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The Planck spectrum of thermal scalar radiation is derived suggestively within classical physics by the

use of an accelerating coordinate frame. The derivation has an analogue in Boltzmann’s derivation of the

Maxwell velocity distribution for thermal particle velocities by considering the thermal equilibrium of

noninteracting particles in a uniform gravitational field. For the case of radiation, the gravitational field is

provided by the acceleration of a Rindler frame through Minkowski spacetime. Classical zero-point

radiation and relativistic physics enter in an essential way in the derivation, which is based upon the

behavior of free radiation fields and the assumption that the field correlation functions contain but a single

correlation time in thermal equilibrium. The work has connections with the thermal effects of acceleration

found in relativistic quantum field theory.

DOI: 10.1103/PhysRevD.81.105024 PACS numbers: 03.50.�z

I. INTRODUCTION

Many textbooks present Boltzmann’s derivation [1] of
the Maxwell velocity distribution for free particles in
thermal equilibrium in a box. In his analysis, Boltzmann
introduced a uniform gravitational field, followed the im-
plications of thermal equilibrium under gravity, and finally
took the zero-gravity limit. The derivation is striking be-
cause it uses only the physics of free nonrelativistic parti-
cles moving in a gravitational field. By the principle of
equivalence, the gravitational field can be replaced by an
accelerating coordinate frame. But then thermodynamic
consistency requires that the interactions of particles that
lead to equilibrium in an inertial frame must be consistent
with the equilibrium determined by the physics of free
particles in an accelerating frame. The natural question
arises as to whether the analogue of this procedure can
be applied to the much more complicated problem of
thermal equilibrium for relativistic radiation with its infi-
nite number of normal modes. In this paper we show that
an analogous derivation is indeed possible for relativistic
classical scalar radiation. We introduce a relativistic accel-
erating coordinate frame (a Rindler frame, which is the
closest relativistic equivalent to a uniform gravitational
field), consider the implications for thermal radiation equi-
librium, make the assumption that thermal equilibrium
involves but a single correlation time, and finally take the
limit of zero acceleration to obtain the thermal radiation
spectrum in an inertial frame. The use of an accelerating
coordinate frame to obtain the thermal equilibrium spec-
trum seems striking because only noninteracting free ra-
diation fields are needed for the derivation. However, we
expect that any other interaction that produces equilibrium
must be consistent with the equilibrium determined by the
accelerating frame. In particular, the use of nonrelativistic
nonlinear scattering systems [2], which lead to the
Rayleigh-Jeans spectrum for radiation equilibrium, are

inconsistent with special relativity and relativistic acceler-
ating coordinate frames.
The derivation here for the Planck spectrum is provided

within the context of relativistic classical scalar field the-
ory which includes classical zero-point radiation. This
classical scalar field theory is analogous to the classical
electromagnetic theory with classical electromagnetic
zero-point radiation. The classical electromagnetic theory
has been shown to provide classical explanations for a
number of phenomena which are usually regarded as
belonging to the exclusive domain of quantum theory,
including Casimir forces, van der Waals forces, diamag-
netism, specific heats of solids [3,4], and the ground state
of hydrogen [5]. The description of thermal radiation in
terms of classical radiation with random phases, which is
used in the classical theories, is a standard procedure
dating from 19th century physics. The choice of zero-point
radiation as the ‘‘vacuum’’ situation in classical physics is
required in order to describe the experimentally observed
Casimir forces, but this choice then gives natural classical
explanations for other phenomena. The Lorentz invariance
of classical zero-point radiation determines the spectrum
up to one unknown multiplicative constant giving the scale
of the zero-point radiation. The scale of zero-point radia-
tion is chosen to give numerical agreement with experi-
mental measurements of Casimir forces. It turns out that
the unknown multiplicative constant takes a numerical
value, which is immediately recognizable as Planck’s con-
stant @. Thus, Planck’s constant @ enters the classical
theory as the scale factor of classical zero-point radiation
and not as the quantum of action familiar in current quan-
tum theory.
There have been many indignant objections to work

involving ‘‘classical’’ zero-point radiation; the claim is
made that zero-point radiation is exclusively a ‘‘quantum’’
concept. The classical electromagnetic theory treated ear-
lier and the classical scalar theory discussed here are both
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classical in the sense that they contain no intrinsically
discrete aspects of energy or action. The zero-point radia-
tion is classical random radiation chosen as a perfectly
valid homogeneous boundary condition on the classical
field equations. The concept of zero-point radiation (ran-
dom radiation fluctuations at the zero of temperature) can
appear in both classical and quantum theories. Zero-point
radiation cannot be regarded as belonging exclusively to
quantum theory any more than the concepts of mass,
energy, and gravity can be claimed as exclusively classical
concepts because they appeared first in the context of
classical mechanics.

