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The holographic model for S-wave high Tc superconductors developed by Hartnoll, Herzog, and

Horowitz is generalized to describe D-wave superconductors. The 3þ 1 dimensional gravitational theory

consists of a symmetric, traceless second-rank tensor field and a Uð1Þ gauge field in the background of the
anti-de Sitter black hole. Below Tc the tensor field, which carries the Uð1Þ charge, undergoes the Higgs

mechanism and breaks the Uð1Þ symmetry of the boundary theory spontaneously. The phase transition

characterized by the D-wave condensate is second order with the mean field critical exponent � ¼ 1=2.

As expected, the AC conductivity is isotropic below Tc, and the system becomes superconducting in the

DC limit but has no hard gap.
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I. INTRODUCTION

One of the unsolved mysteries in modern condensed
matter physics is the mechanism of the high temperature
superconducting (HTSC) cuprates [1]. These materials are
layered compounds with copper-oxygen planes and are
doped Mott insulators with strong electronic correlations.
The pairing symmetry is unconventional, and there is a
strong experimental evidence showing that it is the D-wave
[2]. It is speculated that the pairing between electrons is
mediated via strong antiferromagnetic spin fluctuations in
the system. A prominent strong-coupling theory is pro-
posed by Anderson, called the resonant valence bond
theory, which describes liquid state with spin singlets.
Upon hole doping, the Néel order is destroyed and gives
rise to superconductivity [3]. Several gauge theories have
been proposed to formulate the resonant valence bond
physics, by enforcing the double occupation constraint in
the strong-coupling limit [4]. The problem is difficult due
to the strong-coupling nature of the theory. Although sig-
nificant progress has been made in the past few years,
alternative approaches may be valuable to tackle the
problem.

One alternative approach is the holographic correspon-
dence between a gravitational theory and a quantum field
theory, which first emerged under AdS/CFT correspon-
dence [5–7]. This method has provided a useful and com-
plementary framework to describe strong interaction
systems without a sign problem (see, e.g., [8–15]). In the
original top-down approach, both the gravity side and the
field theory side of the theories are precisely known. Later
applications assume that the correspondence exists among
different pair of theories and try to make predictions from

one side of the correspondence. More specifically, in this
bottom-up approach, usually the gravity side of the theory
is explicitly constructed with the desired symmetries, then
physical observables (matrix elements) of the field theory
side are predicted through the above mentioned
correspondence.
Recently, a gravitational model of hairy black holes

[16,17] have been used to model S-wave HTSC [18–21].
In those class of models the Abelian symmetry of a com-
plex scalar field is spontaneously broken (i.e., the Higgs
mechanism) below some critical temperature. The
Meissner effect was soon observed by including magnetic
field in the background [22,23]. The effect of supercon-
ducting condensate on the holographic fermi surface has
been studied by calculating fermionic spectral function
[24–26]. Interestingly, the properties of spectral function
appeared to have similar behavior to that found in the angle
resolved photo-emission experiment. Motivated by all of
these S-wave studies, holographic dual to the P-wave
superconductor has been proposed by coupling a SUð2Þ
Yang-Mills field to the black hole, where a vector hair
develops in the superconducting phase [27–30]. The be-
havior of fermionic spectral function has also been studied
in those P-wave superconducting backgrounds [31]. So far,
the bottom-up construction of holographic superconductor
assuming the existence of gauge/gravity duality has been
discussed. However, in the string theory framework people
also have studied the top-down approach considering vari-
ous D-brane configurations in the anti-de Sitter (AdS)
black hole background [32].
In this work, we try to construct a minimal gravitational

model that models D-wave HTSC. We replace the complex
scalar field in [18] by a tensor field whose condensate
breaks the symmetry spontaneously below Tc and the
condensate becomes zero and the symmetry is restored
above Tc. The critical exponent � gives the mean field
value 1=2. The real part of the conductivity computed from
the linear response has a delta function at zero frequency,
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which corresponds to static superconductivity below Tc.
Above Tc, the delta function disappears as expected, and
the conductivity becomes constant in frequency. It is ex-
pected that there is no ‘‘hard gap’’ in the real part of the
conductivity, and the conductivity should be isotropic even
though the condensate is not (for a model calculation, see
[33]). Both features are seen in our results.

