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We consider a four-dimensional theory in the z ¼ 3 Lifshitz context, with an exponential (Liouville)

potential. We determine the exact renormalized potential of the theory and derive the nonperturbative

relation between the renormalized and bare couplings. In addition, we show that Lorentz symmetry is

naturally generated by quantum fluctuations in the infrared regime, and conclude that the model can be

relevant to high energy physics.
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I. INTRODUCTION

Recently, quantum field theories in the Lifshitz context
have attracted attention, exhibiting interesting renormal-
ization properties [1]. Lifshitz-type models are based on an
anisotropy between space and time directions, which is
characterized by the dynamical critical exponent z, deter-
mining the properties of space-time coordinates under
scale transformations: t ! bzt and x ! bx. For z > 1 the
higher powers of momentum in the propagators lower the
superficial degree of divergence of graphs, yielding the
renormalizability of new interactions, such as the four-
fermion interaction [2]. Also, divergences of renormaliz-
able interactions in the standard model become softer [3]
as, for example, in the Yukawa model [4], where only
logarithmic divergences appear.

While absent from the classical action, Lorentz symme-
try is naturally generated in Lifshitz-type models through
quantum corrections, since the corresponding kinetic term
is a relevant operator and dominates the dispersion relation
of the modes in the infrared regime (IR). Note, however,
that recovering the speed of light, in theories with more
than one species of interacting fields, requires fine-tuning
of bare parameters [5].

In the context of Lifshitz-type models, the scalar field
has dimensionality ½�� ¼ ðD� zÞ=2, such that for D ¼ z
it is dimensionless. As a consequence, any power �n

represents a classically marginal operator. This is also the
case of Liouville theory, in 1þ 1 dimensions, where the
potential is �2 expðg�Þ. It is known that, after quantiza-
tion, the potential maintains its exponential form, with
renormalized parameters �r and gr. In this theory, the
renormalized coupling gr receives finite corrections and
its exact relation to the bare coupling g is known [6,7]. We
show in this paper that these results hold for the 3þ 1
dimensional Liouville potential in the z ¼ 3 Lifshitz the-

ory. Our proof is based on both exact functional properties
and the complete resummation of diverging graphs. Note
that this approach offers an independent derivation for the
known results of the 1þ 1 dimensional Liouville theory.
The outline of the paper is the following. In Sec. II we

present the classical model and its quantization via path
integral. The exact functional form of the renormalized
potential is derived in Sec. III. As an illustration, we
calculate the one-loop renormalized mass in Sec.IV, where
we also show that the Lorentz-restoring kinetic term is
generated in the quantum theory.

II. LIOUVILLE-LIFSHITZ MODEL

A. Classical action

The Liouville-Lifshitz model for D ¼ z ¼ 3 is defined
by the classical action,

S� ¼
Z

dtd3x

�
1

2
ð _�Þ2 � 1

2
@k��2@k���6

g2
eg�

�
; (1)

where ½�� ¼ ½g� ¼ 0 and ½�� ¼ 1. From naive power
counting, the theory is expected to be renormalizable. An
essential property of the model (1) is the following: a
constant shift in the field �ðxÞ ! �ðxÞ þ � is equivalent
to a redefinition of the only dimensionful parameter as

�6 ! ~�6 ¼ �6eg�; (2)

and wewill show how this property enables us to determine
exactly the functional form of the renormalized potential of
the theory. Because of the higher order spatial derivatives
in the classical action, the propagator to be used in the
diagrammatic analysis is

Gð!;pÞ ¼ i

!2 � ðp2Þ3 ��6 þ i"
; (3)

as determined by the quadratic part of the action (1).
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B. Path integral quantization

The path integral for the model (1) is

Z�½j� ¼
Z

D½�� exp
�
iS�½�� þ i

Z
j�

�
¼ expðiW�½j�Þ;

(4)

where j is the source and W�½j� is the connected graphs

generating functional. The classical field is then defined as

�clðxÞ ¼
�W�½j�
�jðxÞ : (5)

Shifting the field by a constant �ðxÞ ! �ðxÞ þ � in the
path integral (4) leads to