The outline of our presentation is as follows. In Sec. II,
we review the basics of classical relativistic scalar field
theory. We introduce the random phases between normal
modes for stationary distributions of random classical ra-
diation, and then we calculate the two-point field correla-
tion function associated with a general stationary spectrum
of random radiation. In Sec. III, we discuss thermal radia-
tion in an inertial frame. We start with the two fundamental
ideas required for understanding thermal radiation equilib-
rium within classical physics. These include the presence
of a divergent spectrum of classical zero-point radiation
and the presence of a finite density of thermal radiation
above the zero-point spectrum. We note that thermody-
namic ideas give us Wien’s displacement law and the
Stefan-Boltmann relation. Although Wien’s law gives a
restriction on the form of the radiation spectrum and also
on the form of the two-point field correlation function,
thermodynamics in an inertial frame does not determine
the spectrum of thermal radiation. In Sec. IV, we introduce
a relativistic coordinate frame (a Rindler frame) accelerat-
ing through Minkowski spacetime. We note the role played
by acceleration in breaking the homogeneity and isotropy
of Minkowski spacetime. Then we review some prelimi-
nary information regarding the Rindler accelerated coor-
dinate frame, and use the thermodynamics of pressure
equilibrium to show that temperature and acceleration
have the same spatial dependence throughout a Rindler
frame. Next we recalculate the two-point correlation func-
tion for classical zero-point radiation in terms of Rindler
coordinates. But then one sees a natural behavior for the
thermal correlation function which follows from the known
correlation function involving zero-point radiation.
Finally, we take the limit of vanishing acceleration and
so recover the Planck spectrum as the classical radiation
spectrum of thermal equilibrium. The article closes with
allusions to related but vastly different work in relativistic
quantum field theory.

II. SCALAR FIELD THEORY FOR RANDOM
FIELDS

A. The relativistic scalar field

In an inertial frame, the relativistic free scalar field
�ðct; x; y; zÞ is specified by the Lagrangian density [6]

L ¼ 1
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which leads to the wave equation as the equation of motion
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The energy U in the field follows from the Lagrangian
density in (1) as [6]

U ¼
Z

d3x
1

8�

�
1

c2

�
@�

@t

�
2 þ

�
@�

@x

�
2 þ

�
@�

@y

�
2 þ

�
@�

@z

�
2
�
:

(3)

The radiation in a box can be described by a complete set
of either standing waves or running waves with appropriate
wave vectors k. In the present case, we are not interested in
any special conditions holding at the walls of the rectan-
gular box of dimensions Lx � Ly � Lz, and so we will

choose periodic running waves where

k ¼ x̂ðnx2�=LxÞ þ ŷðny2�=LyÞ þ ẑðnz2�=LzÞ (4)

and the integers nx, ny, nz run over all positive and negative

values. Then the radiation field in the box can be written as

�ðct; x; y; zÞ ¼ X1
nx¼�1

X1
ny¼�1

X1
nz¼�1

fðckÞ
ðLxLyLzÞ1=2

� cos½k � r� kct� �ðkÞ�; (5)

where k ¼ jkj, and �ðkÞ is an appropriate phase.

Each mode �kðct; x; y; zÞ ¼ ½fðckÞ=ðLxLyLzÞ1=2��
cos½k � r� kct� �ðkÞ� labeled by nx, ny, nz has the

energy Uk found by substituting into Eq. (3),

Uk ¼ 1
8�k

2f2ðckÞ: (6)

B. Two-point correlation function for random radiation

Coherent radiation involves fixed phase relations �ðkÞ �
�ðk0Þ between the various modes �k and �k0 , which are
used to decompose a radiation pattern. Random radiation
involves the opposite situation. Random radiation can be
written in the form of Eq. (5) where the phases �ðkÞ
are randomly distributed on the interval ½0; 2�Þ and
are independently distributed for each k. It is convenient
to characterize random radiation by taking the two-
point correlation function of the fields h�ðct; x;
y; zÞ�ðct0; x0; y0z0Þi obtained by averaging over the random
phases as

hcos�ðkÞ cos�ðk0Þi ¼ hsin�ðkÞ sin�ðk0Þi ¼ ð1=2Þ�k;k0 ;

(7)

hcos�ðkÞ sin�ðk0Þi ¼ 0: (8)

Then the two-point correlation function for a general iso-
tropic distribution of classical scalar waves is [7]
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h�ðct; x; y; zÞ�ðct0; x0; y0z0Þi ¼
* X1
nx¼�1

X1
ny¼�1

X1
nz¼�1

fðckÞ
ðLxLyLzÞ1=2

cos½k � r� kct� �ðkÞ�

� X1
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X1
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X1
n0z¼�1

fðck0Þ
ðLxLyLzÞ1=2

cos½k0 � r0 � k0ct0 � �ðk0Þ�
+

¼ 1

2

X1
nx¼�1

X1
ny¼�1

X1
nz¼�1

f2ðckÞ
LxLyLz

cos½k � ðr� r0Þ � kcðt� t0Þ�: (9)

For a very large box, the normal modes are closely spaced and the sums over the integers nx, ny, nz can be replaced by
integrals of the form dkx ¼ ð2�=LxÞdnx, dky ¼ ð2�=LyÞdny, dky ¼ ð2�=LyÞdny so that the correlation function of Eq. (9)
becomes

h�ðct; x; y; zÞ�ðct0; x0; y0z0Þi ¼ 1

16�3

Z
d3kf2ðckÞ cos½k � ðr� r0Þ �!ðt� t0Þ�: (10)

In the work to follow, we will be interested in isotropic distributions of random radiation so that the function fðckÞ
involves only the magnitude ck ¼ !. In this case, we can carry out the angular integrations for k in Eq. (10) [7]

h�ðct; x; y; zÞ�ðct0; x0; y0z0Þi ¼ 1

16�3

Z
d3kf2ðckÞ cos½k � ðr� r0Þ �!ðt� t0Þ�

¼ 1

8�2c2jr� r0j
Z 1

0
d!!f2ð!Þfsin½ð!=cÞðjr� r0j � cðt� t0ÞÞ�

þ sin½ð!=cÞðjr� r0j þ cðt� t0ÞÞ�g: (11)

This integral expression (11) is as far as we can carry the
evaluation of the two-field correlation function for random
radiation without knowing something (beyond isotropy)
about the spectral function f2ð!Þ.

