼ 80:401ð43Þ GeV [13] and mt ¼ 172:8ð1:3Þ GeV
[14] we get x2 ¼ m2

W=m
2
t ¼ 0:216ð3Þ and F L:Fþ:F� ’

0:7:0:0:3.
The leading order decay t ! bW is a two-body process.

With the V � A interaction, a massless b quark is left
handed; thus theW can only be left handed or longitudinal
due to angular momentum conservation. One therefore has
Fþ ¼ 0 provided no gluons are emitted.

The above LO predictions are only marginally changed
by the bottom mass. For a pole mass ofmb ¼ 4:8 GeV one
finds that the total rate � decreases by about a quarter per
cent compared to the massless b limit. The helicity fraction
F L slightly decreases while F� increases, by about one
per mil. The leakage into the transverse-plus fraction Fþ

is less than half per mil. Radiative corrections are a more
important source of the transverse-plus rate. However, as
we shall see, when NLO and NNLO gluon radiation is
included, Fþ still does not exceed two per mil. Since only
hard gluon emission can influence the helicity fractions,
this smallness is a reliable prediction of the standard
model.
For this reason, the transverse-plus fraction Fþ is a

sensitive probe of new physics effects such as a right chiral
admixture to the SM current. The left and right chiral
contributions do not interfere for mb ¼ 0 leading to a
quadratic dependence on the admixture parameter. The
contribution of the right chiral contribution can be obtained
from Eq. (1) by exchanging Fþ $ F�, whereas F L

remains unchanged. We mention that there are some indi-
rect model dependent constraints on a possible right chiral
admixture to the SM current from measurements of b !
sþ � decays [15–18].
Let us summarize the theoretical prediction for the

helicity fractions. In addition to the Oð�2
sÞ effects com-

puted in this paper, we include the lower-order contribution
[BornþOð�sÞ] [19–21], the leading electroweak correc-
tions [22], and, for Fþ, the mb effect. The errors resulting
from uncertainties in mt;b;W and �s and an estimate of the

higher-order effects are added in quadrature. We find

F L ¼ 0:687ð5Þ; Fþ ¼ 0:0017ð1Þ;
F� ¼ 0:311ð5Þ: (2)

The relative errors for F L and F� are small [of Oð1%Þ]
and, for the largest part, result from the experimental error
on the top mass. The error for Fþ arises from uncertainty
in �s and, to a lesser degree, in mb. Its absolute value is
small but the relative error is large due to the fact that Fþ
vanishes at LO for mb ¼ 0.
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Various methods have been used by the CDF and D0
Collaborations to experimentally extract the helicity frac-
tions from the top quark decay data (see the recent review
[23]). While previous analyses have performed two fits
keeping one of the helicity fractions at its SM value,
more recent analyses measure the fractions F L and Fþ
simultaneously in a two-dimensional fit [7,11]. Using such
a model independent analysis the CDF Collaboration
quotes values of F L ¼ 0:88� 0:11ðstatÞ � 0:06ðsystÞ
and Fþ ¼ �0:15� 0:07ðstatÞ � 0:06ðsystÞ [7]. In a simi-
lar analysis the D0 Collaboration obtains F L ¼ 0:425�
0:166ðstatÞ � 0:102ðsystÞ and Fþ ¼ 0:119�
0:090ðstatÞ � 0:053ðsystÞ [11]. Both measurements are
consistent with the SM predictions.

The experimental errors on the helicity fraction mea-
surements are still rather large but will be much reduced
when larger data samples become available in the future
from the Tevatron and from the LHC. Optimistically the
measurement errors can eventually be reduced to below
1%. For example, an early Monte Carlo (MC) study quotes
measurement uncertainties of �F L ¼ 0:007 and �Fþ ¼
0:003 for an integrated luminosity of 100 fb�1 at
Tevatron II energies [24]. The corresponding event rates
can easily be reached at the LHC within one year. A more
recent MC study based on 10 fb�1 at the LHC quotes
measurement uncertainties of �F L ¼ 0:019, �F� ¼
0:018, and �Fþ ¼ 0:0021 [17].

The improvements in the accuracy of the experimental
measurements have to be matched by corresponding ad-
vances in the theoretical sector. The NLO Oð�sÞ correc-
tions to the helicity fractions were calculated in [19–21].
They lower F L and increase F� by about 1 and 2%,
respectively, relative to their LO values. At NLO there is
now a small contribution to the transverse-plus fraction
Fþ of 0.001. The corresponding NLO electroweak and
finite width corrections were determined in [22]. They are
smaller than the strong corrections and tend to cancel each
other for both F L and F�.