II. A HOLOGRAPHIC MODEL FOR D-WAVE HTSC

Our goal is to consider a minimal (3þ 1 dimensional)
holographic model that gives rise to (2þ 1 dimensional)
D-wave superconductivity. The construction will be simi-
lar to that of the S-wave case [18] with a spontaneous local
Uð1Þ symmetry breaking in the bulk leading to a sponta-
neous breaking of global Uð1Þ symmetry at the boundary.
Thus, strictly speaking, the boundary theory is a superfluid.
One can still study the current-current correlator, which
could be interpreted as the conductivity.

To have a D-wave condensate at the boundary, we
introduce a charged tensor field in our dual gravity theory.
Assuming the D-wave condensate originating from
electron-electron pairing, the D-wave nature gives a sym-
metric wave function for the pair. So, the wave function for
this electron pair has to be a spin singlet such that its total
wave function is antisymmetric. A 3� 3 symmetric trace-
less tensor has five components, which can be used to
describe a D-wave state. We will promote this symmetric
traceless tensor field to include time components and de-
note the field as B�� (�, � ¼ 0, 1, 2, 3), i.e., B�� ¼ B��

and B
�
� ¼ 0. However, it is important to note that the

interacting higher spin fields, in general, require satisfying
additional constraints in addition to the equations of mo-
tion to remove the unphysical degrees of freedom, see the
discussion in [34–36], for example. Observing that there is
no available consistent model for our purpose, we would
like to propose a truncated model that has sufficient ingre-
dients to catch some features of a D-wave superconductor.
It would be an important but difficult task to construct a
complete theory, which we would like to postpone for the
future in order to attain our simple goal through the present
exercise.

The desired complete action including gravity, Uð1Þ
gauge field, tensor field, and other auxiliary fields, may
take the following form[37]:

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�gp ��
Rþ 6

L2

�
þLm þLa

�
;

Lm ¼ �L2

q2

�
ðD�B��Þ�D�B�� þm2B��

�B��

þ 1

4
F��F

��

�
; (1)

where R is the Ricci scalar, the 6=L2 term gives a negative
cosmological constant, and L is the AdS radius that will be
set to unity in the units that we use. �2 ¼ 8�GN is the

gravitational coupling.D� is the covariant derivative in the

black hole background (D� ¼ @� þ iA� in flat space), and

q and m2 are the charge and mass squared of B��, respec-

tively. The terms associated with auxiliary fields are in-
cluded in La. This Lagrangian is the same as that which
appears in [34] in the flat space limit. However, in the
subsequent studies after [34] it appeared that construction
of the higher spin field Lagrangian coupled to gravity or
Uð1Þ gauge in a gauge invariant way is nontrivial even in
Minkowski space [38]. But later on in the context of
gravitational interaction [39] it has been shown that this
task may have a solution in AdS space. Also, there exists a
recent attempt to construct gauge invariant Uð1Þ charged
massive spin 2 particles in AdS space at linear approxima-
tion [40]. In spite of all these studies fully consistent
formulation of interacting higher spin gauge fields is still
lacking. So, naturally the action (1) without La, which we
are going to study, may plagued with spurious degrees of
freedom that make the system unstable. However we con-
tinue our study with the truncated action hoping that the
fully consistent construction of our theory, which has no
instability, will still allow D-wave condensation.
Lm might look more familiar with the rescaling B�� !

qB�� and A� ! qA�. Here, we also concentrate on the

‘‘probe limit’’ [18] where the backreaction to the back-
ground can be ignored. This limit is exact when q! 1. In
the probe limit, Lm can be treated as a perturbation on top
of the 3þ 1 dimensional AdS black hole background:

ds2 ¼ �gðrÞdt2 þ dr2

gðrÞ þ r2ðdx2 þ dy2Þ; (2)

where gðrÞ ¼ r2 � r3
0

r and r0 is the horizon size. The

Hawking temperature for this black hole T ¼ 3r0
4� .