III. THERMAL RADIATION IN AN INERTIAL
FRAME

A. Two fundamental ideas of classical thermal radiation

In order to understand thermal radiation within classical
physics, two fundamental ideas are needed. The first
needed idea is the presence of classical zero-point radiation
as the universal homogeneous boundary condition on ra-
diation equations. This random zero-point radiation corre-
sponds to the ‘‘vacuum state’’ of classical physics [3].
Zero-point radiation exists only for massless waves within
the context of relativistic theory. This wave situation is in
contrast with nonrelativistic physics where all momentum
is carried by mass. Within relativistic classical physics,
zero-point radiation is random classical radiation with a
Lorentz-invariant spectrum. Thus, the same zero-point
spectrum appears in every inertial frame. The requirement
of Lorentz invariance fixes the spectrum of random zero-
point radiation up to one overall multiplicative constant [7–
9]. The second needed idea is that thermal radiation with
T > 0 represents a finite density of random radiation above
the divergent spectrum of zero-point radiation. It is the
divergent spectrum of zero-point radiation that prevents the
finite energy density of thermal radiation from leaking out
to the infinite number of high-frequency modes. For each

normal mode, the thermal energy is added on top of the
zero-point energy, which is always present. Now the idea
of a finite energy density on top of a divergent energy
density may give one pause. However, any particle system
with mass interacts with only low-frequency modes; the
very-high-frequency modes act too rapidly to influence a
massive system. Thus, for example, a box with real con-
ducting walls becomes transparent to very high-frequency
electromagnetic waves; radio waves are reflected by a
copper sheet, while gamma rays easily pass through.
Thermal radiation can be confined in a box whose walls
reflect the low-frequency waves, while the high-frequency
modes carrying only zero-point energy penetrate through
the walls. Indeed, since the zero-point spectrum is invariant
under an adiabatic compression, the thermal radiation can
be compressed while the zero-point spectrum remains un-
changed. Thermodynamic equilibrium involves the distri-
bution of energy among a very large number of weakly
interacting systems. In the case of radiation, each normal
mode of oscillation in the confining box can be regarded as
a separate system, and the problem of classical thermal
radiation is to determine the equilibrium distribution of
energy among the modes of the box.

B. Thermodynamics of a normal mode

Each normal mode of oscillation for the radiation in the
box acts as a harmonic oscillator system [10]. In a dis-
cussion of the thermodynamics of harmonic oscillator
systems in an inertial frame [11], it was shown that ther-
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modynamics alone requires that the energy Uð!; TÞ per
normal mode at frequency ! must take the form

Uð!; TÞ ¼ !FðT=!Þ; (12)

where T is the temperature of the system, and F is some
unknown function. This result corresponds to Wien’s dis-
placement theorem. In the limit as the temperature goes to
zero T ! 0, the energy of a normal mode becomes inde-
pendent of T and reduces to the zero-point value

Uð!; 0Þ ¼ ð1=2Þ@! (13)

(corresponding to FðT=!Þ ! @=2Þ, where the functional
dependence Uð!; 0Þ ¼ const�! agrees with Lorentz in-
variance, and the scale @=2 is determined so as to give
agreement with Casimir forces. The thermal energy UT of
the mode is the energy above the zero-point energy and is
just the difference

UTð!;TÞ ¼ Uð!; TÞ �Uð!; 0Þ: (14)

In the limit as the temperature T becomes large, the mode
energy becomes independent of the frequency !

Uð!; TÞ ! kBT (15)

giving the Rayleigh-Jeans spectrum of radiation (corre-
sponding to FðT=!Þ ! T=!Þ. The general thermal radia-
tion spectrum Uð!; TÞ ¼ !FðT=!Þ must interpolate
between these two limits where the ratio T=! goes to
zero or to infinity. In the earlier discussion [11] of the
thermodynamics of a harmonic oscillator, it was noted
that the smoothest interpolation mathematically between
the entropy of these limits was that corresponding to the
Planck radiation spectrum including zero-point energy.
Here, rather than using mathematical considerations, we
wish to use physical ideas involving accelerating frames to
obtain the spectral function connecting the high- and low-
temperature limits.

C. Thermal radiation in a box

Thermal radiation involves a finite energy density above
the zero-point radiation spectrum. Thus, in a container of
volume V with radiation modes, the total thermal energy
UðTÞ is a sum over all normal modes of the thermal energy
UTð!; TÞ in each mode, thermal energy being energy
above the zero-point energy as in (14)

U ðTÞ ¼ X
!

UTð!; TÞ ¼ X
!

½Uð!; TÞ �Uð!; 0Þ�: (16)

The thermal radiation will be isotropic in the inertial frame
where the box is at rest. For finite temperature T > 0,
radiation can be ‘‘thermal’’ in only one coordinate frame
in which its spectrum is isotropic; any observer moving
with finite velocity relative to this frame detects a spectrum
that is not isotropic. On the other hand, the (divergent)
Lorentz-invariant zero-point radiation is isotropic in every
inertial frame.

The number of normal modes per unit volume per unit
frequency interval is [12]

dN ¼ !2d!=ð2�2c3Þ (17)

which, except for a factor of 2, is the same as the familiar
electromagnetic case. The thermal energy density u ¼
UðTÞ=V is then

uðTÞ ¼
Z

dNUTð!;TÞ

¼
Z 1

0
d!

