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The fermion determinant in four-dimensional quantum electrodynamics in the presence ofOð2Þ �Oð3Þ
symmetric background gauge fields with a nonvanishing global chiral anomaly is considered. It is shown

that the leading mass singularity of the determinant’s nonperturbative part is fixed by the anomaly. It is

also shown that for a large class of such fields there is at least one value of the fermion mass at which the

determinant’s nonperturbative part reduces to its noninteracting value.
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Every physical process calculable within the standard
model ultimately depends on the model’s fermion deter-
minants. These are part of the effective functional measure
for the gauge fields when the fermion fields are integrated.
Without them, charge and color screening, quark fragmen-
tation into hadrons and unitarity would be lost.
Accordingly, they are fundamental, and the nonperturba-
tive structure of the standard model requires corresponding
information about its determinants.

Taking Schwinger’s 1951 paper [1] on vacuum polariza-
tion as the beginning of the modern era of fermion deter-
minants, progress on elucidating their nonperturbative
properties has been extremely slow. In this paper we focus
on the fermion mass dependence of the determinant in
four-dimensional QED. We note here the recent advance
in determining the quark mass dependence of the QCD4

instanton determinant [2].
We begin by summarizing the main analytic results for

QED4’s fermion determinant on noncompact, Euclidean
space-time. Formally, a fermion field integration produces
the ratio of determinants detðp6 � eA6 þmÞ= detðp6 þmÞ ¼
detð1� eSA6 Þ, where S is the free fermion propagator.
Since the operator SA6 is not trace class, detð1� eSA6 Þ is
undefined no matter how well behaved the gauge field A�

is. Nevertheless, sense is made of it based on the following
results:

(a) The operator SA6 is a non-Hermitian compact opera-
tor in the trace ideal Ip for p > 4 and fermion massm � 0

provided A� 2 LpðR4Þ [3,4]. This includes the instanton-

like case of A� having a 1=r falloff. The theorem means

that the traces TrðSA6 Þn, n � 5, are absolutely convergent
and really do correspond to sums of eigenvalues of SA6 .

(b) A renormalized determinant can be defined:

det ren ¼ expð�2 þ�3 þ�4Þdet5ð1� eSA6 Þ; (1)

where

lndet5 ¼ Tr

�
lnð1� eSA6 Þ þ X4

n¼1

ðeSA6 Þn
n

�
; (2)

and �2;3;4 are the second-, third-, and fourth-order contri-

butions to the one-loop effective action, lndetren, defined by

some consistent regularization procedure [5]. The graph
�2 contains a charge renormalization subtraction. The
regularization should result in �3 ¼ 0 by C invariance
and give the unique gauge invariant result for �4.
(c) As corollaries of (a) and (b), det5 is an entire function

of the coupling e and can be represented in terms of the
discrete complex eigenvalues 1=en of SA6 :

det 5 ¼
Y
n

��
1� e

en

�
exp

�X4
k¼1

ðe=enÞk
k

��
: (3)

By C invariance and the reality of det5 for real e the
eigenvalues can appear in quartets �en, � �en or as imagi-
nary pairs [6].
(d) detren has no zeros for real e when m � 0 [7], and

since detrenðe ¼ 0Þ ¼ 1, detren > 0 for real e.
(e) detren is an entire function of e of order 4 since SA6 2

I4þ� when A� 2 L4þ�ðR4Þ, � > 0 [8]. This conclusion

was first reached for a restricted class of gauge fields by
Adler [9] and later by Balian et al. [10], for another
restricted class of fields. The growth of detren for real
values of e is unknown.
(f) det5 is an analytic function of m throughout the

complex m plane cut along the negative real axis [11].
This comprises the general analytic knowledge of detren

obtained since 1951. The present sparse knowledge of such
a central part of the standard model is noteworthy. There is
a large body of results for background gauge fields which
do not fall off sufficiently rapidly in all directions in R4 to
satisfy the theorem in (a) [12]. These require the introduc-
tion of an ad hoc volume cutoff, and none of the results
(b)–(f) necessarily hold for such fields.
We report here on an extension of results (a)–(f) for a

large class of Oð2Þ �Oð3Þ symmetric background gauge
fields of the form A�ðxÞ ¼ M��x�aðr2Þ, where the profile
function aðr2Þ is at least 3 times differentiable, regular at
the origin, and aðr2Þ ¼ �=r2 for r > R, R being a range
parameter, r2 ¼ x�x�. The constant � is assumed positive

without loss of generality. For r < R, aðr2Þ may have
multiple zeros. The constant antisymmetric matrix M has
nonvanishing entries M12 ¼ M30 ¼ 1. Letting �F�� ¼
1
2 �����F�� and noting that �FF ¼ @�ð�����A�F��Þ, it
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is evident that A� must have a 1=r falloff for the Dirac

operator 6D ¼ P6 � eA6 to have a nonvanishing global chiral
anomaly A ¼ �R

d4x�F��F��=16�
2. In our case A ¼

�2=2. From here on we set e ¼ 1 to reduce notation.
In [11] we proved a vanishing theorem for this choice of

