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I. INTRODUCTION

The AdS/CFT correspondence has become a powerful
tool in studying strongly coupled phenomena in quantum
field theory using results from a weakly coupled gravity
background. According to this correspondence principle
[1,2], a string theory on asymptotically AdS spacetimes
can be related to a conformal field theory on the boundary.
In recent years, apart from string theory, this holographic
correspondence, following a more phenomenological ap-
proach, has also been applied to condensed matter physics
and, in particular, to superconductivity. It was first sug-
gested in [3,4] that near the horizon of a charged black hole
there is in operation a geometrical mechanism parame-
trized by a charged scalar field of breaking a local Uð1Þ
gauge symmetry. Then it was suggested to use the gauge/
gravity duality to construct gravitational duals of the tran-
sition from normal to superconducting states in the bound-
ary theory [4].

The gravity dual of a superconductor consists of a
system with a black hole and a charged scalar field, in
which the black hole admits scalar hair at a temperature
smaller than a critical temperature, while there is no scalar
hair at larger temperatures [5]. A condensate of the charged
scalar field is formed through its coupling to a Maxwell
field of the background. Neither field is backreacting on the
metric. Considering fluctuations of the vector potential, the
frequency dependent conductivity was calculated, and it
was shown that it develops a gap determined by the con-
densate. This model was further studied beyond the probe
limit [6]. Along this line, there have been a lot of inves-
tigations concerning the application of AdS/CFT corre-
spondence to condensed matter physics [7–13]. See
Refs. [14,15] for reviews.

These models however are phenomenological models.
The classical fields and their interactions are chosen by

hand. It would have also been desirable that these models
emerge from a consistent string theory [16–18]. Also re-
cently there is an effort to discuss stringy effects coming
from higher dimensions. The various condensates were
studied in (2þ 1) and in (3þ 1) superconductors [7]. It
was found that there is a universal relation between the gap
!g in the frequency dependent conductivity and the critical

temperature Tc: !g=Tc ’ 8 respected to a good approxi-

mation by all cases considered.
Motivated by the application of the Mermin-Wagner

theorem to the holographic superconductors there was a
study of the effects of the curvature corrections on the
(3þ 1)-dimensional superconductor [19]. A model of a
charged scalar field together with a Maxwell field in the
five-dimensional Gauss-Bonnet-AdS black hole back-
ground was presented. It was found that higher curvature
corrections make condensation harder and cause the be-
havior of the ratio !g=Tc ’ 8 which was claimed to be

universal in [7] unstable. They presented a semianalytic
approximation method to explain the qualitative features of
superconductors giving fairly good agreement with nu-
merical results.
In this work, we will carry out a detailed study in the

probe limit of various condensates of holographic super-
conductors with curvature corrections. We will consider
two particular backgrounds: a d-dimensional Gauss-
Bonnet-AdS black hole [20–22] and a Gauss-Bonnet-
AdS soliton [23] background. Our aim is to clarify the
influence of the stringy effects on holographic supercon-
ductors in various dimensions.
In the case of d-dimensional Gauss-Bonnet-AdS black

hole background, besides the study of the influence the
mass of the scalar field and Gauss-Bonnet coupling have on
the formation of the scalar condensation, we will also
present an analysis of the effects the dimensionality of
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the AdS space have on the scalar condensation formation.
We applied the semianalytical method in matching the
approximate solutions near the horizon and the asymptotic
AdS region [19] for d � 5. We find that for d > 5 the
method breaks down unless the matching point is selected
in an appropriate range. We also study the ratio !g=Tc for

various masses of the scalar field and Gauss-Bonnet
coupling.

The AdS soliton is a gravitational configuration which
has lower energy than the AdS space in the Poincaré
coordinates, but has the same boundary topology as the
Ricci flat black hole and the AdS space in the Poincaré
coordinates [24]. It was found that there is a Hawking-Page
phase transition between the Ricci flat AdS black hole and
the AdS soliton [25]. The signature of this phase transition
shows up in the quasinormal modes spectrum [26]. More
recently the Hawking-Page phase transition between Ricci
flat black holes and the deformed AdS soliton in the Gauss-
Bonnet gravity was discussed in [23]. It was argued that
although in Gauss-Bonnet gravity, the black hole solution
and AdS soliton are greatly deformed by the Gauss-Bonnet
term, the Gauss-Bonnet coefficient disappears in the
Euclidean action and as a result the Gauss-Bonnet term
has no effect on the Hawking-Page phase transition.

Recently it was found that there is a superconducting
phase dual to an AdS soliton configuration [27]. We will
extend the construction to include a Ricci flat AdS soliton
in Gauss-Bonnet gravity. We will study the effects of the
mass of the scalar field and the Gauss-Bonnet coupling on
the scalar condensation and conductivity and compare
them with the corresponding results in Gauss-Bonnet-
AdS black hole configuration.