!2

2�2c3
!½FðT=!Þ � Fð0Þ�

¼ T4
Z 1

0
dz

z2

2�2c3
z½Fð1=zÞ � Fð0Þ� ¼ aSsT

4;

(18)

where UTð!; TÞ is the thermal energy (above the zero-
point energy) in a mode of frequency !, the function F
is the unknown function appearing in the thermal radiation
spectrum of Eq. (12), and aSs is a constant playing the same
role as Stefan’s constant [13], but now for the scalar
radiation field. Also, we expect the pressure p to be a
function of temperature alone and to satisfy

pðTÞ ¼ ð1=3ÞuðTÞ; (19)

where the factor of 1=3 arises from the isotropic angular
dependence of the radiation.

D. Field correlation for thermal radiation

In the case of thermal radiation, we know from
Eqs. (6) and (12) that the spectral function fTð!Þ for the
radiation field takes the form f2Tð!Þ ¼ 8�c2U!=!

2 ¼
8�c2Fð!=TÞ=! so that the two-point correlation function
in Eq. (11) becomes

h�Tðct; x; y; zÞ�Tðct0; x0; y0z0Þi
¼ 1

�jr� r0j
Z 1

0
d!Fð!=TÞ

� fsin½ð!=cÞðjr� r0j � cðt� t0Þ�
þ sin½ð!=cÞðjr� r0j þ cðt� t0Þ�g

¼ T2 1

�ðTjr� r0jÞ
Z 1

0
dvFðvÞ

� fsin½ðv=cÞðTjr� r0j � Tcðt� t0Þ�
þ sin½ðv=cÞðTjr� r0j þ Tcðt� t0Þ�g: (20)

We can also specialize the situation to the case were the
spatial separation becomes small jr� r0j ! 0. In this
limit, the field correlation function at a single spatial
coordinate point ðx; y; zÞ ¼ ðx0; y0; z0Þ but at two different
times t and t0 becomes
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h�Tðct; x; y; zÞ�Tðct0; x; y; zÞi
¼ T2 2

�c

Z 1

0
dvvFðvÞ cos½vTðt� t0Þ�

¼ T2F½Tðt� t0Þ�; (21)

where F½Tðt� t0Þ� is some unknown function of tempera-
ture multiplied by time.

E. Zero-point radiation correlation function in an
inertial frame

In our discussion so far, we do not know the spectral
function f2Tð!Þ ¼ 8�c2Uð!; TÞ=!2 ¼ 8�c2Fð!=TÞ=!
for thermal radiation at nonzero temperature. However,
we have stated the spectral form for zero-point radiation
in Eq. (13) based upon the Lorentz invariance of the
spectrum. Substituting the expression of Eq. (13) into
Eq. (11), we find that the two-point field correlation func-
tion of the zero-point radiation field �0ðct; x; y; zÞ can be
calculated in closed form as [14]

h�0ðct; x; y; zÞ�0ðct0; x0; y0z0Þi

¼ �@c

�½c2ðt� t0Þ2 � ðx� x0Þ2 � ðy� y0Þ2 � ðz� z0Þ2� :
(22)

The subscript 0 on the fields on the left-hand side indicates
that zero-point radiation is involved. The denominator on
the right-hand side involves exactly the Lorentz-invariant
square of the spacetime interval between the two coordi-
nate points and shows clearly the Lorentz-invariant char-
acter of the random zero-point radiation. The denominator
corresponds to the square of the proper time interval be-
tween the two points as measured in any inertial frame.

If the spatial coordinates x, y, z are the same for the two
points, then the correlation function in (22) becomes

h�0ðct; x; y; zÞ�0ðct0; x; y; zÞi ¼ �@c

�c2ðt� t0Þ2 : (23)

We notice that this form is consistent with the thermal
expression in Eq. (21) provided FðzÞ goes as the inverse
of its argument squared at small arguments FðzÞ �
�@=ð�cz2Þ

T2F½Tðt� t0Þ� � T2 �@

�c½Tðt� t0Þ�2 ¼ � @c

�c2ðt� t0Þ2 :
(24)

Small arguments for the function F½Tðt� t0Þ� in Eq. (21)
can refer to either small temperatures at finite time differ-
ences or small time differences at finite temperatures.
Agreement of the correlation functions in Eqs. (23) and
(24) shows that we expect that at large frequencies (corre-
sponding to short correlation times) the spectral function
goes over to the zero-point spectrum for any temperature.
Indeed, this is what we expect when we think of the

thermal radiation as being distributed among only the
lower frequency modes.
The correlation function (23) for the zero-point fields

involves simply the time difference between the two space-
time points in the inertial frame without any characteristic
correlation time appearing in the expression. In contrast,
we expect that thermal radiation will indeed involve a
correlation time associated with the finite density of ther-
mal radiation. Unfortunately, the correlation for zero-point
radiation given in Eq. (23) gives us no hint about the low-
frequency (long-time-correlation) behavior of the thermal
radiation spectrum.