A�. Consequently all the square-integrable zero modes of

6D have positive chirality, and such modes first appear when
� > 2. The zero modes can be shifted to the negative
chirality sector by replacing M with the antisymmetric
matrix N with entries N03 ¼ N12 ¼ 1. Since F�� is not

self-dual it extends the vanishing theorem of [13] to such
U(1) fields. Because the calculation here is in noncompact
Euclidean space-time the index theorem has to be modified
to account for the continuum part of the spectrum of 6D2

extending down to zero energy, thereby contributing an
additional part to the index of 6D [14,15]. These low-energy
states play an essential role in the analysis discussed below.

We can now add the following results to the list (a)–(f)
above:

(g) For the class of gauge fields defined above the
leading mass singularity of lndet5 is governed by the chiral
anomaly, that is,

lndet5 gm ! 0

�2

4
lnm2 þ less singular; (4)

so that lndet5 becomes negative as m ! 0. Inconclusive
evidence for (4) was first reported in [11].

The presence of a zero mode in the spectrum of the Dirac
operator and its control of the leading quark mass depen-
dence of QCD4 instanton determinant has been known for
many years [16]. Establishing (4) relies on the above
vanishing theorem and showing that the zero-mode-free
negative chirality sector contributes terms to (4) less sin-
gular than lnm2. With more effort it should be possible to
prove (4) under the more general assumption that aðr2Þ �
�=r2, for r � R.

(h) IfZ R2

0
dr2½2r14a06 þ 12r12aa05 þ 23r10a2a04 þ 12r8a3a03

� 19r6a4a02�< 9�6

2R8
; (5)

then lndet5 becomes positive before dropping off to zero
for m ! 1 [11]. This and (4) imply that there is at least
one value of m for which lndet5 ¼ 0. That is, lndet5 has a
mass zero, or possibly an odd number of such zeros, at
which det5 ¼ 1.

Subject to the conditions on a stated above, (5) can be
satisfied in general for an aðr2Þ that can oscillate between
positive and negative values before curving downward to
join smoothly with its long-range form �=r2 at r ¼ R.

As � is varied the eigenvalues en in (3) will shift,
presumably shifting the position of the mass zero as well.
That a particular value of m can cause det5 to assume its
noninteracting value indicates that mass has a profound

effect on the distribution of the eigenvalues en in the
complex plane.
To establish (4) we begin by defining detren in (1) by

lndetren ¼ 1

2
lim
�!0

Z 1

�

dt

t

�
�
Trðe�tP2 � e�t½ðP�AÞ2þð1=2Þ�F�Þe�tm2

þ 1

24�2

Z
d4xF2ðxÞe�t�2

�
; (6)

where � is the renormalization scale. Although detren is
finite with on-shell renormalization of �2 when F�� �
1=r2, this complicates the small-mass analysis of det5, and
so we prefer to deal with the off-shell case. One can always
go back on shell once det5 is understood.
In the representation where 	5 is diagonal with entries

�12, ðP� AÞ2 þ 1
2�F is diagonal with corresponding

positive and negative chirality entries H� ¼ ðP� AÞ2 �
� 	 ðB� EÞ. Differentiating (6) with respect to m2 yields
the renormalization independent result

m2 @

@m2
lndet5 ¼ 1

2
m2 Tr½ðHþ þm2Þ�1 � ðH� þm2Þ�1�

þm2
Z 1

0
dte�tm2

�
Z

d4x trhxje�tH� � e�tP2 jxi
�m2@�2=@m

2 �m2@�4=@m
2; (7)

where we have taken � to zero and set �3 ¼ 0. The first
and last terms in (7) are well defined for the background
fields considered here, but the second and third terms are
not. Specifically, the perturbative expansion of (6) gives
@�2=@m

2 � R
0 dk=k, which must be cancelled.