The plan of the paper is the following. In Sec. II we
present the basic equations of the holographic supercon-
ductor in the Gauss-Bonnet-AdS black hole background. In
Sec. III we explore the effects of the Gauss-Bonnet term,
the spacetime dimension and the mass of the scalar field on
the scalar condensation and conductivity. In Sec. IV we
discuss the Gauss-Bonnet-AdS soliton background. We
conclude in the last section with our main results.

II. HOLOGRAPHIC SUPERCONDUCTORS DUAL
TO GAUSS-BONNET-ADS BLACK HOLES

The Einstein-Gauss-Bonnet theory is the most general
Lovelock theory in five and six dimensions and the action
with a negative cosmological constant � ¼ �ðd� 1Þ�
ðd� 2Þ=2L2 is of the form

S ¼ 1

16�G

Z
ddx

ffiffiffiffiffiffiffi�g
p �

Rþ ðd� 1Þðd� 2Þ
L2

þ ~�ðR����R
���� � 4R��R

�� þ R2Þ
�
; (1)

where ~� is the Gauss-Bonnet coupling constant with di-
mension ðlengthÞ2. Considering that the Gauss-Bonnet

term is an effective string correction to gravity, the cou-
pling ~� is connected to the string coupling, therefore it is
positive. The background solution of a neutral black hole is
described by [20–22]

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2ðd�2 þ hijdx
idxjÞ; (2)

where

fðrÞ ¼ r2

2�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 64�G�M

ðd� 2Þ�rd�1
� 4�

L2

s �
: (3)

Here � ¼ ~�ðd� 3Þðd� 4Þ which must obey 4�=L2 � 1
to avoid naked singularity, M is a constant of integration

which is related to the black hole horizon through M ¼
ðd�2Þ�rd�1

þ
16�GL2 with � the volume of the (d� 3)-dimensional

Ricci flat space. Note that in the asymptotic region (r !
1), we have

fðrÞ � r2

2�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

L2

s �
: (4)

We can define the effective asymptotic AdS scale by [19]

L2
eff ¼

2�

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

L2

q !
�
L2; for � ! 0;
L2

2 ; for ! L2

4 :
(5)

We note that the limit L2 ¼ 4� is known as the Chern-
Simons limit [28]. The Hawking temperature of the black
hole, which will be interpreted as the temperature of the
CFT, can be easily obtained

T ¼ ðd� 1Þrþ
4�L2

: (6)

In the background of the d-dimensional Gauss-Bonnet-
AdS black hole, we consider a Maxwell field and a charged
complex scalar field with the action

S¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
�1

4
F��F

�� �jrc � iAc j2 �m2jc j2
�
:

(7)

We assume that these fields are weakly coupled to gravity,
so they do not backreact on the metric (probe limit). Taking
the ansatz c ¼ jc j, A ¼ �dt where c , � are both func-
tions of r only, we can obtain the equations of motion for
c , �

c 00 þ
�
f0

f
þ d� 2

r

�
c 0 þ

�
�2

f2
�m2

f

�
c ¼ 0; (8)

�00 þ d� 2

r
�0 � 2c 2

f
� ¼ 0: (9)

It was argued that the coupling of the scalar field to the
Maxwell field can produce a negative effective mass [4]
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which will become more important at low temperature
leading to an instability of the c ¼ 0 configuration result-
ing in the black hole to acquire hair [5,6].

Equations (8) and (9) can be solved numerically by
doing integration from the horizon out to the infinity. The
regularity condition at the horizon gives the boundary
conditions c ðrþÞ ¼ f0ðrþÞc 0ðrþÞ=m2 and �ðrþÞ ¼ 0. At
the asymptotic region (r ! 1), the solutions behave like

c ¼ c�
r	�

þ cþ
r	þ

; � ¼ �� 


rd�3
; (10)

with

	� ¼ 1

2
½ðd� 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 1Þ2 þ 4m2L2

eff

q
�; (11)

where � and 
 are interpreted as the chemical potential
and charge density in the dual field theory, respectively.
The coefficients c� and cþ both multiply normalizable
modes of the scalar field equations and, according to the
AdS/CFT correspondence, they correspond to the vacuum
expectation values c� ¼ hO�i, cþ ¼ hOþi of an opera-
tor O dual to the scalar field. We can impose boundary
conditions that either c� or cþ vanish. As was noted in
[5] imposing boundary conditions in which both c� and
cþ are nonzero makes the asymptotic AdS theory unstable
[29,30].

III. SCALAR CONDENSATION IN THE GAUSS-
BONNET-ADS BLACK HOLE BACKGROUND

In the case of a flat Schwarzschild-AdS black hole
background, the scalar operators hO�i and hOþi have
different behaviors at low temperatures [5]. While the
condensate hOþi has similar behavior to the BCS theory,
the condensate hO�i diverges at low temperatures. As it
was shown in [6] this result was obtained because the
backreaction on the metric was neglected. In this section

we will present a detailed analysis of the condensation
of these operators which are subjected to curvature
corrections.