It is desirable to improve the accuracy of the theoretical
predictions and to check the convergence of the perturba-
tive series by computing the helicity fractions at NNLO. A
first step in this direction was taken in [25,26],1 where the
NNLO corrections to the total rate were found, exploiting
the smallness of x ¼ mW=mt. A series in powers and
logarithms of x was obtained and found to converge rap-
idly, so that its first few terms suffice. The aim of this paper
is to use similar techniques to calculate the NNLO strong
corrections to the three helicity fractions.

We first determine the rate �L of the top decay with
longitudinally polarized W, replacing the full sum over
W polarizations by a projector described below. The pre-
vious knowledge of the total rate is used to calculate the

transverse rate �T ¼ �þ þ �� from the difference �T ¼
�� �L. We use another projector to find the difference
�þ � ��. Finally, the helicity fractions F i ¼ �i=� are
determined.
Our calculation follows the approach outlined in

Ref. [26]. Using the optical theorem we compute the decay
width from the imaginary part of top quark self-energy
diagrams,

� ¼ 1

mt

Imð�Þ; (3)

where � denotes the one-particle irreducible self-energy
diagrams. Sample diagrams are shown in Fig. 1. The
unitary gauge is used for the W boson so that diagrams
with Goldstone bosons are not needed. However, the R�

gauge is used for the gluons with an arbitrary gauge
parameter. The gauge-parameter dependence cancels in
the final result.
Since we set the mass of the bottom quark to zero, the

integrals contain two scales, mt and mW . To reduce these
integrals to single scale integrals, we use the method of
expansion by regions (see, e.g., Ref. [28]). In the present
case, there are two regions to be considered. In the so-
called hard region, the loop momenta are of the order ofmt,
while they are of ordermW in the so-called soft region. The
integrals become scaleless and vanish if a gluon momen-
tum is soft. Thus, we are left with two contributions to each
integral: one where all momenta are hard and one where
only theW-boson momentum is soft. For each contribution
we construct appropriate expansions in the corresponding
small quantities. The remaining single scale integrals are
further reduced to so-called master integrals using
Laporta’s algorithm [29,30].
Compared to the NNLO calculation of the total width, to

get the partial rates with various W polarizations requires
replacing the total rate projector2

(a) (b)

(d)(c)

FIG. 1. Sample three-loop diagrams. Thick and thin lines
denote top and bottom quarks, respectively. Wavy lines denote
W bosons and curly lines denote gluons. In the closed fermion
loop all quark flavors have to be considered.

1An approximate value for the total rate was found in
Ref. [27].

2In the unitary gauge, the W-boson propagator reads
iP��=ðq2 �m2

WÞ.
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P �� ¼ �g�� þ q�q�

m2
W

; (4)

by the longitudinal projector P��
L or the transverse-plus/

minus projectors P��
� . The longitudinal projector reads

[20]

P ��
L ¼ ðm2

Wp
� � p � qq�Þðm2

Wp
� � p � qq�Þ

m2
Wm

2
t j ~qj2

; (5)

where p is the top quark momentum and q ¼ ðq0; 0; 0; j ~qjÞ
is the momentum of the W boson which propagates in the
z direction. The transverse projectors can be obtained with
the help of the forward-backward projector [20]

P ��
F ¼ � 1

mtj ~qj i"
����p�q�: (6)

One has P��
� ¼ ðP�� � P��

L � P��
F Þ=2.

Partial helicity rates involve two technical challenges
absent in the total rate calculation. First, there is an addi-
tional propagatorlike structure 1=j ~qjn, n 2 f1; 2g in
Eqs. (5) and (6), and second, we have to deal with the
presence of �5-odd traces in dimensional regularization.
Our approach to both issues is outlined below.