IV. USE OFACCELERATION TO DERIVE THE
THERMAL DISTRIBUTION

A. Review of Boltzmann’s derivation for the Maxwell
velocity distribution

The use of mechanical and thermodynamic ideas in an
inertial frame allows one to obtain significant information
about the thermal equilibrium distributions of particles or
of waves. Thus, momentum transfer to the walls of a
container relates the pressure p of a gas of free particles
or of radiation to the energy density u at the walls; p ¼
ð2=3Þu for free particles and p ¼ ð1=3Þu for radiation. The
equations of state, pV ¼ NkBT for free particles and the
assumption that the energy density u is a function of
temperature T alone for radiation, when combined with
thermodynamic ideas, allow determinations of the entropy
of free particles and the energy density and entropy for
radiation. IndeedWein’s displacement theorem [given here
in Eq. (12) from the thermodynamics of each normal
mode] is consistent with the Stefan-Boltzmann law u ¼
aSsT

4 appearing here in Eq. (18).
Although these mechanical and thermodynamic argu-

ments give us considerable information about the thermo-
dynamics of free particles and of radiation, these
arguments do not tell us the thermal distribution of particle
velocities or the spectrum of thermal radiation in an inertial
frame. We expect the thermal distributions to be homoge-
neous in space and isotropic in direction; however, the
distribution in energy does not follow from symmetries
under space translation and rotation. The presence of grav-
ity or acceleration breaks the symmetry of the space and so
allows one to distinguish thermal systems. For free non-
relativistic particles, this situation is familiar to most phys-
icists. Boltzmann [1] assumed that thermal equilibrium
exists for noninteracting nonrelativistic particles in a uni-
form gravitational field, or equivalently, in a uniformly
accelerating box. Thermodynamic arguments about cyclic
lifting of a harmonic oscillator between the bottom and top
of the box indicate that the temperature must be uniform
throughout the box. Indeed, such arguments show that in
equilibrium, the temperature is constant throughout any
nonrelativistic system. The temperature alone determines
the velocity distribution at any height. But then the velocity

DERIVATION OF THE PLANCK SPECTRUM FOR . . . PHYSICAL REVIEW D 81, 105024 (2010)

105024-5



distribution required to maintain the equilibrium spatial
pressure gradient against gravity or against acceleration is
unique. If one now allows the gravitational field or accel-
eration to go to zero, then one recovers the Maxwell
distribution for the equilibrium velocity distribution of
particles in thermal equilibrium in an inertial frame [1].

In this article we wish to carry through an analogous
argument for the derivation of the equilibrium spectrum of
classical relativistic scalar radiation in an inertial frame.
Unfortunately, the derivation is not as simple as that for
nonrelativistic particles because the radiation derivation
must use relativistic ideas, and these are not as familiar
as those of nonrelativistic mechanics.

B. The Rindler frame

Following the analogy with Boltzmann’s work, we
would like to discuss radiation in a box undergoing uni-
form acceleration. Since we are dealing with relativistic
classical radiation, we would like to consider a box under-
going uniform acceleration through Minkowski spacetime.
In the frame of the box, the acceleration should be constant
in time, and the dimensions of the box should not change so
that the radiation pattern can be assumed steady state.
However, relativity introduces some complications which
are quite different from nonrelativistic kinematics. When
viewed from an inertial frame where the box is momen-
tarily at rest at some t ¼ 0, the acceleration a of a point of
the box will appear to change according to the Lorentz

transformation for accelerations, a ¼ a0=�3 ¼ a0ð1�
v2=c2Þ3=2, with the acceleration a (seen in the inertial
frame) becoming smaller as the velocity v of the box
becomes larger even though the acceleration a0 in the
frame of the box is constant in time. Furthermore, in order
for the box to maintain a constant length in its own rest
frame, the box must be found to undergo a length contrac-
tion in the inertial frame. But this requires that different
points of the box must undergo different accelerations as
seen in any inertial frame, and indeed, in any inertial frame
momentarily at rest with respect to the box. Thus, the
proper acceleration of each point of the box must vary
with height. This relativistic situation has been explored in
the literature [15] and the coordinate frame associated with
the box is termed a Rindler frame. If the coordinates of an
inertial frame are given by ct, x, y, z, the coordinates of the
associated Rindler framewhich is at rest with respect to the
inertial frame at t ¼ 0 are specified as [16]

ct ¼ � sinhð�Þ; (25)

x ¼ � coshð�Þ; (26)

with y and z remaining unchanged between the frames and
� > 0. Using these transformations, we see that the space-
time interval changes from the Minkowski form in
ðct; x; y; zÞ over to a new form in the Rindler coordinates
ð�; �; y; zÞ

ds2 ¼ c2dt2 � dx2 � dy2 � dz2

¼ �2d�2 � d�2 � dy2 � dz2: (27)

If we consider a point with fixed spatial coordinates �, y, z
in a Rindler frame, then (by introducing Eqs. (25) and (26)
into the relation cosh2�� sinh2� ¼ 1) we find that in the
inertial frame this point follows the trajectory

x ¼ ð�2 þ c2t2Þ1=2 (28)

and has a constant proper acceleration given by

a ¼ c2=�: (29)

We notice from Eq. (29) that no single acceleration can be
assigned to a Rindler frame. Rather the acceleration varies
with the coordinate �, becoming very small for large � and
diverging as � goes to zero. The surface at � ¼ 0 [where
the acceleration in Eq. (29) diverges] is termed the ‘‘event
horizon’’ of the Rindler frame. At any instant of Rindler
time �, the spatial coordinates of the Rindler frame are in
agreement with those of a Minkowski frame, which is
instantaneously at rest with respect to the Rindler frame.