A. The condensation for the scalar operator hOþi
A study of the condensation of the scalar operator hOþi

in a five-dimensional Gauss-Bonnet-AdS black hole back-
ground was carried out in [19]. It was found that for fixed
mass of the scalar field to a value of m2 ¼ �3=L2, the
increase of the Gauss-Bonnet coupling � results in the
decrease of the critical temperature so that the higher
curvature corrections make it harder for the scalar field to
condense. This can be understood invoking the arguments
presented in [4]. The scalar hair can be formed just outside
the horizon because the electromagnetic repulsion of the
charged scalar field can overcome the gravitational attrac-
tion, resulting in the condensation of the scalar field bounc-
ing off the AdS boundary. In our case because of the strong
curvature effects outside the horizon this mechanism is less
effective. The maximum effect is obtained in the Chern-
Simons limit where the Gauss-Bonnet theory is strongly
coupled [31].
Changing the mass of the scalar field, we present in

Fig. 1 the scalar mass influence on the condensation. It is
clear that for the same �, the condensation gap becomes
larger if m2 becomes less negative. The difference caused
by the influence of the scalar mass will become smaller
when there is higher curvature correction in the AdS
background.
In Fig. 2 we further show the influence the dimension-

ality of the spacetime has on the scalar condensation. For
choosing the same value of the scalar mass, qualitative
features occur as we vary � in AdS black hole background
of different dimensionality. However, as the spacetime
dimension increases, the condensation gap becomes
smaller for the same �, which means that the scalar hair
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FIG. 1 (color online). The condensate as a function of temperature with fixed values � ¼ 0:0001 and 0.2 for various masses of the
scalar field in d ¼ 5 dimension. The four lines from bottom to top correspond to increasing mass, i.e., m2L2 ¼ �4 (black), �3 (red),
�2 (blue) and �1 (green), respectively.
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can be formed easier in the higher-dimensional back-
ground. Moreover we observed that the difference caused
by the curvature corrections are reduced when the space-
time dimension becomes higher.

1. Analytical understanding of the condensation

Since Eqs. (8) and (9) are coupled and nonlinear, we
have to rely on the numerical calculation. A semianalytical
method can be applied in understanding the condensation.
The method was first applied in the calculation of the Grey-
Body factors of black holes [32]. The method consists in
finding approximate solutions near the horizon and in the
asymptotic (A)dS space and then smoothly matching the
solutions at an intermediate point. In particular in [19] an
analytic expression for the critical temperature was ob-
tained, matching smoothly the leading order solutions
near the horizon and asymptotically at an intermediate
point and the phase transition phenomenon was demon-
strated. It was further shown that the critical temperature
obtained in this way is in a good agreement with the
numerical result. It was argued that the qualitative features
of the approximation do not change with the arbitrary
choice of the intermediate matching point.

In this subsection we extend the analytic approach of
[19] to d-dimensional AdS black holes with Gauss-Bonnet
terms. Rewriting Eqs. (8) and (9) with a new coordinate
z ¼ rþ=r, we have

c 00 þ
�
f0

f
� d� 4

z

�
c 0 þ r2þ

z4

�
�2

f2
�m2

f

�
c ¼ 0; (12)

�00 � d� 4

z
�0 � r2þ

z4
2c 2

f
� ¼ 0; (13)

where the prime denotes differentiation in z. Regularity at
the horizon z ¼ 1 requires

c ð1Þ ¼ �d� 1

m2L2
c 0ð1Þ; �ð1Þ ¼ 0: (14)

Near the AdS boundary z ¼ 0,

c ¼ C�z	� þ Cþz	þ ; � ¼ �� 


rd�3þ
zd�3: (15)

We will set C� ¼ 0 and fix 
 in the following discussion.
Expanding Eqs. (12) and (13) near z ¼ 1 with the regu-

lar horizon boundary condition (14), one can easily obtain
the leading order approximate solutions near the horizon

c ðzÞ ¼
�
1þ m2L2

d� 1

�
c ð1Þ � m2L2

d� 1
c ð1Þz

þ 1

4

��
2þ m2L2

d� 1
� 2ðd� 1Þ�

L2

�
m2L2

d� 1

� L4

ðd� 1Þ2r2þ
�0ð1Þ2

�
c ð1Þð1� zÞ2 þ � � � ; (16)

�ðzÞ ¼ ��0ð1Þð1� zÞ þ 1

2

�
ðd� 4Þ � 2L2

d� 1
c ð1Þ2

�

��0ð1Þð1� zÞ2 þ � � � : (17)

The solutions near the asymptotic AdS region can be read
off from Eq. (15),

c ¼ Cþz	þ ; � ¼ �� 


rd�3þ
zd�3: (18)