In the hard region, we express j ~qj2 through the propa-
gator factor N ¼ ðpþ qÞ2 �m2

t ¼ 2pqþ q2 as follows3:

j ~qj2 ¼ q20 �m2
W ¼ ð2p � qÞ2

4m2
t

�m2
W

¼ 1

4m2
t

½N2 � 2m2
WN þm4

W � 4m2
t m

2
W�: (7)

In Eq. (7) we use the fact that we are only interested in the
imaginary part and that q2 ¼ m2

W on the cut. Now we can
construct the desired expansions in mW=mt as

1

j ~qj ¼
2mt

N

X1

i¼0

2i
i

� ��
2m2

WN �m4
W þ 4m2

t m
2
W

4N2

�
i
;

1

j ~qj2 ¼
4m2

t

N2

X1

i¼0

�
2m2

WN �m4
W þ 4m2

t m
2
W

N2

�
i
;

(8)

which we truncate at some order. Thus, the additional
propagatorlike structure from the projector is transformed
into a scalar on-shell propagator with momentum pþ q
and mass mt, raised to arbitrary, integer powers. For the
calculation of the polarized decays we need, next to the
master integrals of Refs. [26,31], twelve additional three-
loop master integrals.

In the soft region, we cannot perform an expansion of
j ~qj, since j ~qj2 ¼ q20 �m2

W and q0 is of ordermW in the soft

region. However, in this region the W-boson loop factor-

izes. Therefore, we only have to replace the usual one-loop
tadpole integrals with integrals of the type

Z ddq

ðq2 �m2
WÞðq20 �m2

WÞn
; (9)

with n 2 f1=2; 1g. d ¼ 4� 2� is the number of dimen-
sions. Integrals of this type can be easily evaluated by
performing the integrations over the timelike and spacelike
momentum components separately.
For traces with an odd power of �5, we use the prescrip-

tion of Ref. [32] and replace

���5 ! i

3!
"��	
�

��	�
: (10)

The " tensor is stripped off and absorbed into the projector.
As a consequence the renormalization constant of the
axial-vector current at the requisite order becomes

ZA ¼ 1þ
�
�s

�

�
2
�
11

24
CFCA � 1

6
CFTFnf

�
1

�
; (11)

where CF ¼ ðN2
c � 1Þ=ð2NcÞ and CA ¼ Nc are the Casimir

operators of the fundamental and adjoint representation of
SUðNcÞ, respectively. For QCD we have Nc ¼ 3 and TF ¼
1=2. nf denotes the number of quark flavors. Additionally,

we have to include the finite renormalization constant

Z5 ¼ 1� �s

�
CF þ

�
�s

�

�
2

�
�
11

8
C2
F � 107

144
CFCA þ 1

36
CFTFnf

�
(12)

to restore the anticommutativity of �5. Both renormaliza-
tion constants were determined at the three-loop level in
Ref. [33].
A NLO check of the new methods used in this paper is

afforded by comparing with the expanded form of the
known NLO closed form results given in [19–21]. We
found agreement up to Oðx16Þ.
We present our results in terms of the reduced helicity

rates �̂i where

�i ¼ GFm
3
t jVtbj2

8
ffiffiffi
2

p
�

�̂i (13)

with i 2 fL;þ;�g. GF is Fermi’s constant and Vtb is the
element of the Cabibbo-Kobayashi-Maskawa matrix which
governs transitions between bottom and top quarks.
The analytical results of our calculation are too long to

be presented here. Instead we present their numerical
values. In Table I we show successive terms in the power
series expansion [in terms of ½xn� :¼ ðxn; xn lnxÞ] of the
NNLO correction to the reduced helicity rates up to terms
of orderOð½x10�Þ. Noteworthy is the fact that there are also
odd powers in the expansion in ½x�. These terms appear in
the expansion of the parity-odd helicity structure function

3p ¼ ðmt; 0; 0; 0Þ in the rest frame of the top quark such that
p � q ¼ mtq0.
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�F
4 and thereby in �� (see Table I). The odd powers of x

stem solely from the soft region of �F. The leading x0

contributions of �̂L and �̂ are equal to each other. This is a
consequence of the Goldstone boson equivalence theorem.
Between the ½x4� and ½x6� terms the power series expansion

is somewhat erratic for �̂þ, �̂�, and �̂. However, expand-
ing up to Oð½x10�Þ Table I shows that one has sufficient
numerical stability and precision for all three helicity rates
and their sum. The contribution of the Oð½x10�Þ term
amounts to about 0.01%, 1%, 0.06%, and 0.03% of the

total for �̂L, �̂þ, �̂�, and �̂, respectively. The convergence
is slowest for �̂þ. But then �̂þ is numerically very small.