W�½j� ¼ W ~�½j� þ
Z

jðxÞ� (6)

from which a functional derivative with respect to jðxÞ
gives

~� clðxÞ ¼ �clðxÞ � �; (7)

where ~�clðxÞ is the classical field calculated with the
parameter ~� defined by Eq. (2). If we are interested in
the effective potential only, it is enough to consider a
constant source j0 from which the corresponding constant

classical fields are denoted�0 and ~�0 for the parameters�

and ~�, respectively, such that ~�0 ¼ �0 � �. The partition
function, regularized by the cut off �, is then

Z�½j0� ¼ exp

�
i
Z

Uð�0Þ þ i
Z

j0�0

�
; (8)

where Uð�0Þ, depending on �, is the effective potential,
defined as the derivative independent part of the proper
graphs generating functional. The latter is the Legendre
transform of W½j0�, where j0 has to be understood as a
function of the classical field �0. The cut off dependence
will be taken into account through the dimensionless pa-

rameter t ¼ lnð21=3�=�Þ, where, for convenience, the fac-
tor 21=3 has been absorbed in the logarithm [see the origin
of this factor in Eq. (18)]. It is then easy to see that the
properties (6) and (7) lead to the exact identity

Uð ~�;~t; ~�0Þ ¼ Uð�; t;�0Þ; (9)

where

~t ¼ ln

�
21=3�

~�

�
¼ t� g�

6
; (10)

and the dependence on g is understood on both sides of
Eq. (9).

As a consequence, the effective potential U must be a
function of invariant combinations of �, t, �0 as these

parameters change to ~�, ~t, ~�0, and the only possibility is

U ¼ �6

g2
eg�0FðzÞ; (11)

where F is a function of z ¼ g�0 � 6t (F can also depend
on g, independently of z). Also, the invariance expressed in
Eq. (9) leads to

0 ¼
�
dUð ~�; ~t; ~�0Þ

d�

�
�¼0

¼
�
@U

@ ~�6

@ ~�6

@�
þ @U

@~t

@~t

@�
þ @U

@ ~�0

@ ~�0

@�

�
�¼0

¼ g�6 @U

@�6
� g

6
_U�U0; (12)

where a prime denotes a derivative with respect to�0 and a
dot denotes a derivative with respect to t. Together with
Eq. (11) we obtain

U0 ¼ gU� g

6
_U: (13)

As will be seen in the next section, the partial differential
equation (13) will lead us to the exact field dependence of
the effective potential U, in the limit where t ! 1.

C. Loop expansion

Quantum corrections to the potential are calculable in
the loop expansion by standard methods [8] by summing
all the vacuum diagrams of the theory, leading to an
expansion of FðzÞ in @. We show here that the loop expan-
sion is simultaneously an expansion in g2. The perturbative
treatment of the model requires the expansion of the po-
tential in power series of the coupling g and therefore
generates an infinite series of vertices. Besides the tadpole
�6�=g and the mass term�2�2=2, n-point vertices �n are
generated by the expansion of the exponential

�n ¼ �6gn�2; n � 3: (14)

The number L of loops of a given vacuum graph is related
to the number P of propagators and the number V of
vertices by

L ¼ P� V þ 1: (15)

If Vn denotes the number of vertices with n � 3 legs, we
have

V ¼ XN
n¼3

Vn; and
XN
n¼3

nVn ¼ 2P; (16)

where N is the highest number of legs joining at the same
vertex, in the specific graph which is considered. Since a
vertex with n legs is proportional to gn�2, the vacuum
graph is proportional to a power of g equal to

XN
n¼3

ðn� 2ÞVn ¼ 2P� 2V ¼ 2L� 2: (17)
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Hence, if we consider the factor g�2 in Eq. (11), one can
see that a L-loop graph in the expansion of the potential U
is proportional to ðg2ÞL: the expansion in @ is equivalent to
an expansion in g2.

III. EXACT RENORMALIZED POTENTIAL

A. Diagrammatic analysis and counterterms

By power counting, one can see that the only source of
divergence in this model is a loop made of one propagator
only, that we denote 1PL for ‘‘one propagator loop,’’ and
which is equal to

C1PL ¼
Z þ1

�1
d!

2�

Z d3p

ð2�Þ3
i

!2 � p6 ��6

¼ 1

2

Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p6 þ�6
p ¼ 1

12�2
sinh�1

�
�3

�3

�

’ 1

12�2
ln

�
2
�3

�3

�
� t

4�2
: (18)

The ‘‘1PL’’ loop may appear a multitude of times adjacent
to a n-point vertex (see Fig. 1), in fact up to k times as long
as 2k � n. A n-point vertex will be responsible therefore
for divergences coming from the appearance of k 1PL
loops, for k � ½n2�.