To match smoothly the solutions (16)–(18) at an inter-
mediate point zm with 0< zm < 1, we can use the follow-
ing equations which connect the above two asymptotic
regions:
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FIG. 2 (color online). The condensate as a function of temperature with different values of � for fixed mass of the scalar field
m2L2 ¼ �3 in d ¼ 5 and 6 dimensions. The three lines from bottom to top correspond to increasing �, i.e., � ¼ 0:0001 (black), 0.1
(red), and 0.2 (green), respectively. And the other blue dashed line corresponds to � ¼ 0:25.
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Cþz
	þ
m ¼

�
1þ m2L2

d� 1

�
a� m2L2

d� 1
zma

þ 1

4

��
2þ m2L2

d� 1
� 2ðd� 1Þ�

L2

�
m2L2

d� 1

� L4

ðd� 1Þ2r2þ
b2
�
ð1� zmÞ2a; (19)

	þCþz
	þ�1
m ¼ �m2L2

d� 1
a� 1

2

��
2þ m2L2

d� 1
� 2ðd� 1Þ�

L2

�

� m2L2

d� 1
� L4

ðd� 1Þ2r2þ
b2
�
ð1� zmÞa; (20)

�� 


rd�3þ
zd�3
m ¼ ð1� zmÞb� 1

2

�
ðd� 4Þ � 2L2

d� 1
a2
�

� ð1� zmÞ2b; (21)

�ðd� 3Þ 


rd�3þ
zd�4
m ¼ �bþ

�
ðd� 4Þ � 2L2

d� 1
a2
�

� ð1� zmÞb; (22)

where c ð1Þ 	 a and ��0ð1Þ 	 b with a, b > 0 which
makes c ðzÞ and �ðzÞ positive near the horizon. Using
Eqs. (19) and (20), we can eliminate b and get

Cþ ¼ 2ðd� 1Þ þm2L2ð1� zmÞ
ðd� 1Þ½2zm þ ð1� zmÞ	þ�z	þ�1

m

a: (23)

Substituting (23) into (20), we find

b ¼ 2ðd� 1Þ rþ
L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2ðd� 1Þ þm2L2ð1� zmÞ�	þ

2ðd� 1Þð1� zmÞ½2zm þ ð1� zmÞ	þ� þ
ð2� zmÞm2L2

2ðd� 1Þð1� zmÞ þ
�

m2L2

2ðd� 1Þ
�
2 �m2�

2

s
: (24)

Similarly, from Eqs. (21) and (22) we can express a as

a2 ¼ ðd� 1Þðd� 3Þzd�4
m 


2ð1� zmÞL2rd�3þ b

�
�
1� ½1þ ð4� dÞð1� zmÞ�rd�3þ b

ðd� 3Þzd�4
m 


�
: (25)

Using Eq. (25) and the Hawking temperature (6), we can
rewrite (25) as

a2 ¼ ðd� 1Þ½1þ ð4� dÞð1� zmÞ�
2ð1� zmÞL2

�
Tc

T

�
d�2

�
�
1�

�
T

Tc

�
d�2

�
; (26)

and the critical temperature Tc is given by

Tc ¼ d� 1

4�L2

� ðd� 3Þzd�4
m L2


½1þ ð4� dÞð1� zmÞ�~b
�
1=ðd�2Þ

; (27)

where we have set b ¼ ~brþ=L2.
Following the AdS/CFT dictionary, we obtain the rela-

tion

hOþi 	 LCþr
	þþ L�2	þ ¼ LCþ

�
4�T

d� 1

�
	þ
: (28)

Thus, from (23) and (26) the expectation value hOþi is
given by

hOþi1=	þ

Tc

¼ �
T

Tc

��
Tc

T

�
d�2

�
1�

�
T

Tc

�
d�2

��
1=ð2	þÞ

; (29)

where � is defined by

� ¼ 4�

d� 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 1Þ½1þ ð4� dÞð1� zmÞ�
p ½2ðd� 1Þ þm2L2ð1� zmÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� zmÞ
p ðd� 1Þ½2zm þ ð1� zmÞ	þ�z	þ�1

m

�
1=	þ

: (30)

It is interesting to observe that using Eqs. (25) and (27)
we find that for

zmd ¼ d� 5

d� 4
; (31)

the critical temperature Tc diverges! Therefore, if we use
the value zm ¼ 1=2 in d ¼ 6 the method breaks down,
contrary to what it was found in [19] for d ¼ 5. This shows
that the matching point is not truly arbitrary. In order to get
the correct critical temperature Tc for d > 5, we have to
choose the matching point zm in the range zmd < zm < 1.

In Table I we present the critical temperature obtained
analytically by fixing zm ¼ 7=10 for d ¼ 6 and its com-
parison with numerical results. We observe that when the
mass of the scalar field is nonzero, selecting the matching
point from the appropriate range, we can obtain a consis-
tent analytic result with that obtained numerically. When
the scalar mass is zero, the analytic approximation fails to
give the correct critical temperature dependence on the
Gauss-Bonnet term. This can also be seen in d ¼ 5. The
reason is that in the analytic approximation, the Gauss-
Bonnet term is entangled with the mass of the scalar field
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as shown in (25). Therefore setting m ¼ 0 the � contribu-
tion in the analytic result is eliminated.

