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Chiral symmetry of the 2-dimensional chiral Gross-Neveu model is broken explicitly by a bare mass

term as well as a splitting of scalar and pseudoscalar coupling constants. The vacuum and light hadrons—

mesons and baryons which become massless in the chiral limit—are explored analytically in leading order

of the derivative expansion by means of a double sine-Gordon equation. Depending on the parameters, this

model features new phenomena as compared to previously investigated 4-fermion models: spontaneous

breaking of parity, a nontrivial chiral vacuum angle, twisted kinklike baryons whose baryon number

reflects the vacuum angle, crystals with alternating baryons, and appearance of a false vacuum.
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Consider the Lagrangian density ofN species of massive
Dirac fermions in 1þ 1 dimensions with attractive, UðNÞ
invariant scalar and pseudoscalar interactions,

L ¼ �c ði��@� �m0Þc þ g2

2
ð �c c Þ2 þG2

2
ð �c i�5c Þ2:

(1)

Flavor indices are suppressed ( �c c ¼ P
N
k¼1

�c kc k etc.)

and the large N limit will be assumed. This 3-parameter
field theoretic model generalizes the (massive) chiral
Gross-Neveu (GN) model [1] to two different coupling
constants. Its massless 2-parameter version is related to
the early work of Klimenko [2] and has only recently been
investigated comprehensively [3]. Our main motivation for
considering the Lagrangian (1) is to study the competition
of two different mechanisms of explicit chiral symmetry
breaking, both of which are well understood in isolation.
The first one is kinematical and familiar from gauge theo-
ries—the bare fermion mass. The second one is dynami-
cal—breaking chiral symmetry through the interaction
term while preserving parity. This seems to have no ana-
logue in gauge theories. In the present work we do not
attempt a complete solution of the model (1) which would
require extensive numerical computations. To get a first
overview of its physics content, we focus on the vicinity of
the chiral limit at zero temperature, where everything can
be done in closed analytical form.

Following ’t Hooft [4], the large N limit is implemented
by letting N ! 1 while keeping Ng2 and NG2 constant.
As is well known, this justifies the use of semiclassical
methods [1,5]. Thereby the Euler-Lagrange equation of the
Lagrangian (1) gets converted into the Dirac-Hartree-Fock
equation,

ði��@� � S� i�5PÞc ¼ 0; (2)

where the scalar and pseudoscalar mean fields are related
to condensates (ground state expectation values) through

S ¼ �g2h �c c i þm0; P ¼ �G2h �c i�5c i: (3)

Further simplifications arise if we concentrate on static
problems in the vicinity of the chiral limit, where the
potentials are slowly varying in space. This allows us to
invoke a systematic expansion in derivatives of S and P
without assuming that the potentials are weak [6,7]. As a
result, we arrive at an effective bosonic field theory in
which the Hartree-Fock potentials appear as complex sca-
lar field (written here in polar coordinates),

S� iP ¼ �ei�: (4)

Note that this method can only handle full occupation of
single particle levels at present. It was pioneered in Ref. [8]
and applied systematically to two variants of the
Lagrangian (1), the massive chiral GN model (g2 ¼ G2,
Ref. [7]) and the massless generalized GN model (m0 ¼ 0,
Ref. [3]). Since the form of the Hartree-Fock equation is
the same in all of these cases, the problem at hand differs
from previous ones only through the form of the double
counting correction to the energy density,

E d:c: ¼ ðS�m0Þ2
2Ng2

þ P2

2NG2

¼ �2cos2�

2Ng2
�m0� cos�

Ng2
þ �2sin2�

2NG2
: (5)

An irrelevant term �m2
0 has been dropped. Regularization

and renormalization require only a straightforward exten-
sion of previous works. We replace the 3 bare parameters
(m0, g

2, G2) by physical parameters (�1, �2, �) and a
renormalization scale � via

�

Ng2
¼ �1 þ ln

�

�
;

�

NG2
¼ �2 þ ln

�

�
;

�m0

Ng2
¼ �:

(6)