We now derive the structure of the counterterms of the
theory, using a proof by induction.

(i) One-loop.
Counting the number of ways to stick one 1PL to a
n-point vertex, the one-loop divergence correspond-
ing to a n-point function is

Cð1Þ
n ¼ �6gn�2

n!

nðn� 1Þ
2

C1PL; (19)

and the summation over the vertices in the corre-
sponding effective potential gives

X1
n¼2

Cð1Þ
n �n�2

0 ¼ X1
n¼2

�6gn�2

ðn� 2Þ!
C1PL

2
�n�2

0

¼ �6t

8�2
eg�0 : (20)

In order to cure this divergence, in the minimal
substraction scheme, we add the one-loop counter-
term to the bare mass parameter �6 ! �6 þ ��6

ð1Þ,
with

��6
ð1Þ ¼ ��6 g2t

8�2
: (21)

(ii) k-loops.
A k-loop diagram contains at most k 1PLs, and those
containing less than k 1PLs are cured by the ðk�
1Þ-loop counterterms. As a consequence, the new
divergence appearing at k loops is carried by graphs
where all the 1PLs are stuck at the same vertex. Such
a n-point vertex [see Fig. 1(b)] contributes with a
divergence

CðkÞ
n ¼ �6gn�2

n!

nðn� 1Þðn� 2Þ . . . ðn� 2kþ 1Þ
2kk!

� ðC1PLÞk: (22)

The summation of the dominant divergences over the
vertices n contributes to the corresponding effective
potential

X1
n¼2k

CðkÞ
n �n�2k

0 ¼ X1
n¼2k

�6gn�2

ðn� 2kÞ!
1

k!

�
C1PL

2

�
k
�n�2k

0

¼ �6

g2k!

�
g2t

8�2

�
k
eg�0 : (23)

In order to cure this divergence, in a minimal sub-
straction scheme, we add the k-loop counterterm to
the ðk� 1Þ-loop mass parameter �6

ðk�1Þ ! �6
ðk�1Þ þ

��6
ðkÞ, with

��6
ðkÞ ¼ ��6

k!

�
g2t

8�2

�
k
: (24)

(iii) Complete resummation
The complete cancellation of infinities requires
therefore the introduction of the unique counterterm
(up to finite terms)

Uct ¼
X1
k¼1

��6
ðkÞ

g2
eg�0 ¼ �6

g2

�
1� exp

�
@g2t

8�2

��
eg�0 ;

(25)

where the factor @ is explicitly written to emphasize
that the loop expansion is also an expansion in g2.
We conclude that all the divergences are contained in

FIG. 1. Diagrams contributing to infinities in the Liouville
theory from the n-point vertex: (a) one-loop infinity renormal-
ized by an ðn� 2Þ-point counterterm. (b) k-loop infinity renor-
malized by the ðn� 2kÞ-point countertem, (c)
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the mass parameter of the model, and that the cou-
pling g receives finite quantum corrections, which
we now calculate.

B. Renormalized coupling and mass parameter

We write the effective potential as the sum of the con-

tributions UðkÞ from each loop order k:

U ¼ Ubare þ
X1
k¼1

UðkÞ; (26)

where the bare potential is Ubare � Uð0Þ, and UðkÞ is a
polynomial of t:

UðkÞ ¼ Xk
l¼0

aðkÞl ð�0Þtl: (27)

Although it is not possible to know exactly all the coef-

ficients aðkÞl , we know the dominant divergence aðkÞk tk from
the previous discussion, and one can write for k � 1,

UðkÞ ¼ �6

g2k!

�
g2t

8�2

�
k
eg�0½1þOðt�1Þ�; (28)

where the orders Oðt�1Þ also depend on �0. As a conse-
quence, we have for k � 1,

_U ðkÞ ¼ g

8�2

@

@�0

Uðk�1Þ½1þOðt�1Þ�: (29)

Taking into account _Uð0Þ ¼ _Ubare ¼ 0, the summation over
the loops gives

_U ¼ g

8�2
U0½1þOðt�1Þ�: (30)

Substituting this result in Eq. (13) leads to�
1þ g2

48�2

�
U0 ¼ gU½1þOðt�1Þ�; (31)

which integrates as

U ¼ CðtÞ expðgr�0Þ½1þOðt�1Þ�; (32)

where CðtÞ does not depend on �0 and

gr � g

�
1þ g2

48�2

��1
: (33)