As in the S-wave case [18], an electric field can exist in
the bulk by the appropriate choice of boundary conditions.
The charged tensor field, which can be considered as
charged particles, experiences a force under the electric
field, with positive(negative) charges repelled(attracted)
away from(toward) the black hole. One the other hand,
the black hole tries to pull all the charged particles in it. At
lower T, the black hole is smaller, and the gravitational pull
is weaker. Thus, the positively charged particles have a
greater chance to stay outside the horizon and form the
condensate. At very large T, the gravitational force from
the large black hole is strong enough to pull all the charged
particles into the horizon such that there is no condensate.
Thus, we have a phase transition.
We are interested in describing the D-wave supercon-

ductor in the continuum such that there is a condensate on
the x-y plane on the boundary with translational invariance.
Rotational symmetry is broken down to Zð2Þ with the
condensate changing its sign under a �=2 rotation on the
x-y plane. To incorporate these features, we use an ansatz
for the B�� and the gauge field A�, i.e.,
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B�� ¼ diagonal ð0; 0; fðrÞ;�fðrÞÞ; A ¼ �ðrÞdt:
(3)

After plugging in this ansatz, we have the equation of
motion for B

r2f00ðrÞ þ r

�
r
g0ðrÞ
gðrÞ � 2

�
f0ðrÞ

þ
�
r2�2ðrÞ
gðrÞ2 �

½m2rþ 2g0ðrÞ�r
gðrÞ

�
fðrÞ ¼ 0; (4)

and the corresponding Maxwell’s equation is

r2�00ðrÞ þ 2r�0ðrÞ � 4f2ðrÞ�ðrÞ
r2gðrÞ ¼ 0; (5)

where the 0 is the derivative with respect to r.
We would like to choose the solution such that �ðrÞ has

the asymptotic form

�ðrÞ ! �þ �

r
(6)

near the boundary (r! 1), where � is interpreted as the
chemical potential, and � as the charge density in the
boundary theory. Here, we will first assume this and then
show that indeed this can be satisfied later. Now, the
asymptotic form of Eq. (4) has the asymptotic form

r2f00ðrÞ � ðm2 þ 4ÞfðrÞ ’ 0 (7)

near the boundary, which yields

fðrÞ ! f0r
�þ þ f1r

�� ; �� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ 4m2
p

2
: (8)

If we interpret f0 as the source and f1 as the vacuum
expectation value of the operator that couples to B at the
boundary theory, we need m2 � �4 (and �� � 0) such
that the f1 term is constant or vanishing at the boundary.
After setting the source f0 ¼ 0 and using �� � 0, Eq. (5)
indeed gives the asymptotic solution of Eq. (6). Note that
the f0r

�þ term does not impose a constraint on m2 by
requiring that the third term on the left-hand side of Eq. (5)
to be smaller than the other two terms since we have
imposed f0 ¼ 0. One way to see this is to do the integra-
tion of the differential equations from the boundary, then
fðrÞ ! f1r

�� , �ðrÞ ! �þ �
r satisfy the asymptotic be-

haviors of Eqs. (4) and (5). The order parameter of the
boundary theory can be read from the asymptotic behavior
of B,

hOiji ¼ f1 0
0 �f1

� �
; (9)

where ði; jÞ are the indexes in the boundary coordinates
ðx; yÞ.

It is useful to note that the action and the equations of
motion are invariant under the scaling

ðt; r; x; yÞ ! ðt=c; cr; x=c; y=cÞ;
ðr0; T; gðrÞÞ ! ðcr0; cT; c2gðrÞÞ;
ðfðrÞ; �ðrÞÞ ! ðc2fðrÞ; c�ðrÞÞ:

(10)