The ln� dependence is mandatory to ensure that the ultra-
violet divergence in the sum over single particle energies is
cancelled by the double counting correction. In the last line*thies@theorie3.physik.uni-erlangen.de
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of Eq. (6), we avoid the use of the standard confinement
parameter [9]

� ¼ �m0

Ng2m
¼ �

m
(7)

at this stage. This is done in order not to mix the parameters
of the model with dynamical quantities, which may lead to
confusion in the present 3-parameter model. Restricting
ourselves to the leading order of the derivative expansion,
we assume furthermore that the radius � is fixed at the
dynamical fermion mass and that the chiral angle field � is
slowly varying. These assumptions can be justified by
looking at higher order terms of the derivative expansion,
but they also have a very simple physical basis: Close to the
chiral limit, the would-be Goldstone field � (the ‘‘pion’’
field) is the only one which can be modulated at low cost of
energy [8]. The renormalized ground state energy density
(including the vacuum contribution) corresponding to
Lagrangian (1) then reads

2�E ¼ �2

�
ln
�

�
� 1

2

�
þ 1

4
�2ð�0Þ2 � 2�� cos�

þ �1�
2cos2�þ �2�

2sin2�: (8)

Fermion number is given by the winding number of the
chiral field [7]

Nf ¼ N

2�

Z 1

�1
dx�0 ¼ N

2�
½�ð1Þ � �ð�1Þ�: (9)

All we have to do is to minimize the energy
R
dxE classi-

cally. As a result, we will get information on the vacuum
and its symmetries, as well as on light mesons and baryons
in the vicinity of the chiral limit. For a homogeneous
vacuum, the truncated derivative expansion is exact since
the condensates are spatially constant. Hence our results
for the vacuum may be taken as the large N limit without
any further approximation. Light hadrons are those which
become massless in the chiral limit. Here the derivative
expansion can be viewed as a kind of chiral perturbation
theory, reliable close to the chiral limit. The expression for
the pion mass, for example, is of the type of the Gell-Mann,
Oakes, Renner (GOR) relation [10] in the real world. The
fact that baryons emerge from a nonlinear theory for the
pion field with the baryon number as topological winding
number is of course reminiscent of the Skyrme model in
3þ 1 dimensions [11,12].

We first determine the vacuum. To this end, we minimize
2�E, Eq. (8), with respect to (x-independent) � and �—the
dynamical fermion mass and chiral vacuum angle. This
yields the transcendental equations

0 ¼ ln
�

�
þ �1cos

2�þ �2sin
2�� �

�
cos�;

0 ¼ sin�

�
cos�� �

�ð�1 � �2Þ
�
:

(10)

Their solution requires a case differentiation. To under-
stand qualitatively what to expect, let us focus on the

�-dependent part of the vacuum energy density, ~Eð�Þ, in
units of the squared dynamical fermion mass �2

2�~Eð�Þ
�2

¼ �2
�

�
cos�� 1

2
ð�2 � �1Þ cosð2�Þ

¼ �2� cos�� 1

2
� cosð2�Þ: (11)

In the second line, we have introduced the usual confine-
ment parameter � ¼ �=� and the difference � ¼ �2 � �1

as the only two relevant, dimensionless parameters. Note
also that depending on the sign of �, either the scalar
coupling (for � > 0) or the pseudoscalar coupling (for � <
0) dominates.
A survey of the �-dependence of this effective potential

in the ð�; �Þ half plane (� � 0) reveals a rich landscape
(see Fig. 1): At the origin (� ¼ 0, � ¼ 0), the potential is
identically zero (not shown in Fig. 1) and the vacuum
infinitely degenerate. This is the U(1) chirally symmetric
point. Along the � axis there is a minimum at � ¼ 0 and a
maximum at � ¼ �—the massive chiral GN model. Along
the � axis, there are two degenerate minima separated by
two degenerate maxima—the massless generalized GN
model. As discussed in Ref. [3], the minima can be iden-
tified with 0 and � for both � > 0 and � < 0 by means of a
global chiral rotation, so that the positive and negative �
half-axes are in fact equivalent. What happens in the
parameter region away from the �- and �-axes depends
on the sign of �. If � > 0, the quadratic maximum becomes
a quartic maximum at � ¼ �; for larger values of �, a false
vacuum develops at � ¼ �. In the limit � ! 0 the two
minima become degenerate. If � < 0 on the other hand, the
quadratic minimum becomes quartic when crossing the