In order to present our numerical results on the helicity
fractions we define helicity fractions up toOðnÞ by writing
(n ¼ 0, 1, 2 denote the contributions up to LO, NLO, and
NNLO, respectively)

F ðnÞ
i ¼

P
n
j¼0 �

ðjÞ
iP

n
j¼0 �

ðjÞ ; (14)

where i ¼ L, þ, �. We further define the increments

�F ðnÞ
i ¼ F ðnÞ

i �F ðn�1Þ
i and the relative increments


F ðnÞ
i ¼ �F ðnÞ

i =F ð0Þ
i . We present our numerical results

in the form F i ¼ F ð0Þ
i þ �F ð1Þ

i þ �F ð2Þ
i , and also, if

F ð0Þ
i � 0, as F i ¼ F ð0Þ

i ð1þ 
F ð1Þ
i þ 
F ð2Þ

i Þ. For our nu-
merical results we use �sðmtÞ ¼ 0:1073ð24Þ, which we
obtained with the program RUNDEC [34] from the values
�sðmZÞ ¼ 0:1176ð20Þ and mZ ¼ 91:1876ð21Þ GeV [35].
We find

F L ¼ 0:6978� 0:0075� 0:0023

¼ 0:6978ð1� 0:0108� 0:0033Þ;
Fþ ¼ 0þ 0:001 03þ 0:000 23;

F� ¼ 0:3022þ 0:0065þ 0:0021

¼ 0:3022ð1þ 0:0215þ 0:0070Þ:

(15)

The results in Eq. (15) contain higher orders in �s from the
expansion of the denominators in Eq. (14). In order to
maintain the constraint F L þFþ þF� ¼ 1, we prefer
the unexpanded definition of helicity fractions (14).
The numbers in Eq. (15) show the good convergence of

the perturbative expansion, even though �F ð1Þ
i =F ð0Þ

i (for

i ¼ L, �) is much smaller than �F ð2Þ
i =�F ð1Þ

i . The NLO
corrections to the helicity fractions are already close to the
expected future experimental sensitivities and the NNLO
corrections increase these by approximately a third. In
particular, the NNLO calculation of the helicity fraction
Fþ remains at the order of 0.001. Should a measurement
reveal a significantly larger value, it would be a clear signal
of new physics.

J. G. K. gratefully acknowledges helpful discussions
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stages of this investigation. The research of J. H. P. and
A. C. was supported by Science and Engineering Research
Canada. J. H. P. was also supported by the Alberta
Ingenuity Foundation and thanks the Graduiertenkolleg
‘‘Eichtheorien’’ at the University of Mainz for partial travel
support. Our calculation was done using FORM [36]. The
Feynman diagrams were drawn with AXODRAW [37] and
JAXODRAW [38].

TABLE I. Numerical values for Oð½xn� :¼ ðxn; xn lnxÞÞ terms in the x expansion of the NNLO
corrections to the reduced partial and total helicity rates �̂i.

�̂L �̂þ �̂� �̂

½x0� �1:958� 10�2 0 0 �1:958� 10�2

½x2� 4:737� 10�3 3:860� 10�4 �3:861� 10�3 1:262� 10�3

½x4� 6:710� 10�4 1:351� 10�4 �9:917� 10�4 �1:856� 10�4

½x5� 0 �5:339� 10�4 5:339� 10�4 0

½x6� �1:467� 10�4 1:186� 10�4 4:878� 10�4 4:597� 10�4

½x7� 0 7:696� 10�5 �7:696� 10�5 0

½x8� �1:702� 10�5 �2:333� 10�5 �1:723� 10�5 �5:758� 10�5

½x9� 0 3:408� 10�6 �3:408� 10�6 0

½x10� �1:274� 10�6 �1:844� 10�6 �2:176� 10�6 �5:294� 10�6

� �1:434� 10�2 1:610� 10�4 �3:931� 10�3 �1:811� 10�2

4This follows the pattern in unpolarized and polarized top
quark decays where the expansion of the five parity-even struc-
ture functions have n ¼ even whereas the expansion of the five
parity-odd structure functions have n ¼ even=odd [20].
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[34] K. G. Chetyrkin, J. H. Kühn, and M. Steinhauser, Comput.

Phys. Commun. 133, 43 (2000).
[35] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1

(2008).
[36] J. A.M. Vermaseren, arXiv:math-ph/0010025.
[37] J. A.M. Vermaseren, Comput. Phys. Commun. 83, 45

(1994).
[38] D. Binosi and L. Theussl, Comput. Phys. Commun. 161,

76 (2004).