Thus, we can always scale �! 1. This also helps to keep
track of the scaling dimension for observables, e.g., the
scaling dimensions for �, �, and f1 are 1, 2, and 2� ��,
respectively.
In Fig. 1, we show the numerical result between the

dimensionless quantities f1=�
2��� and T=Tc for m2 ¼

�1=4. It is a second order phase transition. Numerically,
the critical exponent � defined as f1 ! cðTc � TÞ� for
Tc � T ! 0þ is very close to the mean field value � ¼
1=2. Below we show that only the values � ¼
1=2; 3=2; 5=2; . . . satisfy the equations of motion. Thus,
without fine-tuning, one would get the mean field value
� ¼ 1=2.
Now we present the derivation. The metric gðrÞ is a

smooth function of 	 ¼ Tc � T, while � and f can be
expanded as

gðr; TÞ ¼ agðrÞ þ bgðrÞ	þOð	2Þ;
�ðr; TÞ ¼ 	kða�ðrÞ þ b�ðrÞ	þOð	2ÞÞ;
fðr; TÞ ¼ 	nðafðrÞ þ bfðrÞ	þOð	2ÞÞ:

(11)

Since, Eq. (4) is a linear equation in f and the prefactors of
f00ðrÞ and f0ðrÞ are polynomials of 	, the prefactor of fðrÞ
has to be a polynomial of 	 as well in order the satisfy the
equation. This implies k is an integer. At Tc and at the
boundary, � gives the value of chemical potential which is
finite. This yields k ¼ 0.
Analogously, the Maxwell equation, Eq. (5), is linear in

�. The prefactors of �00ðrÞ and �0ðrÞ are polynomials of 	
and thus the prefactor of �ðrÞ is required to be a poly-
nomial of 	. This yields 2n to be an integer. We also know
that n > 0 for a second order phase transition, and hence
only � ¼ 1=2; 3=2; . . . are allowed.

0.0 0.2 0.4 0.6 0.8 1.0
T Tc

0.1

0.2
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0.4

f1
2

FIG. 1 (color online). The dimensionless D-wave condensate
f1=�

2��� shown as a function of T=Tc for m2 ¼ �1=4. The
condensate goes to zero at T ¼ Tc / �. The critical exponent
f1 ! cðTc � TÞ� for Tc � T ! 0þ is of the mean field value
� ¼ 1=2.
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III. CONDUCTIVITY

In this section, we compute the conductivity of this D-
wave HTSC by linear response. The conductivity tensor

ij can be defined through the linear response relation

Ji ¼ 
ijEj; (12)

where i, j ¼ 1, 2. J, and E are the electric current and
electric field, respectively. Following the approach of [18],
we perturb the gauge field by �A ¼ e�i!tAxðrÞdx. To get a
consistent set of equations, we also need to perturb �Brx ¼
�Bxr ¼ ibrxðrÞe�i!t and �Btx ¼ �Bxt ¼ btxðrÞe�i!t, re-
spectively. The resulting equations of motion are

gA00x þ g0A0x þ
�
!2

g
� 4f2

r4

�
Ax ¼ 0; (13)

gbrx
00 þ 2g0brx0 þ

�
g00

2
� g0

r
� 5

g

r2
þ r30 þ

ð!��Þ2
g

�
brx

¼ � 2f

r3
Ax � ð!��Þg0

g2
btx; (14)

gbtx
00 þ

�
� g00

2
� g0

r
� g

r2
þ r30 þ

ð!��Þ2
g

�
btx

¼ ð!��Þg0brx: (15)

In principle, we can also add other �B�� components in

the perturbation. However, those components do not
couple to �A� to the quadratic order in the action. So, if

we set the initial condition of our system to be in the
ground state before �A� perturbation being turned on

then those extra B field perturbations will not be produced.
However, in the full stability analysis, those �A� indepen-

dent perturbations are important. We will defer this stabil-
ity analysis to future study.

Equation (13) is very similar to the S-wave case and is
decoupled from �B��. Near the boundary, we have

r2A00x þ 2rA0x ’ 0; (16)

which yields the asymptotic form

Ax ! Ax;0 þ Ax;1

r
; (17)

where Ax;0 is the x-component gauge field at the boundary

whose time derivative gives Ex, and Ax;1 is the expectation

value of the current operator Jx. The ratio of Jx and Ex is
the frequency dependent conductivity


ð!Þ � 
xxð!Þ ¼ � iAx;1

!Ax;0

: (18)

The fact that Eq. (13) depends only on Ax implies


yxð!Þ ¼ 0: (19)

This is dictated by the reflection symmetry with respect to
the y ¼ 0 plane.