FIG. 1. Qualitative shapes of effective potentials, Eq. (11), in
the ð�; �Þ half plane. Each inserted plot shows ~Eð�Þ in the
interval ½��;��, so that the endpoints have to be identified.
The origin (� ¼ 0, � ¼ 0) is the chirally symmetric point where
the effective potential vanishes. When crossing the critical lines
� ¼ ��, the number of extrema changes.
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critical line � ¼ ��. This is indicative of a pitchfork
bifurcation with two symmetric, degenerate minima
present for � <��. A nontrivial vacuum angle signals a
nonvanishing pseudoscalar condensate and hence a break-
down of parity. This breakdown of parity is spontaneous,
but induced by the explicit breaking of chiral symmetry.

With this overall picture in mind, we return to Eqs. (10)
and solve them in two distinct cases:

(i) Unbroken parity (phase I)

�vac ¼ 0 �vac ¼ �

Wð�� e�1Þ ;

2�Evac ¼ ��2

2

�1þ 2Wð�� e�1Þ
W2ð�� e�1Þ

�
:

(12)

(ii) Broken parity (phase II)

�vac ¼ � arccos
�e�2

�ð�1 � �2Þ ; �vac ¼ �e��2 ;

2�Evac ¼ ��2

2
e�2�2 � �2

�1 � �2

: (13)

In Eqs. (12) we have introduced the Lambert W function
with the defining property

x ¼ WðxÞeWðxÞ: (14)

The vacuum energy in the parity broken phase II is lower
than in the symmetric phase I. However, phase II only
exists if �vac is real or, equivalently,

�1 � �2 � W

�
�

�
e�1

�
: (15)

The next steps can be further simplified as follows. After
minimization and determining the phase on the basis of
Eq. (15), we normalize the radius of the chiral circle (the
physical fermion mass) to 1 by a choice of units,

� ¼ �vac ¼ 1: (16)

The simplest formulas are obtained if we simultaneously
choose the renormalization scale equal to the physical
fermion mass, � ¼ � ¼ 1. Then � may be identified
with the confinement parameter (7) familiar from the stan-
dard massive GN models,

� ¼ �� ! �: (17)

In phase I, the conditions � ¼ � ¼ 1 imply

�1 ¼ �: (18)

The vacuum energy density becomes

E I
vac ¼ � 1

4�
� �

2�
; (19)

in agreement with the standard massive GN models. The
�-dependent part of the energy density will be needed for
the analysis of light mesons and baryons; in phase I it is
given by

2�EI
� ¼ 1

4ð�0Þ2 � 2� cos�� 1
2ð�2 � �Þ cosð2�Þ: (20)

In phase II, the conditions � ¼ � ¼ 1 translate into

�2 ¼ 0; (21)

whereas the vacuum energy density assumes the form

E II
vac ¼ � 1

4�
� �2

2��1

: (22)

In this phase, the �-dependent part of the energy density
reads

2�EII
� ¼ 1

4ð�0Þ2 � 2� cos�þ 1
2�1 cosð2�Þ: (23)

Equations (20) and (23) can be treated simultaneously by
setting

2�E� ¼ 1
4ð�0Þ2 � 2� cos�� 1

2� cosð2�Þ (24)

with � as introduced in Eq. (11), i.e.,

� ¼ �2 � �1 ¼
�
�2 � � ðphase I; � >��Þ
��1 ðphase II; � <��Þ (25)

We have traded the original bare parameters g2, G2, �
against two dimensionless parameters �, � and one scale,
the dynamical fermion mass � ¼ 1. Notation and renor-
malization scale are chosen so as to agree with previous
results for the massive chiral GN model [7] for � ¼ 0 and
the massless generalized GN model [3] for � ¼ 0.
Next consider the light meson mass in both phases.