In summary, we have reexamined the analytic approach
in understanding the condensation. Although the position
of the matching point does not change the qualitative result
when d ¼ 5, it cannot be arbitrary when the spacetime
dimension is higher. To avoid a breakdown of the method,
the matching point has to be in an appropriate range of
values. When the scalar mass is nonzero, the critical tem-
perature obtained by analytic method agrees well with that
calculated numerically. When the scalar mass is zero, the
Gauss-Bonnet term does not contribute to the analytic
approximation, so that we cannot count on the analytic
method as it was also observed in [19].

2. Conductivity

It was argued in [7] that in (2þ 1) and (3þ 1)-
dimensional superconductors a universal relation connect-
ing the gap frequency in conductivity with the critical
temperature Tc holds !g=Tc 
 8, to better than 10% for

a range of scalar masses. This is roughly twice the BCS
value 3.5 indicating that the holographic superconductors
are strongly coupled. However it was found in [19] that this
relation is not stable in the presence of the Gauss-Bonnet
correction terms. In this section we will further examine
this result.

In the Gauss-Bonnet black hole background, the
Maxwell equation at zero spatial momentum and with a
time dependence of the form e�iwt gives

A00
x þ

�
f0

f
þ d� 4

r

�
A0
x þ

�
!2

f2
� 2c 2

f

�
Ax ¼ 0; (32)

where we used the ansatz for the perturbed Maxwell field
�Ax ¼ AxðrÞe�i!tdx. To avoid the complicated behavior in
the gauge field falloff in dimensions higher than five, we
restrict our study to d ¼ 5. We solve the above equation

with an ingoing wave boundary condition AxðrÞ �
fðrÞ�ðði!Þ=ð4rþÞÞ near the horizon. The general behavior in
the asymptotic AdS region (r ! 1) is seen to be

Ax ¼ Að0Þ þ Að2Þ

r2
þ Að0Þ!2L2

eff

2

log�r

r2
: (33)

Removing the divergence by an appropriate boundary
counter term, we have the conductivity obtained in [7]

� ¼ 2Að2Þ

i!Að0Þ þ
i!

2
: (34)

In Fig. 3 we plot the frequency dependent conductivity
obtained by solving the Maxwell equation numerically for
� ¼ 0:0001, 0.1, 0.2 and 0.25 with different masses of the
scalar field, i.e., m2L2 ¼ �2,�3 and�4. The blue (solid)
line represents the real part, and red (dashed) line is the
imaginary part of �. We find a gap in the conductivity with
the gap frequency!g. For the same mass of the scalar field,

we observe that with the increase of the Gauss-Bonnet
coupling constant, the gap frequency !g becomes larger.

We observe in Table II that for increasing Gauss-Bonnet
coupling we have larger deviations from the value
!g=Tc 
 8 with the maximum value attained in the

Chern-Simons limit. This shows that the high curvature
corrections really change the expected universal relation in
the gap frequency. On the other hand, if we concentrate on
the same Gauss-Bonnet coupling, we observe that the
change of the mass of the scalar field has little effect on
the gap frequency as was also observed in [7].

B. The condensation for the scalar operator hO�i
In this section we will impose the condition cþ ¼ 0 and

study the condensation generated by the scalar operator
hO�i. As we already learned, in the case of a four-
dimensional Schwarzschild-AdS black hole the condensa-
tion of this scalar operator for small temperatures diverges
[7]. We expect the same behavior to occur also in the
presence of curvature corrections. Thus, if we want to
keep the probe limit approximation the temperatures con-
sidered should not be very small.
The presence of the Gauss-Bonnet correction term gives

the possibility of choosing the scalar mass as m2L2
eff . This

choice is closely related to 	 in Eq. (11), which is the
dimension of the boundary operator dual to the scalar field.
On the other hand, fixing the scalar mass by m2L2

eff con-

tains the influence of Gauss-Bonnet coupling by consider-
ing Eq. (5). Therefore, it is more appropriate to choose the
scalar mass by the value of m2L2

eff when the Gauss-Bonnet

TABLE I. The critical temperature Tc obtained by the analytical method (left column) and the
numerical method (right column) for d ¼ 6. The matching point is set as zm ¼ 7=10 which
satisfies the range d�5

d�4 < zm < 1. We have used 
 ¼ 1 in the table.