This relation between gr and g is exact, and gives the field
dependence of the renormalized potential. In order to
completely determine the latter, one still needs to specify
the renormalized mass parameter �6

r . This is done by
following the usual procedure, which consists in adding
the counterterm (25) to the bare potential:

Ubare þUct ¼ �6

g2

�
2� exp

�
@g2t

8�2

��
eg�0 ; (34)

and, loop after loop, removing divergences perturbatively
in order to obtain the (finite) renormalized potential Ur ¼

A expðgr�0Þ in the limit t ! 1. The constant A can be
determined in perturbation theory only, since it contains all
the finite graphs of the theory. Identifying A with �6

r=g
2
r

defines the renormalized mass parameter �6
r , such that the

renormalized potential is finally

Ur ¼ �6
r

g2r
expðgr�Þ: (35)

Note that, in general, �6
r depends on the substraction

scheme, and is fixed here by the minimal substraction
scheme in which the counterterm is given by Eq. (25). In
the next section, we will explicitly calculate the one-loop
renormalized mass parameter in this scheme.

IV. ONE-LOOP THEORY

In this section, we first illustrate the result (35) with the
explicit calculation of the one-loop effective potential,
which determines the one-loop renormalized mass parame-
ter �6

r . We then calculate the one-loop kinetic term qua-
dratic in derivatives, showing the restoration of Lorentz
symmetry in the IR of the quantum theory.

A. One-loop effective potential

The one-loop effective potential is

Uð1Þ ¼ �6

g2
eg�0 þ 1

2

Z d!

2�

d3p

ð2�Þ3

� ln

�
!2 þ ðp2Þ3 þ�6eg�0

!2 þ ðp2Þ3 þ�6

�
; (36)

and it is easy to calculate its field derivative

@Uð1Þ

@�0

¼ �6

g
eg�0 þ�6geg�0

8�3

�
Z

p2dp
Z d!

!2 þ p6 þ�6eg�0

¼ �6

g
eg�0 þ�6geg�0

24�2
sinh�1

�
�3

�3eg�0=2

�

¼ �6

g
eg�0 þ�6geg�0

8�2

�
t� g�0

6

�
þOð�=�Þ2;

(37)

such that, ignoring terms vanishing in the limit � ! 1,

Uð1Þ ¼ �6

g2
eg�0

�
1þ g2

8�2

�
t� g�0

6
þ 1

6

��
: (38)

The field dependence in the expression (38) can be written

eg�0

�
1� g3

48�2
�0

�
¼ exp

��
g� g3

48�2

�
�0

�
þOðg4Þ;

(39)

which corresponds to the one-loop approximation of the
renormalized coupling in Eq. (33), since

J. ALEXANDRE, K. FARAKOS, AND A. TSAPALIS PHYSICAL REVIEW D 81, 105029 (2010)

105029-4



gr ¼ g

�
1þ g2

48�2

��1 ¼ g� g3

48�2
þOðg5Þ: (40)

As far as the one-loop renormalized mass is concerned,
from Eq. (38) one can see that the addition of the one-loop

counterterm Uð1Þ
ct ¼ g�2��6

ð1Þ expðg�0Þ, where ��6
ð1Þ is

given in Eq. (21), leads to the definition

�6
r

g2r
� �6

g2

�
1þ g2

48�2

�
þOðg2Þ; (41)

such that

�6
r ¼ �6

�
1� g2

48�2

�
þOðg4Þ; (42)

where the relation (40) was used.

B. Lorentz symmetry restoration

Finally, we calculate the one-loop kinetic term @k�@k�
generated by quantum fluctuations, such that the IR effec-
tive theory exhibits Lorentz symmetry:

Seff ¼
Z

dtd3x

�
1þ �0

2
ð _�Þ2 � �1

2
�4@k�@k�

��6
r

g2r
egr� þOð@4Þ

�
; (43)

where �0 ¼ Oð@Þ and �1 ¼ Oð@Þ are generated dynami-
cally. The one-loop Feynman graph responsible for the
generation of this kinetic term arises from the insertion
of two three-point vertices in the propagator (the interac-
tion �2g�3 in the Liouville potential). Indeed, the tadpole
�6�=g and the interaction �6g2�4 give corrections inde-
pendent of the external momentum k, and renormalize the
mass only. Also, the higher orders �6gn�2�n do not con-
tribute at one-loop. This graph is

ð�ig�6Þ2
2

Z d!