C. Variation in temperature for thermal radiation in a
Rindler frame

Although the temperature of thermal radiation is con-
stant throughout nonrelativistic systems in equilibrium,
this constancy is not true in relativistic gravitational phys-
ics, and, in particular, it is not true in a Rindler frame.
There are clearly profound differences between the ther-
modynamics of nonrelativistic and relativistic physics.
These profound differences can be seen immediately in
the contrasting determinations of the forces F1 and F2

needed to accelerate from rest, respectively, 1) a box of
interacting particles and 2) a box of radiation. In non-
relativistic physics, the force F1 accelerating the box of
particles is F1 ¼ Ma, where M is the total mechanical
mass of the particles (independent of the potential energies
in the box), and the force F2 accelerating the box of
radiation is zero F2 ¼ 0 since no mechanical mass is
present. In relativistic physics, both forces are given by
F ¼ ðU=c2Þa, where U is the total energy in the box. In a
Rindler frame, all unsupported systems will tend to fall
relative to the Rindler coordinates because the coordinates
of the frame are accelerating. Therefore, for thermal equi-
librium in this relativistic system, the pressure (and hence
the temperature) must increase at lower depths in order to
support the energy above it. (We can imagine introducing
massless horizontal reflecting surfaces into the box of
radiation and determining the pressure needed to support
the thermal radiation above the surface.) In relativity, the
change of pressure p with height due to acceleration de-
pends upon the sum pþ u of pressure plus thermal energy
density [17]. Since the thermal energy density u depends
on the temperature as T4, as shown in Eq. (18), we expect
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dp

d�
¼ �pðTÞ þ uðTÞ

c2
a ¼ �

�
1=3þ 1

c2
aSsT

4

��
c2

�

�
;

(30)

where we have use the connection of Eq. (19) p ¼
ð1=3ÞuðTÞ ¼ ð1=3ÞaSsT4. Thus, the pressure at any point
depends upon the temperature at that point, which depends
in some unknown fashion upon the distance � to the event
horizon. Therefore, Eq. (30) becomes

d

d�

�
1

3
aSsT

4

�
¼ 4

3
aSsT

3 dT

d�
¼ � 4

3
aSsT

4 1

�
(31)

or dT=d� ¼ �T=�. This equation has the solution lnðTÞ ¼
� lnð�Þ þ const, giving T� ¼ const or

T ¼ const=�: (32)

This result is consistent with the Tolman-Ehrenfest relation

of general relativity [18] Tðg00Þ1=2 ¼ const for the change
of temperature, when we note from Eq. (27) that in the

Rindler frame ðg00Þ1=2 ¼ �. Thus, we have found that there
is no single temperature which can be assigned to the
thermal radiation in equilibrium in a Rindler frame.

Rather the temperature varies with the distance � from
the event horizon, going to zero at infinite distance and
diverging on approach to the event horizon.

D. Two-point correlation function for zero-point
radiation in a Rindler frame

Within classical physics, the zero-point radiation of the
‘‘vacuum state’’ is present throughout spacetime and takes
the same spectrum in any inertial frame. This zero-point
radiation will also be found in the Rindler frame, which is
accelerating through Minkowski spacetime. Thus, next we
wish to obtain the expression for the field correlation
function for zero-point radiation as evaluated in the
Rindler frame. The correlation function can be expressed
in terms of the fields �Rð�; �; y; zÞ seen in the Rindler
frame. The value of a scalar field at any spacetime point
is independent of the coordinate frame in which it is
evaluated,

�Rð�; �; y; zÞ ¼ �ðct; x; y; zÞ
¼ �ð� sinhð�Þ; � coshð�Þ; y; zÞ: (33)

Therefore, merely substituting Eqs. (25) and (26) into
Eq. (22), gives

h�R0ð�; �; y; zÞ�R0ð�0; �0; y; zÞi ¼ �@c

�
½ð� sinh�� �0 sinh�0Þ2 � ð� cosh�� �0 cosh�0Þ2 � ðy� y0Þ2 � ðz� z0Þ2��1

¼ �@c

�½2��0 coshð�� �0Þ � �2 � �02 � ðy� y0Þ2 � ðz� z0Þ2� : (34)

Although the correlation functions given in Eqs. (22) and
(34) look quite different, they actually involve the same
zero-point radiation but described in different coordinates.

If we evaluate the zero-point correlation function at a
single Rindler time � ¼ �0, this corresponds to a single
time t ¼ t0 in the inertial frame which is momentarily at
rest with respect to the Rindler frame. In this case, the
correlation functions in the inertial frame and in the
Rindler frame agree exactly, both involving the inverse
square of the same spatial distance between the field
points. There is no spatial correlation length appearing in
the Rindler frame, just as there was none in the inertial
frame. The system is still a zero-point radiation system
with no possibility of defining a finite local energy density
or local entropy density. However, if we consider a single
spatial point ðx; y; zÞ ¼ ðx0; y0; z0Þ in an inertial frame at two
different times t and t0, or a single spatial point ð�; y; zÞ ¼
ð�0; y0; z0Þ in the Rindler frame at two different times � and
�0, then the field correlation functions for zero-point ra-
diation take quite different forms. The correlation function
for zero-point radiation in the inertial frame is given in
Eq. (23), while the expression in the Rindler frame follows
from Eq. (34) as

h�R0ð�; �; y; zÞ�R0ð�0; �; y; zÞi0
¼ �@c

�½2�2 coshð�� �0Þ � 2�2�
¼ �@c

�½2� sinhfð�� �0Þ=2g�2

¼ �@c

�½2� sinhfð�R � �0RÞ=ð2�=cÞg�2

� �@ca2

�½2c2 sinhfð�R � �0RÞa=ð2cÞg�2
; (35)

where in the third line we have introduced the proper
time interval ð�R � �0RÞ ¼ �ð�� �0Þ measured by a clock
at rest in the Rindler frame at the spatial coordinates �, y, z,
and in the fourth line we have introduced the proper
acceleration a ¼ c2=�. In an inertial frame, there are
no characteristic lengths or times connected to any coor-
dinate point, and the field correlation function for zero-
point radiation given in Eq. (22) involves simply the
Minkowski proper time interval between any two
spacetime points. However, each spatial coordinate point
�, y, z of the Rindler frame has associated a characteristic
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time �=c (corresponding to the time for light to travel to
the event horizon at speed c), and this is the characteristic
time appearing in the third line of Eq. (35) for the corre-
lation function for zero-point radiation in Rindler coordi-
nates. The zero-point radiation in the Rindler frame is
measured in units of time, which already contain a char-
acteristic correlation time, and this correlation time is
imposed on the zero-point correlation function given in
Eq. (35).