Expanding expression (24) around the vacuum angle �vac
to 2nd order in # ¼ �� �vac, we can simply read off the
pion mass as follows:
(i) Phase I (� >��)

�vac ¼ 0 2�E � 1
4ð# 0Þ2 þ ð�þ �Þ#2 þ const

m2
� ¼ 4ð�þ �Þ: (26)

(ii) Phase II (� <��)

�vac ¼ � arccos

�
��

�

�
¼ �2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

�� �

s

2�E � 1

4
ð#0Þ2 þ

�
�2 � �2

�

�
#2 þ const

m2
� ¼ 4

�
�2 � �2

�

�
:

(27)

The last lines of Eqs. (26) and (27) may be regarded as the
generalized GOR relations in our model.
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It is amusing that a well-known mechanical system is
closely analogue to the present problem in the case � < 0,
cf. Figure 2: A bead (mass m) is sliding without friction on
a circular hoop (radius R) in a homogeneous gravitational
field. The hoop rotates with constant angular velocity !
around a vertical axis through its center. The Lagrangian
reads

L ¼ 1
2mR2ð _�2 þ!2sin2�Þ þmgR cos�: (28)

Denote the pendulum frequency by !0 ¼
ffiffiffiffiffiffiffiffiffi
g=R

p
. At ! ¼

0, there is a unique stable minimum at � ¼ 0, accompanied
by small oscillations of frequency !0. If one increases !,
this minimum stays stable at first, but the frequency de-

creases like
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 �!2
q

until it vanishes at the critical value

! ¼ !0. At this point, two symmetric stable minima at
� ¼ � arccosð!2

0=!
2Þ develop, a textbook example of a

pitchfork bifurcation [13]. Beyond this point, the fre-

quency of small oscillations is replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!4 �!4

0

q
=!.

The gravitational field and the uniform rotation are two
distinct mechanisms of breaking the original SO(2) sym-
metry of the circle. The mapping of this mechanical prob-
lem onto our field theory model is obvious: U(1) chiral
symmetry corresponds to the rotational symmetry of the
circle, the bare mass plays the role of gravity, the difference
in coupling constants corresponds to the uniform rotation,
the pion masses to the frequencies of small oscillations. We
only have to identify � ¼ !2

0=4, � ¼ �!2=4 to map the

two problems onto each other quantitatively. In principle,
the regime � > 0 could also be modeled by assuming that
the particle is charged and invoking an additional constant
magnetic field, but in the absence of a phase transition this
is less instructive.

Let us now turn to baryons and baryon crystals. Here we
need large amplitude solutions of the equation

�00 ¼ 4� sin�þ 2� sin2�: (29)

For small values of the parameters �, � the kinklike soliton
solutions of this equation are slowly varying so that the
derivative expansion is applicable. The same is true for

periodic soliton crystal solutions at sufficiently low den-
sity. However there is no restriction on the ratio �=�, so
that the full phase structure shown in Fig. 1 is accessible in
the vicinity of the chiral limit. Since Eq. (29) has no
explicit x-dependence, it can be integrated once,

1
2 ð�0Þ2 þ 4� cos�þ � cosð2�Þ ¼ const (30)

The second integration is then carried out by separation of
variables.
The mechanical interpretation of the kinks is well

known: If we interpret x as time coordinate, Eq. (29)
describes motion of a classical particle in a potential
inverted as compared to the potentials shown in Fig. 1.
The kinklike tunneling solutions between different vacua
in field theory go over into classical paths joining two
degenerate maxima in the mechanics case. In this classical
mechanics interpretation, Eq. (30) expresses conservation
of the Hamilton function. As a matter of fact, Eq. (29) is
nothing but the double sine-Gordon equation, a widely
used generalization of the sine-Gordon equation to which
it reduces if either � or � vanishes. Its solutions can be
found in the literature, see e.g. [14], so that we refrain from
giving any details of the derivation. Since � is an angular
variable, kinks do exist everywhere in the (�, �) half-plane.
Inspection of the effective potentials of Fig. 1 then helps to
understand the following results:
For � >�� (phase I) there is only one kink solution