� 0.0001 0.1 0.2 0.25

m2L2 ¼ 0 0.249 0.249 0.249 0.242 0.249 0.232 0.249 0.223

m2L2 ¼ �1 0.253 0.253 0.253 0.246 0.252 0.235 0.252 0.225

m2L2 ¼ �2 0.258 0.257 0.257 0.250 0.256 0.238 0.255 0.227

m2L2 ¼ �3 0.264 0.264 0.262 0.255 0.260 0.242 0.259 0.229

m2L2 ¼ �4 0.271 0.271 0.268 0.261 0.265 0.246 0.263 0.232

PAN et al. PHYSICAL REVIEW D 81, 106007 (2010)

106007-6



correction terms are included. However, this choice of the

scalar mass should be in the range � ðd�1Þ2
4 <m2L2

eff <

� ðd�1Þ2
4 þ 1 where both modes of the asymptotic values

of the scalar fields are normalizable [7,33], except at the
saturation of the Breitenlohner-Freedman (BF) bound
�ðd� 1Þ2=4 [34].
We could have used the scalar mass as m2L2

eff in study-

ing the condensation of the operator hOþi in the previous

TABLE II. The ratio!g=Tc with fixed values of � for different
masses of the scalar field.

� 0.0001 0.1 0.2 0.25

m2L2 ¼ �2 7.8 8.8 10.4 14.2

m2L2 ¼ �3 7.7 8.6 10.2 14.1

m2L2 ¼ �4 10.2 13.7
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FIG. 3 (color online). Conductivity for (3þ 1)-dimensional Gauss-Bonnet superconductors with fixed values of � for different
masses of the scalar field.
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FIG. 4 (color online). The condensate as a function of temperature with different values of � if we fix the mass of the scalar field by
m2L2 (the left panel) or by m2L2

eff (the right panel) for c� when cþ vanishes. In the left panel four lines from top to bottom

correspond to increasing �, i.e., � ¼ 0:0001 (black), 0.01 (green), 0.05 (blue) and 0.1 (red and dashed), respectively, but they are
arranged the other way around in the right panel.
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section. However, as it was shown in [19] the qualitative
features in condensation are the same in varying � if the
mass of the scalar field is chosen as m2L2 or alternatively
m2L2

eff .

Nevertheless, as shown in Fig. 4, the condensation for
the scalar operator hO�i for different choices of the mass
of the scalar field has completely different behavior as � is
changing. Selecting the value of m2L2

eff for the scalar mass

we get the same qualitative dependence of the condensa-
tion as in the case of the condensation for the scalar
operator hOþi (right panel of Fig. 4), while choosing the
value of m2L2 for the scalar mass we get the opposite
behavior (left panel of Fig. 4).

Fixing the Gauss-Bonnet coupling �, in Fig. 5 we show
the dependence of the condensation of the scalar operator
hO�i on the mass of scalar filed. It is observed that it is
qualitatively different than the behavior of the condensa-
tion of the scalar operator hOþi: the larger mass of the
scalar field makes it easier for the scalar hair to form. This
is consistent with the result found in [7].

IV. HOLOGRAPHIC SUPERCONDUCTOR IN
GAUSS-BONNET-ADS SOLITON

In this section we will study a holographic dual of a
Gauss-Bonnet-AdS soliton. Motivated by the work pre-
sented in [27] we will extend their discussion to the Ricci
flat AdS soliton in the Gauss-Bonnet gravity and examine
the effect of the Gauss-Bonnet term on the condensation
and conductivity.

A. Scalar condensation in the AdS soliton

By analytically continuing the Ricci flat black hole one
obtains the AdS soliton in the Gauss-Bonnet gravity [23]

ds2 ¼ �r2dt2 þ dr2

fðrÞ þ fðrÞd’2 þ r2hijdx
idxj: (35)

Obviously, there does not exist any horizon but a conical
singularity at r ¼ rs in this solution. Imposing a period

� ¼ 4�L2

ðd�1Þrs for the coordinate ’, we can remove the

singularity.
Beginning with the Einstein-Maxwell-scalar theory (7),

we can get the equations of motion for the scalar field c
and gauge field � in the form

c 00 þ
�
f0

f
þ d� 2

r

�
c 0 þ

�
�2

r2f
�m2

f

�
c ¼ 0; (36)

�00 þ
�
f0

f
þ d� 4

r

�
�0 � 2c 2

f
� ¼ 0: (37)

We will solve these two equations numerically with appro-
priate boundary conditions at r ¼ rs and at the boundary
r ! 1. The solutions near the AdS boundary are the same
as Eq. (10). At the tip r ¼ rs, the solutions behave as

c ¼ ~c 0 þ ~c 1 logðr� rsÞ þ ~c 2ðr� rsÞ þ � � � ;
� ¼ ~�0 þ ~�1 logðr� rsÞ þ ~�2ðr� rsÞ þ � � � ;