The strategy is this: There must be a corresponding
infrared divergence in the second term in (7) that cancels
that in @�2=@m

2, as the left-hand side of (7) is well defined
for m2 > 0. The second term in (7) will be calculated by
summing over the exact eigenstates of H�. As already
noted, these are scattering states only. An infrared regulator
is introduced by cutting off the low-energy spectra of H�
and P2 at 
2. Then the infrared divergent part is isolated; it
must be second order. Identify it as the divergent part of
@�2=@m

2 to effect the cancellation of infrared divergen-
ces. That is, the second term in (7) defines the divergent
part of @�2=@m

2 according to (9) and (13) below, consis-
tent with our way of calculating detren. Then set 
 ¼ 0 and
finally study the m ! 0 limit of (7) to find the small-mass
dependence of the well-defined quantity lndet5. It is essen-
tial to proceed in this way. Pulling out the contribution to
@�2=@m

2 from the second term in (7) by a straightforward
perturbation expansion results in a gauge invariant remain-
der that is a sum of separately nongauge invariant terms,
leading to a computational impasse.
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For the fields under consideration we find �4 is well
defined for m � 0 and is less singular than lnm2 as m ! 0
and so gives a vanishing contribution to the right-hand side
of (7) as m ! 0. This result relies in part on the finiteness
at m ¼ 0 of the photon-photon scattering subgraph in �4

[17].
We now turn to the calculation of the rest of the right-

hand side of (7). Here, we use the definition of the chiral
anomaly on noncompact manifolds due to Musto et al.
[15], A ¼ limm!0m

2Tr½ðHþ þm2Þ�1 � ðH� þm2Þ�1�.
This combined withA ¼ �2=2, Eq. (7), and an integration
with respect to m2 gives result (4), provided that the
remainder in (7) contributes terms to (4) less singular
than lnm2 for m ! 0.

Denote the second term on the right-hand side of (7) by I
and obtain for m ! 0

Iðm2Þ ¼ m2lim

!0

lim
L!/

Z �2


2

dk2

k2 þm2

Z L

0
drr3

Z
d�4

� X
jMmm0

ðj��
EjMmm0 ðxÞj2 � j�0

EjMmm0 ðxÞj2Þ; (8)

where��
EjMmm0 are the eigenstatesH� derived in [11], and

�0
EjMmm0 are the associated free-particle states. Here, E ¼

k2, and j ¼ 0; 12 ; 1; . . . ; M ¼ �j� 1
2 ; . . . ; jþ 1

2 ; m ¼
�j; . . . ; j; m0 ¼ � 1

2 are the quantum numbers associated

with the Oð2Þ �Oð3Þ symmetry of the background fields;

 is the infrared cutoff introduced above, and �, with
�R< 1, limits the range of k needed to study the small-
mass dependence of I.

Divide I into I>ðI<Þ, the exterior (interior) parts of I
from r > R (r < R), and consider first the most singular
part in m2, I>. The radial wave functions associated with
�� for r > R are calculated from the outgoing wave
combination of Bessel functions

ffiffiffi
r

p
J�ðkrÞ cos��ðkÞ �ffiffiffi

r
p

Y�ðkrÞ sin��ðkÞ, where � denotes jMm0, � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþ 1Þ2 þ 4�Mþ �2
p

, and �� is the energy-dependent
part of the low-energy phase shifts ��, ��ðkÞ ¼ �ð��
2j� 1Þ=2þ ��ðkÞ, mod �. Since ��ð0Þ ¼ 0, we can ex-
pand in powers of ��. For jMj � jþ 1

2 , tan�� ¼
C�ð�ÞðkR=2Þ2�ð��2ð�ÞÞ�1½1þOððkRÞ2; ðkRÞ2�Þ�, where
C�ð�Þ is a bounded function of � [11]. The rapid falloff
of �� with j and energy allows one to terminate the
expansion after �2

�. Terms in I> containing �� and �2
�

are uniformly convergent and can be integrated term by
term and the limit L ¼ 1 taken. There are some oscillating
k integrals containing cosð2kLÞ and sinð2kLÞ. These are set
equal to zero by the Riemann-Lebesque lemma following
the sequence of limits in (8). The result is contributions to
I> less singular than m2 lnm2 and Oð1Þ contributions to
lndet5. Terms from M ¼ jþ 1

2 contribute Oðm2Þ terms to

I>. Terms of Oð�0
�Þ will be considered below.

The zero modes ofHþ appear in the sectorM ¼ �j� 1
2

for values of j satisfying � > 2jþ 2, j ¼ 0; 12 ; . . . . The

most singular contribution to I> occurs at the zero mode

thresholdsM ¼ �j� 1
2 , � ¼ 2jþ 2 at which��’s energy

dependence drops to tan�� ¼ �
2 ð1þOðkRÞ2Þ�

½lnðkRÞ þ CþOðkRÞ2 lnðkRÞ��1 where C is a negative
k-independent constant [11]. This results in a contribution
to I> of Oð1= lnðmRÞÞ and a lnj lnðmRÞj contribution to
lndet5 in (4). This covers all terms in (8) from �� and �2