2�

d3p

ð2�Þ3
i

!2 � ðp2Þ3 ��6 þ i"

� i

ð!þ �Þ2 � ððpþ kÞ2Þ3 ��6 þ i"
: (44)

The contribution proportional to �2 is (after a Wick rota-
tion)

i�0�
2 ¼ ig2�12

2ð2�Þ4
Z

d!d3p

� ��2

ð!2 þ ðp2Þ3 þ�6Þ3

þ 4!2�2

ð!2 þ ðp2Þ3 þ�6Þ4
�

¼ � ig2�12

64�2
�2

Z p2dp

ðp6 þ�6Þ5=2 ¼ �i
g2

288�2
�2;

(45)

and the contribution proportional to k2 is

�i�1�
4k2 ¼ ig2�12

2ð2�Þ4
Z

d!d3p

� �7ðp2Þ2k2

ð!2 þ ðp2Þ3 þ�6Þ3

þ 36ðp2Þ4ðp � kÞ2
ð!2 þ ðp2Þ3 þ�6Þ4

�

¼ � 21ig2�12

64�2
k2

Z p6dp

ðp6 þ�6Þ5=2

þ 15ig2�12

32�2
k2

Z p12dp

ðp6 þ�6Þ7=2

¼ �i
3g2I

64�2
�4k2; (46)

where

I ¼
Z 1

0
du

7u6 � 3u12

ð1þ u6Þ7=2 ¼
4

9
ffiffiffiffi
�

p �ð4=3Þ�ð13=6Þ ’ 0:242:

(47)

We therefore see that the Lorentz symmetric effective
action (43) is indeed generated dynamically by quantum
fluctuations, with �0 ¼ �g2=ð288�2Þ and �1 ¼
3g2I=ð64�2Þ. The dispersion relation for the low momen-
tum modes reads

~! 2 ¼ m2 þ ~k2 þOð~k4=�2Þ; (48)

where frequency and momentum are appropriately re-
scaled as

~! ¼ !

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �0

p
; ~k ¼ k

ffiffiffiffiffi
�1

p
; and m2 ¼ �6

r

�4
:

(49)

Hence, Lorentz violating effects are suppressed in the IR

by powers of ð~k=�Þ2.

V. CONCLUSIONS

In this work, we studied a renormalizable Lifshitz-type
model with the Liouville potential, in 3þ 1 dimensions,
and we demonstrated that the exponential form of the
potential does not change after quantization. An important
result is the exact relation (33) between the bare and
renormalized couplings, which can also be written in the
form

1

gr
¼ 1

g
þ g

48�2
: (50)

This result is similar to the one obtained in the 1þ 1
dimensional Liouville theory [6,7], where the factor
48�2 is replaced by 8�. Furthermore, the steps in our
derivation of the renormalized potential can be repeated
exactly for the 1þ 1 dimensional Liouville theory. The
possibility to obtain the above features arises from the use
of exact functional properties and the complete resumma-
tion of graphs, which is specific to the exponential form of
the Liouville potential.

LIOUVILLE-LIFSHITZ THEORY IN 3þ 1 DIMENSIONS PHYSICAL REVIEW D 81, 105029 (2010)

105029-5



In addition to the knowledge of the exact renormalized
coupling, the IR regime of the quantum theory exhibits
Lorentz symmetry, with a relativistic dispersion relation
induced dynamically. An open question concerns the pos-
sibility to have exact results for the different kinetic terms
of the renormalized theory, beyond one-loop. Such a study
has been done in [9] for the 1þ 1 dimensional Liouville
theory, where it is shown, in the framework of a gradient
expansion valid to all loop orders, that the wave function
renormalization vanishes. A similar study in the Lifshitz
context might also lead us to interesting properties, and this
is left for a future work.

An interesting possibility is to study the Liouville-
Lifshitz model in curved space-time, in the context of
Horava-Lifshitz gravity [10]. This can address a variety

of cosmological questions [11], in particular, in the frame-
work of quintessence models, where the exponential po-
tential was first studied in [12].
Finally, the lack of a translationally invariant ground

state for the quantum Liouville field theory [6] motivates
the extention of our study to potentials which involve more
than one exponential, where a ground state can exist.
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