(38)

where ~c i and ~�i (i ¼ 0; 1; 2; � � � ) are the integration con-
stants. In order to keep every physical quantity finite, we

impose the Neumann-like boundary condition ~c 1 ¼ ~�1 ¼
0 [27] in our discussion. Obviously, one can find a constant
nonzero gauge field �ðrsÞ at r ¼ rs, contrary to that of the
AdS black hole where �ðrþÞ ¼ 0 at the horizon. We will
still use the probe approximation in our calculation and

select the mass of the scalar field in the range � ðd�1Þ2
4 <

m2L2
eff <� ðd�1Þ2

4 þ 1 where both modes of the asymptotic

values of the scalar fields are normalizable. For clarity,
we will take d ¼ 5 and one can easily extend the study to
d � 6.
In Fig. 6 we plot the condensations of scalar operators

hO�iS and hOþiS with respect to the chemical potential �
in the Gauss-Bonnet-AdS soliton for different Gauss-
Bonnet coupling constants with the fixed scalar mass
m2L2

eff ¼ �15=4 (two panels of the left column). The

condensation occurs for scalar operators hOiiS (i ¼ �)
with different values of � if �>�iS, where �iS is the
so-called critical chemical potential for scalar operators
hOiiS which just begin to condense. Thus, we obtain ��S

and �þS for scalar operators hO�iS and hOþiS with differ-
ent values of � respectively, i.e., ��S ¼ 0:836 and �þS ¼
1:888 for � ¼ 0:0001; ��S ¼ 0:839 and �þS ¼ 1:895 for
� ¼ 0:01; ��S ¼ 0:849 and �þS ¼ 1:922 for � ¼ 0:05
and ��S ¼ 0:861 and �þS ¼ 1:960 for � ¼ 0:1. For the
same mass of the scalar field, it is observed that the critical
chemical potential ��S for the condensation to occur
increases as � increases. This result is consistent with
that observed in the AdS black hole as shown in the right

d 5, 0.1

0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

T

Tc

O
1

Tc

FIG. 5 (color online). The condensate as a function of tem-
perature with different values of m2L2

eff with � ¼ 0:1 for c�
when cþ vanishes. The three lines from top to bottom corre-
spond to increasing mass of the scalar field, i.e., m2L2

eff ¼
�15=4 (black), �7=2 (green), and �13=4 (red and dashed),
respectively.
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column in Fig. 6. For the AdS soliton, we again find that the
higher curvature correction makes it harder for the scalar
hair to form which is similar to that seen in the AdS black
hole. For the same �, ��S < �þS, which agrees to that
found in [27] implying that it is easier for the scalar
condensation to be formed in the scalar operators hO�iS.

In Fig. 7, we plot the charge density 
 as a function of
the chemical potential � when hO�i � 0 (left) and
hOþi � 0 (right). For each chosen �, we see that when
� is small, the system is described by the AdS soliton
solution itself, which can be interpreted as the insulator
phase [27]. When � reaches ��S or �þS, there is a phase
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FIG. 6 (color online). The condensates of the scalar operators hO�i and hOþi with respect to the chemical potential � in the Gauss-
Bonnet soliton (left column) and Gauss-Bonnet black hole (right column). We fix the mass of the scalar field by m2L2

eff ¼ �15=4 and

the four lines from left to right correspond to increasing �, i.e., � ¼ 0:0001 (black), 0.01 (green), 0.05 (blue), and 0.1 (red and dashed),
respectively.
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FIG. 7 (color online). The charge density 
 as a function of the chemical potential� with different values of � when hO�i � 0 (left)
and hOþi � 0 (right). We fix the mass of the scalar field by m2L2

eff ¼ �15=4 and the four lines from left to right correspond to

increasing �, i.e., � ¼ 0:0001 (black), 0.01 (green), 0.05 (blue), and 0.1 (red and dashed), respectively.
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transition and the AdS soliton reaches the superconductor
(or superfluid) phase for larger �. Here we show that the
phase transition can occur even at strictly zero temperature
in the Gauss-Bonnet gravity, which is different from that of
the standard holographic superconductors with high curva-
ture corrections discussed in [19].

In Fig. 8 we present the effect of the scalar field mass on
the condensations of the scalar operators hO�iS and hOþiS.
Fixing the Gauss-Bonnet coupling, we observe consistent
behaviors on the scalar mass influence on the hO�iS and
hOþiS comparable to the behavior of the AdS black holes.
With the increase of the scalar field mass, the critical
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FIG. 8 (color online). The condensates of the scalar operators hO�i and hOþi with respect to the chemical potential � in the Gauss-
Bonnet soliton (left column) and Gauss-Bonnet black hole (right column) for � ¼ 0:1. In the above two panels three lines from left to
right correspond to decreasing mass of the scalar field, i.e., m2L2

eff ¼ �13=4 (red and dashed), �7=2 (green), and �15=4 (black),

respectively, but they are arranged contrarily in the following two panels.
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FIG. 9 (color online). The charge density 
 as a function of the chemical potential � with different mass of the scalar field when
hO�i � 0 (left) and hOþi � 0 (right) for � ¼ 0:1. Their derivatives jump at the phase transition points. The three lines in the left panel
from left to right correspond to decreasing mass of the scalar field, i.e., m2L2

eff ¼ �13=4 (red and dashed), �7=2 (green), and �15=4
(black), respectively, but they are arranged contrarily in the right panel.
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chemical potential ��S (and ��B) for the scalar operators
hO�i becomes smaller, however for the scalar operators
hOþi where larger scalar filed mass leads higher �þS (and
�þB). Figure 9 shows the influence of the scalar mass on
the behavior of the charge density as function of � for a
fixed value of �.