�kink ¼ �2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

p
ffiffiffiffi
�

p
sinhð2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ �
p

xÞ : (31)

We define the branch of the arctan such that � goes from 0
to 2� along the x axis. For � <�� (phase II) there are two
different kinks depending on how one connects the minima
along the chiral circle,

�large ¼ �2 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

�� �

s
coth

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

�

s
x

��
;

�small ¼ þ2 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

�� �

s
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

�

s
x

��
:

(32)

Here, our choice of the branch of arctan is such that � goes
from��vac to �vac for the small kink and from �vac to 2��
�vac for the large kink. The baryon numbers B ¼ Nf=N are

Bkink ¼ 1; Blarge ¼ 1� �vac
�

; Bsmall ¼ �vac
�

;

(33)

with �vac from Eq. (27) with the þ sign. The terms small
and large refer to the chiral twist of the two kinks which in
turn is reflected in the baryon number. The baryon numbers
of a small and a large kink add up to 1 simply because these
kinks correspond to the 2 possibilities of travelling from
one minimum to the other one along a circle. Equa-
tions (31)–(33) refer to kinks with positive baryon number.

FIG. 2. Mechanical model illustrating vacuum structure, sym-
metries, and meson masses of the generalized massive GN model
(� < 0) in the vicinity of the chiral limit.
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By changing the sign of �, these can be converted into
antikinks with opposite baryon number.

In Figs. 3 and 4, we illustrate the scalar and pseudoscalar
potentials for the small and large kinks in the parity broken
phase II. To understand these graphs, we recall that the
two vacua are characterized by the chiral angles ��vac,
Eq. (27). The parity even, scalar vacuum condensate
( cos�vac) is the same in both vacua, the parity odd, pseu-
doscalar condensate (� sin�vac) has opposite sign. This is
reflected in the asymptotic behavior of S and P for the
kinks which connect these two vacua. To contrast this
behavior with baryons in phase I (unbroken parity, � >
��), we show in Fig. 5 the kink baryon from Eq. (31)
where now both S and P are periodic. For the parameters
chosen here, it resembles closely the standard sine-Gordon
kink.

Note the following limits:
(i) Massive NJL model (� > 0, � ¼ 0): There is a

unique minimum at � ¼ 0. We recover previous
(sine-Gordon) results [7,8] with the help of the iden-
tity

� ¼ �2 arctan
1

sinhð2 ffiffiffiffi
�

p
xÞ ¼ �4 arctane2

ffiffiffi
�

p
x: (34)

(ii) Massless generalized GN model (� ¼ 0, � > 0):
There are 2 degenerate minima at � ¼ 0, � and

correspondingly 2 kink baryons with baryon num-
ber 1=2. The limit is singular (see Fig. 6): As � ! 0,
the kink develops a plateau which becomes infi-
nitely wide at � ¼ 0. The kink decouples into 2
half-kinks each carrying baryon number 1=2 [3].
As one sees in Fig. 1, this happens when the maxima

–1

–0.5

0

0.5

1

–2 –1 0 1 2 3
z

FIG. 3. Scalar and pseudoscalar potentials for the small kink
baryon in the parity broken phase II with � ¼ �1:3� as a
function of z ¼ m�x. The straight lines are the asymptotic values
coinciding with the vacuum condensates. There are two degen-
erate vacua with equal scalar and opposite pseudoscalar con-
densates, related by a parity transformation.

–1

–0.5

0

0.5

1

–2 –1 0 1 2 3
z

FIG. 4. Same as Fig. 3 but for the large kink baryon.

z

–1

–0.5

0

0.5

1

–4 –2 0 2 4 6

FIG. 5. Same as Fig. 3 but for the kink baryon in the parity
restored phase I and � ¼ �0:7�. The pseudoscalar vacuum
condensate vanishes.
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in the inverted potential become degenerate or,
equivalently, the false vacuum and the true vacuum
in the original potential become equal.