�.
The zero mode thresholds also dominate the region r <

R. Specifically, they are responsible for the radial wave
function contributing to (8) with the slowest k falloff,
whose form is ðlnkRþ CÞ�1c ðk2; rÞ, c ð0; rÞ � 0, and C
as above. Here, c is analytic in k2 and is a smooth function

of r behaving near r ¼ 0 as r2jþ3=2. This results in con-
tributions ofOðm2Þ to I< andOð1Þ to lndet5. Other cases in
the M ¼ �j� 1

2 sector have a faster small k falloff. The

study of the M � �j� 1
2 sectors is facilitated by the

1=ð2jþ 1Þ! falloff of the radial wave functions (also true
for M ¼ �j� 1

2 ), their small k falloff of at least ðkRÞ�,
and their r2jþ1=2 behavior near r ¼ 0 [11]. These results
allow the m ! 0 limit of I< to be taken term by term,
giving a final Oð1Þ contribution to lndet5.
Now consider the terms in I> ofOð�0

�Þ, here denoted by
I0>. For fixed L the integral and sum over j in (8) can be
interchanged since jJ�ðzÞj 
 jz=2j�=�ð�þ 1Þ, z real, and
because only J� is present in I0>. The result for the
L-dependent terms is

I0> ¼ m2

4
lim

!0

lim
L!1

Z �2


2

dk2

k2 þm2
L2ðS1ðkLÞ þ S2ðkLÞÞ;

(9)

where

S1 ¼
X

j¼0;12;...

ð2jþ 1Þ½J2j2jþ2��j � Jj2jþ1��jJj2jþ3��j

þ ð� ! ��Þ � ð� ¼ 0Þ�; (10)

S2 ¼
X

j¼1
2;1;...

ð2jþ 1Þ Xj�ð1=2Þ

M¼�jþð1=2Þ
½J2�þ1 � J�þ2J� þ J2��1

� J��2J� � ð� ¼ 0Þ�: (11)

The Bessel functions are evaluated at kL. These series are
not uniformly convergent and must be summed before
taking L ! 1. S1 can be summed to give for kL � 1

S1 ¼ 2�2

�kL
þ 1

�ðkLÞ2 cosð2kLÞsin2
�
��

2

�
þOðkLÞ�3:

(12)

The leading term in (12) must be cancelled by S2 to make
I0> finite.
Up to this point all calculations have been nonperturba-

tive. We have not been able to sum S2 without resorting to
its perturbative expansion in �. This is a well-behaved
expansion as it occurs in the Bessel function’s order, and
J� is an entire function of �. To Oð�2Þwe find for kL � 1
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S2 ¼ � 2�2

�kL
þ

�
�

kL

�
2

�
�
Cþ �

12
cosð2kLÞ þ

�
7

30
þ 2

3
ln2

�
sinð2kLÞ

�
þOðkLÞ�3: (13)

As expected, the leading term in (13) cancels that in (12).
Referring to (9), the second term in (13) results in the
expected infrared divergent term discussed above. The
constant C is given by a complicated, but absolutely con-
vergent, series of Bessel functions. Its value is irrelevant to
our analysis as it will be cancelled by the counterterm
@�2=@m

2. The remaining oscillating terms in (12) and
(13) give vanishing contribution to I0> by the Riemann-
Lebesque lemma.

The second-order calculation may be extended to all
orders in �. Structures generated in second order appear
again in higher orders differentiated with respect to Bessel
function order. No further infrared divergences appear,
only cosð2kLÞ and sinð2kLÞ terms as in (12) and (13).
Because S1 and S2 are closely related, and S1’s summed
series has an infinite radius of convergence when expanded

in �, we are confident no information has been lost in the
expansion of S2. The R-dependent terms from the lower
bound of integration of I0> are uniformly convergent, and
no expansion is necessary. They result in Oð1Þ contribu-
tions to lndet5. This establishes Eq. (4).
The conclusion that det5 can be reduced to its noninter-

acting value by varying its mass for a class of background
gauge fields points to an unexpected nonperturbative role
of mass in QED4’s effective action. It would be surprising
if result (4)—the chiral anomaly’s control of lndet5’s lead-
ing mass singularity—is limited to our background fields.
Presumably it is generally true and, if so, mass zero(s) in
lndet5 are also present more generally.

The communication of C. Schubert that �4 in scalar
QED4 with a r�2 falloff profile function has no lnm2

singularity is gratefully acknowledged.
Note added in proof.—The form of the result (13) for the

second-order term in S2 as well as all higher order terms in
S02s expansion hold for arbitrarily large values of �; no
information is lost in these expansions. The proof of this
result will appear in the arXiv version of this paper.
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