E. Example of a horizontal light clock in a Rindler
frame

We wish to emphasize strongly that at every point of a
Rindler frame, there is a correlation time �R ¼ �=c ¼ c=a
and an associated correlation frequency �R ¼ 1=�R ¼
a=c that is unrelated to the temperature of any thermal
radiation which may be present. Thus, for example, con-
sider a horizontal light clock of horizontal length l at rest at
height � in a Rindler frame. The Rindler coordinate time
interval �l read by the light clock corresponds to the time
required for light to travel the horizontal length l. Now in
the inertial frame, which was momentarily at rest with
respect to the length l when the light pulse started, the
light is seen to follow a diagonal path; this diagonal
path has length l in the direction perpendicular to the
Rindler-frame acceleration and a distance xðtÞ � xð0Þ ¼
� cosh�l � � cosh0 in the direction parallel to the
Rindler-frame acceleration and occurs during an inertial-
frame time interval t� 0 ¼ ð�=cÞ sinh�l � ð�=cÞ sinh0.
Since in the inertial frame the light travels with speed
c, we have ðctÞ2 ¼ ½xðtÞ � xð0Þ�2 þ l2. This corresponds
to

ð� sinh�lÞ2 ¼ ð� cosh�l � �Þ2 þ l2 (36)

or

l ¼ 2� sinhð�l=2Þ ¼ 2� sinh½�lR=ð2�=cÞ�
¼ 2� sinh½�lRða=ð2cÞ�; (37)

where �lR ¼ ��l is the proper time read by a clock at
height � in the Rindler frame. Thus, the connection be-
tween the proper time interval �lR and the length l of the
horizontal light clock is governed by the hyperbolic sine
function as in Eq. (37). Accordingly, we find that for a
small horizontal light clock in the Rindler frame, the time
interval �lR read by this horizontal light clock is given by
the linear relation �lR ¼ ��l ¼ l=c, whereas for a large
horizontal light clock, there is an exponential connection
between l and �lR. The transition length between two these
two regimes is given by the length l � �, the time �lR �
�=c, and the associated frequency �R � c=� ¼ a=c.

F. Assumption of a single correlation time for thermal
radiation in a Rindler frame

At this point we want to consider the two-point field
correlation function in time for the radiation field �RT in
the Rindler frame when thermal radiation at temperature
T > 0 is present. We notice from Eq. (35) that in a Rindler
frame the two-point field correlation function for zero-
point radiation at a single spatial point already includes
the finite correlation time �=c ¼ c=a, which is character-
istic of the acceleration a of a point � above the event
horizon. Thus for small times �R (where the high-
frequency zero-point radiation contributes) the correlation
function in Eq. (35) behaves as�@c=ð�c2�2RÞ, whereas for
long times the behavior is as �@ca2=f�c4 exp½�Ra=c�g.
Accordingly in a Rindler frame, both the acceleration a
and the finite nonzero temperature T will contribute finite
correlation times to the two-field correlation function at
fixed height �. Thus, one might expect three different time
regions for the two-point field correlation function: i) the
short-time region dominated by high-frequency zero-point
radiation, ii) the region dominated by the acceleration-
related correlation time, and iii) the region dominated by
the temperature-related correlation time. Depending upon
the relative magnitude of the acceleration a and the tem-
perature T, the two-point field correlation function and the
associated frequency spectrum would take on varying
forms. This variation in form would allow us to distinguish
the relative temperature in the Rindler frame compared to
the acceleration, or the acceleration relative to the tem-
perature. Since we have seen in Eq. (32) that in a Rindler
frame the temperature of the radiation must behave with
height � as T ¼ const=� while the acceleration given in
Eq. (29) behaves with height � as a ¼ c2=�, the ratio of
temperature T to acceleration a remains the same through-
out the Rindler frame in thermal equilibrium. We notice in
Eq. (35) that in zero-point radiation the correlation func-
tion in the Rindler frame is a monotonic function of the
acceleration a. Thermodynamics requires that the correla-
tion function for thermal radiation must also be a mono-
tonic function of temperature T. Clearly we want the field
correlation function at two different times � and �0 when
thermal radiation is present to fit with the correlation
function (35) when only zero-point radiation is present.
The simplest possibility is that the two-point correlation
function of the fields at a single height involves not two
distinct correlation times but rather only a single correla-
tion time. This situation corresponds to substituting (aþ
const� T) in place of the acceleration a in the correlation
function of Eq. (35). This increase in the argument of the
correlation function corresponds to increasing the energy
density in the normal modes above the zero-point value,
exactly as is appropriate for thermal radiation. The only
combination of fundamental units with the correct dimen-
sions requires the combination aþ 	2�ckBT=@where 	 is
a dimensionless number. The correlation function for ther-
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mal radiation in the Rindler frame then takes the form

h�RTð�; �; y; zÞ�RTð�0; �; y; zÞi

¼ �@c

�

� ðaþ 	2�ckBT=@Þ2
½2c2 sinhfð�R � �0RÞðaþ 	2�ckBT=@Þ=ð2cÞg�2

�
:

(38)

Furthermore, if we make this substitution, then we find that
the asymptotic limits are appropriate. We recall that at
large values of �, the acceleration of the Rindler frame
becomes small so that the Rindler frame has behavior
similar to that of an inertial frame. But then in this small-
acceleration limit a ! 0, we notice that the field correla-
tion function in time Eq. (38) for the Rindler frame takes
just the same form as the field correlation function in time
Eq. (21) for an inertial frame; both involve T2F [Tð��
�0Þ]. In the small-temperature limit T ! 0, the correlation
function (38) returns to the zero-point correlation function
(35). At short time differences (�R � �0R), the correlation
function (38) still goes over to the zero-point radiation
result of Eq. (23), which is independent of both a and of
T. At long time differences (�R � �0R), the correlation
function decreases exponentially, but now with the combi-
nation aþ 	2�ckBT=@.