It is worth mentioning that there is yet another solitonic
solution of some physics relevance: If one is interested in
the decay of the false vacuum, one has to consider tunnel-
ing through the barrier. This in turn is related to the kink-
antikink which starts from the lower maximum, is reflected
at the barrier and returns to the starting point (the bounce
[15]). Since we are mainly interested in the vacuum and
low-lying hadrons here, we do not go further into this
problem.

We now turn to a useful test of the consistency of our
results, following Ref. [16]. Consider the divergence of the
axial current as obtained from the Euler-Lagrange equa-
tions for the Lagrangian (1),

@�j
�
5 ¼ 2 �c i�5c ½m0 � ðg2 �G2Þ �c c �: (35)

The right-hand side exhibits the 2 sources of chiral sym-
metry breaking, the bare fermion mass and the splitting of
the coupling constants. The self-consistency conditions (3)
and the renormalization scheme (6) can be used to rewrite
Eq. (35) as

@�j
�
5 ¼ � 2NP

�
½�� ð�1 � �2ÞS� (36)

or, in units � ¼ 1 and with the notation of Eqs. (17) and
(25),

@�j
�
5 ¼ � 2NP

�
ð�þ �SÞ: (37)

Taking the expectation value of this equation in a time-
independent state and remembering that j15 ¼ j0 in 1þ 1
dimensions, we arrive at the following expression for the
fermion density,

j0ðxÞ ¼ � 2N

�

Z x

�1
dx0Pðx0Þ½�þ �Sðx0Þ�; (38)

and, after another integration, the sum rule

Nf ¼ 2N

�

Z 1

�1
dxxPðxÞ½�þ �SðxÞ�: (39)

The last equation, in particular, provides us with a non-
trivial way of testing the baryon potentials. By inserting
S ¼ cos� and P ¼ � sin� into the sum rule with � from
Eqs. (31) and (32), we indeed reproduce the baryon num-
bers (33). Notice also that the expectation value of Eq. (36)
for the divergence of the axial current,

ðj0Þ0ðxÞ ¼ � 2NPðxÞ
�

½�þ �SðxÞ�; (40)

reduces to the double sine-Gordon equation, Eq. (29), if we
insert

j0ðxÞ ¼ N

2�
�0ðxÞ (41)

and express S, P in terms of the chiral angle �. This points
to an alternative derivation of the basic equation (29) which
would not even require the derivative expansion, at least to
leading order considered here.
It is straightforward to compute the baryon masses by

integrating the energy density and subtracting the vacuum
contribution,

2�M ¼
Z

dx

�
1

4
½�0ðxÞ�2 � 2�ðcos�ðxÞ � cos�vacÞ

� 1

2
�½cosð2�ðxÞÞ � cosð2�vacÞ�

�
: (42)

One finds

Mkink ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

p
�

þ �

�
ffiffiffi
�

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

p þ ffiffiffi
�

pffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

p � ffiffiffi
�

p
�
;

Mlarge ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

��

s
þ 2�

�
ffiffiffiffiffiffiffiffi��

p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �

�þ �

s
;

Msmall ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

��

s
� 2�

�
ffiffiffiffiffiffiffiffi��

p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �

�� �

s
;

(43)

and the same results for the corresponding antikinks. These

0

1

2

3

4

5

6

–15 –10 –5 0 5 10 15
z

FIG. 6. Behavior of �kink as a function of z ¼ m�x, for �=� ¼
10�1, 10�3, 10�5, 10�7, with increasing width of the plateau for
decreasing ratio �=�. The plateau becomes infinitely wide in the
limit � ! 0, leading to decoupled kinks with baryon number 1=2
in the massless model [3].
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expressions are of course known from studies of the clas-
sical double sine-Gordon equation.