B. Conductivity

We can calculate the conductivity �ð!Þ by solving the
equation for the electromagnetic perturbations Ax in the

AdS soliton background for the Gauss-Bonnet gravity,

A00
x þ

�
f0

f
þ d� 4

r

�
A0
x þ

�
!2

r2f
� 2c 2

f

�
Ax ¼ 0; (39)

which obeys the Neumann boundary condition as in
Eq. (38) at r ¼ rs. The asymptotic behavior near the
boundary r ! 1 is the same as (33). The conductivity
can be calculated by using Eq. (34), and the results are
shown in Fig. 10.
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FIG. 10 (color online). The imaginary part of the conductivity for the Gauss-Bonnet soliton without a scalar condensation hO�;þi ¼
0 (left) and with a scalar condensation hO�i � 0 (right). We choose the mass of the scalar field by m2L2

eff ¼ �15=4, �7=2 and set

� ¼ 0:0001, 0.1 for clarity.
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For clarity, we only plot the imaginary part of the con-
ductivity for the Gauss-Bonnet-AdS soliton without scalar
condensation hO�;þi ¼ 0 (left) and with scalar condensa-

tion hO�i � 0 (right). For the Gauss-Bonnet-AdS soliton
background without scalar condensation, the AdS soliton
can be identified with an insulator as argued in [27]. There

are periodic poles at points where Að0Þ vanishes. With the
increase of the curvature correction, the pole appears at
bigger !. For the case of the Gauss-Bonnet-AdS soliton
with scalar condensation as shown in the right column of
Fig. 10, we see that when ! is bigger, the behavior looks
similar to that in the left column. However the pole appears
when ! ¼ 0 which agrees with that observed for the
condensation in the AdS black hole. For larger Gauss-
Bonnet coupling, we see that gap frequency in the imagi-
nary part of the conductivity becomes larger. This is in
agreement with that in the Gauss-Bonnet AdS black hole.
For the fixed Gauss-Bonnet coupling constant, the influ-
ence of the scalar mass on the imaginary part of the
conductivity can be neglected.

V. CONCLUSIONS

We investigated the behavior of a holographic supercon-
ductor in the presence of Gauss-Bonnet corrections to the
gravity in the AdS bulk. Considering that the Gauss-
Bonnet term corresponds to the leading order string quan-
tum corrections to gravity, this investigation may help to
understand the stringy effects to holographic superconduc-
tors. In the probe limit, we found that the mass of the scalar
field and the Gauss-Bonnet coupling influences the con-
densation formation and conductivity. In order to disclose
the correct consistent influence due to the Gauss-Bonnet
coupling in various condensates, we found that it is more
appropriate to choose the mass of the scalar field by
selecting the value of m2L2

eff , since this choice contains

directly the signature of Gauss-Bonnet factor in the scalar
mass. The higher order curvature corrections in general
make the condensation harder to form while the increase of
the dimensionality of the AdS space makes it easier for the

scalar operator to condense. To study the dynamics of the
phase transition we used a semianalytic method consisting
of matching the solutions near the horizon and the asymp-
totic AdS region at an intermediate matching point. We
showed that this procedure breaks down in high dimen-
sions (d > 5) unless the matching point is chosen in an
appropriate range. We studied the ratio !g=Tc for various

masses of the scalar field and Gauss-Bonnet couplings and
we found that the high curvature terms give large correc-
tions to its universal value.
We also discussed a holographic superconductor dual to

a Gauss-Bonnet-AdS soliton. Similar to that of the black
hole background, we observed that the condensation also
appears in the AdS soliton background. Although the
Gauss-Bonnet term has no effect on the Hawking-Page
phase transition between AdS black hole and AdS soliton,
it does have an effect on the scalar condensation and
conductivity in Gauss-Bonnet-AdS soliton configuration.
We found that the higher curvature correction makes it
harder for the scalar hair to form, which is similar to that
seen in the black hole background. We also observed that
the scalar mass has similar effects to scalar condensation
and conductivity as in the AdS black holes background.
There are still open problems to be investigated further.

First of all, it is interesting to extend this work beyond the
probe limit. In this case we have also to address the prob-
lem of stability of the gravity backgrounds we are consid-
ering. Another interesting extension is to consider Gauss-
Bonnet black hole solutions with spherical or hyperbolic
horizons. Recently it was argued that the negative curva-
ture topology can make the superconductor gapless and
give a geometrical mechanism of conductivity [10]. It is of
interest to examine the spatial topology influence on the
condensation, and work in this direction is in progress.
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