We are now focusing on the case m2 >�2, where the
asymptotic forms of Eqs. (14) and (15) are particularly
simple:

r2brx
00 þ 4rbrx

0 � ðm2 þ 6Þbrx ’ 0; (20)

r2btx
00 � ðm2 þ 4Þbtx ’ 0: (21)

These two equations can be solved with

brx ! brx;0r
~�þ þ brx;1r

~�� ;

btx ! btx;0r
�þ þ btx;1r

�� ;
(22)

where ~�� ¼ �3�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
33þ4m2
p
2 and �� is defined in Eq. (8).

Here, we also identify brx;0 and btx;0 as the source terms

and brx;1 and btx;1 are the normalizable fluctuations.

Near the horizon, gðrÞ ¼ 3r0drþOðdr2Þ with dr ¼
r� r0 and �ðrÞ ¼ OðdrÞ. The equations of motion be-
come

9dr2A00x þ 9drA0x þ!2

r20
Ax ¼ 0; (23)

9dr2brx
00 þ 18drbrx

0 þ!2

r20
brx

¼ � !

r20dr
btx � 6fðr0Þ

r40
drAx; (24)

9dr2btx
00 þ!2

r20
btx ¼ 9!drbrx: (25)

The solutions near the horizon are

Ax! �ax;1dr
�ið!=ð3r0ÞÞ þ �ax;2dr

ið!=ð3r0ÞÞ;

btx ! 3ir0ð �brx;1dr�ið!=ð3r0ÞÞþ1 � �brx;2dr
�ið!=ð3r0ÞÞ

� �brx;3dr
ið!=ð3r0ÞÞþ1 þ �brx;4dr

ið!=ð3r0ÞÞÞ;
brx ! �brx;1dr

�ið!=ð3r0ÞÞ þ �brx;2dr
�ið!=ð3r0ÞÞ�1

þ �brx;3dr
ið!=ð3r0ÞÞ þ �brx;4dr

ið!=ð3r0ÞÞ�1:

(26)

The ingoing wave boundary condition [41,42], which
sets the wave falling into the horizon, demands �ax;2 ¼
�brx;3 ¼ �brx;4 ¼ 0. We further set the divergent term �brx;2 ¼
0 to keep the action finite. Now, brx;0ð1Þ and btx;0ð1Þ in
Eq. (22) are linear combinations of �ax;1 and �brx;1. So we

have both normalizable and nonnormalizable solutions for
btx and brx perturbations. The divergent source terms brx;0
and btx;0 near the boundary can be cancelled by counter-

terms [19].
In Fig. 2, we plot the real and imaginary part of 
ð!Þ for

different T. The behaviors are similar to that of S-wave
HTSC. Re½
ð!Þ� has a delta function behavior at ! ¼ 0
corresponding to infinite DC conductivity when T < Tc.
On the other hand, for T � Tc, the delta function and
Im½
ð!Þ� disappear, and Re½
ð!Þ� becomes ! indepen-
dent. There is no ‘‘hard gap‘‘ in our dual boundary super-
conducting system because Re½
ð!Þ� does not vanish even
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for arbitrary small !. One can also read off this soft gap
from the plot, i.e., !g=Tc ’ 13. It is larger than the one

obtained in the construction for the S-wave [18], where
!g=Tc ’ 8. This may imply our D-wave pairing requires

higher energy than the S-wave one.
Unlike the case for the S-wave superconductor, the

vanishing of the gap is actually expected in the D-wave
case. In the BCS-type theory (see, e.g., [43]), the lowest
dimensional D-wave operator for two fermion pairing is

Oij ¼ c Tð@$i@
$
j � @

$2
�ij=2Þc , where @

$
i ¼ ~@i � @

 
i is the

relative momentum between the two fermion which is
invariant under Galilean transformation. The leading order
Lagrangian in a weakly interaction theory is