The correlation function in Eq. (38) corresponds to
amplitudes for the normal modes which have monotoni-
cally larger amplitudes with increasing temperature (cor-
responding to increased energy due to the assignment of
thermal energy) than the amplitudes of the normal modes
involving zero-point radiation alone. At high temperature
and fixed frequency, the thermal radiation dominates the
spectrum. On the other hand, in the limit as the temperature
T goes to zero, the correlation function becomes the zero-
point correlation function of the Rindler frame given in
Eq. (35). All of these considerations suggest that the field
correlation function given in Eq. (38) is indeed the thermal
correlation function for scalar radiation in a Rindler frame.
In a Rindler frame, thermal radiation is constrained to fit
with zero-point radiation which appeared from Lorentz
invariance in a Minkowski frame.

The appearance of only a single correlation time in the
two-point field correlation function at fixed height, as in
Eq. (38), serves to hide the acceleration of the system from
any spatially-local measurement which considers only
time correlations. An observer who has access only to
the time correlation at a fixed spatial point would not be
able to determine the acceleration of the system since the
correlation might represent any combination of finite-
temperature thermal radiation and acceleration through
zero-point radiation. However, measurements of spatial
correlations in the fields at fixed time will indeed allow
separation of the acceleration and finite-temperature as-
pects. In a sense, this behavior is analogous to the suppres-
sion of acceleration information in a local measurement of
particle velocities in a nonrelativistic thermal distribution

in an accelerating frame. The velocity distribution at a
fixed height in an accelerating frame is the Maxwell dis-
tribution. The information about the acceleration of the
frame is contained in the spatial change in particle density
with height.

G. Planck radiation spectrum

In the limit as the acceleration a goes to zero while the
temperature T is held fixed, the proper time �R in the
Rindler frame becomes equal to the proper time �M in
the Minkowski frame, and the field correlation of the
Rindler frame becomes that of thermal radiation in a
Minkowski frame. Indeed, if we consider the Minkowski
frame limit a ! 0 in Eq. (38), then we find

lim
a!0

h�RTð�; �; y; zÞ�RTð�0; �; y; zÞi
¼ h�Tðct; x; y; zÞ�Tðct0; x; y; zÞi

¼ �@c

�

� ð	2�ckBT=@Þ2
½2c2 sinhfðt� t0Þð	2�ckBT=@Þ=ð2cÞg�2

�
:

(39)

By taking the (singular) Fourier cosine transform of this
correlation function [19], we obtain the thermal radiation
spectrum in a Minkowski frame

!2f2ð!Þ
8�c2

¼
Z 1

0
d�

�@c

�

� ð	2�ckBT=@Þ2
½2c2 sinhf�ð	2�ckBT=@Þ=ð2cÞg�2

�

� cosð!�Þ
¼ 1

2
@!coth

�
@!

2	kBT

�
(40)

corresponding to an energy per normal mode from Eq. (6)

Uð!;TÞ ¼ 1

2
@! coth

�
@!

2	kBT

�

¼ @!

exp½@!=ð	kBTÞ� � 1
þ 1

2
@!; (41)

which is exactly the usual Planck scalar radiation result
including zero-point radiation when we set the unknown
constant 	 ¼ 1. At high frequencies !, the energy Uð!Þ
becomes Uð!Þ ¼ ð1=2Þ@!. At low frequencies the energy
Uð!Þ becomes Uð!Þ ¼ kBT.

V. DISCUSSION

The analysis given here has ties to work appearing in
quantum field theory [20,21]. In connection with
Hawking’s ideas regarding the quantum evaporation of
black holes [22] and Fulling’s nonuniqueness of the field
quantization [23], Davies [24] and Unruh [25] noted the
appearance of the Planck correlation function when a point
was accelerated through the quantum vacuum of
Minkowski spacetime. Within the quantum literature, a
mechanical system accelerating through the vacuum is
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often said to experience a thermal bath at temperature T ¼
@a=ð2�ckBÞ and to take on a thermal distribution. There
have been controversies as to whether or not the accelera-
tion turns the ‘‘virtual photons’’ of the vacuum into ‘‘real
photons.’’ In this paper, the analysis has been entirely
within classical physics.

The analysis of thermal radiation given here is totally
different from the discussions that appear in the textbooks
of modern physics [12]. The present analysis is crucially
dependent upon relativistic physics, whereas the historical
treatments combine nonrelativistic and relativistic aspects

so that the combination satisfies neither Galilean nor
Lorentz invariance. The emphasis upon a relativistic treat-
ment in the present article is consistent with recent analysis
showing that scattering by relativistic (as opposed to non-
relativistic) mechanical systems leaves the zero-point spec-
trum invariant [26].
The classical analysis of thermodynamics in a Rindler

frame has important implications for the connections be-
tween classical and quantum theories, which will be pur-
sued elsewhere.
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