Finally, consider baryonic matter at low density. The
pertinent solutions of the double sine-Gordon equation are
kink crystals which can be evaluated analytically in terms
of Jacobi elliptic functions. Since we work only to lowest
order of the derivative expansion in the present study, we
bypass the complicated exact solution by simply gluing
together kink solutions. This is adequate in the low density
limit. In the parity preserving phase I, the basic building
block is �kink, Eq. (31). Let us denote the separation
between two kinks (i.e., the lattice constant) by d, so that
the baryon density is �B ¼ 1=d. A dilute periodic array of
kinks is then well approximated by

�Icrystal ¼ �kinkðx� ndÞ þ 2�n

for x 2 ½nd� d=2; ndþ d=2�: (44)

For sufficiently large d this yields a smooth staircase curve
which solves the double sine Gordon equation exactly
except at the gluing points x ¼ ðnþ 1=2Þd. There the error
can be made arbitrarily small for large d. The energy
density in the dilute limit is just Mkink�B with the kink
mass from Eq. (43). In phase II, we have to proceed slightly
differently. Obviously one can only glue together the small
and large kinks in an alternating way, see Figs. 3 and 4. We,
therefore, first construct a unit cell of the crystal by joining
one small and one large kink,

~� kinkðxÞ ¼
�
�smallðxþ d=4Þ for � d=2< x< 0
�largeðx� d=4Þ for 0< x < d=2: (45)

This carries baryon number 1 and is periodic modulo 2�,
so that the unit cells can now be assembled into a crystal in
the same way as in phase I, Eq. (44),

�IIcrystal ¼ ~�kinkðx� ndÞ þ 2�n

for x 2 ½nd� d=2; ndþ d=2�: (46)

The energy density in the low density limit of phase II
becomes

E ¼ ðMsmall þMlargeÞ�B; (47)

where the sum of the kink masses from Eqs. (43) can be
simplified to

Msmall þMlarge ¼ 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

��

s
þ 2�

�
ffiffiffiffiffiffiffiffi��

p

� arctan
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � �2
p : (48)

An example for a unit cell is shown in Fig. 7 with the same
ratio �=� and hence the same shape of the small and large
kinks as in Figs. 3 and 4.

Summarizing, we have investigated a 3-parameter gen-
eralization of the U(1) chirally symmetric GN model. The
two dimensionless parameters � and � stem from two
different mechanisms of breaking chiral symmetry explic-
itly, the bare mass term and the difference between scalar
and pseudoscalar couplings. Close to the chiral limit, the
leading order derivative expansion has revealed the follow-
ing scenario. If the scalar coupling dominates, we find in
general a unique vacuum with scalar condensate, light
pions and kinklike baryons with baryon number 1. In the
region � > � a false vacuum shows up in the form of a
second local minimum. If the pseudoscalar coupling domi-
nates, at first nothing changes. Starting from a critical
strength of the coupling (� <��), two symmetric minima
appear together with scalar and pseudoscalar condensates;
parity is spontaneously broken. The mechanical model of a
particle on a rotating circle in the gravitational field illus-
trates nicely the concomitant pitchfork bifurcation. The
two ways of connecting two minima along the chiral circle
are reflected in two baryons whose baryon numbers add up
to 1. These chirally twisted baryons are mathematically
well known from studies of the double sine-Gordon equa-
tion and quite different from another type of twisted bound
state specific for the chiral limit [17,18]. In our case, the
baryons are stabilized by topology. Shei’s bound state is
stabilized by partially filling the valence level and does not
carry baryon number as a result of a cancellation with
induced fermion number [16]. In many respects the limits
� ! 0 and � ! 0 are atypical so that previously explored
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FIG. 7. Unit cell of soliton crystal in the parity broken phase
for � ¼ 0:2, � ¼ �0:26. Small and a large kinks must alternate
in the crystal due to their different asymptotics. The baryon
numbers of the 2 constituents in the unit cell add up to 1.
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2-parameter versions of the present model cannot convey
the full picture of chiral symmetry breaking in 4-fermion
models. In view of the rich structure of the 3-parameter
model, it seems worthwhile to pursue its study, in particu-

lar, to explore the fate of the symmetries at finite tempera-
ture and chemical potential.
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