L ¼ L0 � cðOyij þ JyijÞðOij þ JijÞ þ cJ2ij; (27)

where L0 is the free Lagrangian, c is the coupling, and Jij
is an external source. Under a Hubbard Stratanovich trans-
formation, the Lagrangian can be rewritten as

L0 ¼ L0 þ ½ByijðOij þ JijÞ þ ðOyij þ JyijÞBij�

þ ByijBij

c
þ cJ2ij; (28)

where B and B� are auxiliary fields. After integrating over
the auxiliary fields, L is recovered from L0. It is clear that
hOiji in L is hBiji in L0. The gap equation of L0 gives the
dispersion relation

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k2

2m
��

�
2 þ jBijkikjj2

s
: (29)

The gap jBijkikjj / jk2x � k2yj vanishes at four nodes k2x ¼
k2y. So, naturally gapless excitations can contribute to con-

ductivity. This makes the conductivity for a D-wave super-
conductor gapless. In the S-wave case, however, the gap is
isotropic and does not vanish in any direction leading to a
hard gap in conductivity.

If we change the gauge field perturbation to �A ¼
e�i!tðAxðrÞdxþ AyðrÞdyÞ, then there will be a response

from �Brx, �Btx, �Bry, and �Bty. AðrÞ ¼ AxðrÞx̂þ AyðrÞŷ
satisfies the same differential equation as Eq. (13):

gA00 þ g0A0 þ
�
!2

g
� 4f2

r4

�
A ¼ 0: (30)

This shows that the conductivity is isotropic:


ijð!Þ ¼ 
ð!Þ�ij: (31)

This might seem surprising at the first sight because the
condensate is not isotropic. However, this is a consequence
of the symmetries that 
ij has in the D-wave case. In the

linear response theory, 
ij is a current-current correlator

which can be schematically denoted as 
ij 	
h�j½Ji; Jj�j�i, where the matrix element denotes an en-

semble average. Under a �=2 rotation along the z axis (R),
R�1JiR ¼ 	ijJj, where 	ij is an antisymmetric tensor, and

assuming the ensemble average is governed by properties
of the ground state which has the condensate structure of
Eq. (9), so Rj�i ¼ �j�i. Then, 
ij 	 h�j½Ji; Jj�j�i ¼
h�jR�1½Ji; Jj�Rj�i ¼ h�j½	ikJk; 	jlJl�j�i. This implies


xx ¼ 
yy and 
xy ¼ �
yx. A similar analysis with parity

operator with respect to the x axis gives 
xy ¼ 
yx ¼ 0.

Thus, we have 
ij / �ij. An explicit microscopic model

calculation [33] also yields an isotropic conductivity for a
D-wave superconductor.

IV. CONCLUSION

We have constructed a minimal holographic model for
high Tc D-wave superconductors. We follow closely the
work of Hartnoll, Herzog, and Horowitz on the S-wave
case. The 3þ 1 dimensional gravitational theory consists a
symmetric, traceless second-rank tensor field and a Uð1Þ
gauge field in the background of the AdS black hole.
Below Tc, the tensor field is Higgsed to break the Uð1Þ
symmetry at the boundary theory. The phase transition
characterized by the D-wave condensate is second order
with the mean field critical exponent � ¼ 1=2. As ex-
pected, the AC conductivity is isotropic; below Tc, the

0 5 10 15 20 25
Tc

0.2

0.4

0.6

0.8

1.0

1.2

Re

5 10 15 20 25 30
Tc

0.5
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1.0

1.5

Re ,Im

FIG. 2 (color online). The real (left plot) and imaginary (right plot) of conductivity shown as a function for frequency ! for different
temperatures. Above Tc, Re½
ð!Þ� ¼ 1 while Im½
ð!Þ� ¼ 0. Below Tc, Re½
ð!Þ� has a �ð!Þ delta function whose height decrease in
T and vanishes at Tc. The right most curve has the lowest T, which implies the zero temperature gap !g=Tc ’ 13. (The construction in

[18] for the S-wave gives the value 8 for this gap.)
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system becomes superconducting in the DC limit but has
no hard gap.
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