HELICITY FRACTIONS OF W BOSONS FROM TOP . . . PHYSICAL REVIEW D 81, 111503(R) (2010)

RAPID COMMUNICATIONS

111503-5

http://dx.doi.org/10.1103/PhysRevLett.84.216
http://dx.doi.org/10.1103/PhysRevLett.84.216
http://dx.doi.org/10.1103/PhysRevD.71.031101
http://dx.doi.org/10.1103/PhysRevD.71.031101
http://dx.doi.org/10.1103/PhysRevD.71.059901
http://dx.doi.org/10.1103/PhysRevD.73.111103
http://dx.doi.org/10.1103/PhysRevD.73.111103
http://dx.doi.org/10.1103/PhysRevLett.98.072001
http://dx.doi.org/10.1103/PhysRevLett.98.072001
http://dx.doi.org/10.1103/PhysRevD.75.052001
http://dx.doi.org/10.1103/PhysRevD.75.052001
http://dx.doi.org/10.1016/j.physletb.2009.02.040
http://dx.doi.org/10.1016/j.physletb.2009.02.040
http://arXiv.org/abs/1003.0224
http://dx.doi.org/10.1103/PhysRevD.72.011104
http://dx.doi.org/10.1103/PhysRevD.72.011104
http://dx.doi.org/10.1016/j.physletb.2005.04.069
http://dx.doi.org/10.1016/j.physletb.2005.04.069
http://dx.doi.org/10.1103/PhysRevD.75.031102
http://dx.doi.org/10.1103/PhysRevD.75.031102
http://dx.doi.org/10.1103/PhysRevLett.100.062004
http://dx.doi.org/10.1103/PhysRevLett.100.062004
http://dx.doi.org/10.1103/PhysRevD.45.124
http://dx.doi.org/10.1103/PhysRevD.45.124
http://dx.doi.org/10.1103/PhysRevLett.103.141801
http://dx.doi.org/10.1103/PhysRevLett.103.141801
http://dx.doi.org/10.1103/PhysRevD.49.5890
http://dx.doi.org/10.1103/PhysRevD.49.5890
http://dx.doi.org/10.1103/PhysRevD.49.5894
http://dx.doi.org/10.1140/epjc/s10052-007-0519-9
http://dx.doi.org/10.1103/PhysRevD.78.077501
http://dx.doi.org/10.1103/PhysRevD.78.077501
http://dx.doi.org/10.1016/S0370-2693(99)00194-X
http://dx.doi.org/10.1103/PhysRevD.63.031501
http://dx.doi.org/10.1103/PhysRevD.65.054036
http://dx.doi.org/10.1103/PhysRevD.67.091501
http://dx.doi.org/10.1103/PhysRevD.67.091501
http://arXiv.org/abs/1003.4359
http://dx.doi.org/10.1103/PhysRevLett.93.062001
http://dx.doi.org/10.1103/PhysRevD.71.054004
http://dx.doi.org/10.1103/PhysRevD.79.019901
http://dx.doi.org/10.1103/PhysRevD.79.019901
http://dx.doi.org/10.1103/PhysRevD.60.114015
http://dx.doi.org/10.1007/3-540-44574-9_1
http://dx.doi.org/10.1007/3-540-44574-9_1
http://dx.doi.org/10.1016/0370-2693(96)00439-X
http://dx.doi.org/10.1142/S0217751X00002159
http://dx.doi.org/10.1103/PhysRevD.73.114009
http://dx.doi.org/10.1103/PhysRevD.73.114009
http://dx.doi.org/10.1016/0370-2693(93)90053-K
http://dx.doi.org/10.1016/0370-2693(91)90839-I
http://dx.doi.org/10.1016/0370-2693(91)90839-I
http://dx.doi.org/10.1016/S0010-4655(00)00155-7
http://dx.doi.org/10.1016/S0010-4655(00)00155-7
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://arXiv.org/abs/math-ph/0010025
http://dx.doi.org/10.1016/0010-4655(94)90034-5
http://dx.doi.org/10.1016/0010-4655(94)90034-5
http://dx.doi.org/10.1016/j.cpc.2004.05.001
http://dx.doi.org/10.1016/j.cpc.2004.05.001

