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We provide a supersymmetric generalization of n quantum bits by extending the local operations and

classical communication entanglement equivalence group ½SUð2Þ�n to the supergroup ½uOSpð1j2Þ�n and

the stochastic local operations and classical communication equivalence group ½SLð2;CÞ�n to the super-

group ½OSpð1j2Þ�n. We introduce the appropriate supersymmetric generalizations of the conventional

entanglement measures for the cases of n ¼ 2 and n ¼ 3. In particular, super-Greenberger-Horne-

Zeilinger states are characterized by a nonvanishing superhyperdeterminant.
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I. INTRODUCTION

The question of computable entanglement measures for
arbitrary quantum systems is, to a large extent, an open
one. However, substantial progress has been made utilizing
the paradigms of local operations and classical communi-
cation (LOCC) and stochastic local operations and clas-
sical communication (SLOCC). For example, 2-qubit and
3-qubit systems both admit concise, but nontrivial, SLOCC
classifications, which reveal a number of important quali-
tative features of multipartite entanglement [1–6]. In par-
ticular, 2-qubit Bell states and 3-qubit Greenberger-Horne-
Zeilinger (GHZ) states are characterized, respectively, by
nonvanishing determinant and hyperdeterminant.

Here we propose a supersymmetric generalization of the
qubit, the superqubit. We proceed by extending the n-qubit
SLOCC equivalence group ½SLð2C; Þ�n and the LOCC
equivalence group ½SUð2Þ�n to the supergroups
½OSpð1j2Þ�n and ½uOSpð1j2Þ�n, respectively. A single
superqubit forms a three-dimensional representation of
OSpð1j2Þ consisting of two commuting ‘‘bosonic’’ com-
ponents and one anticommuting ‘‘fermionic’’ component.
For n ¼ 2 and n ¼ 3 we introduce the appropriate super-
symmetric generalizations of the conventional entangle-
ment measures. In particular, super-Bell and super-GHZ
states are characterized, respectively, by nonvanishing
superdeterminant (distinct from the Berezinian) and
superhyperdeterminant.1

This mathematical construction seems a very natural
one. Moreover, from a physical point of view, it makes
contact with various condensed-matter systems. For ex-
ample, the three-dimensional representation ofOSpð1j2Þ is
encountered in the supersymmetric t-J model where it
describes spinons and holons on a one-dimensional lattice
[8–12]. It also shows up in the quantumHall effect [13] and

Affleck-Kennedy-Lieb-Tasaki models of superconductiv-
ity [14].
In order to facilitate the introduction of a super Hilbert

space, super LOCC and superqubits in IV, we first recall
some familiar properties of ordinary Hilbert space, LOCC,
and qubits in II. Similarly, in order to discuss the super-
entanglement of two and three superqubits in V, we first
review the ordinary entanglement of two and three qubits
in III.

II. QUBITS

A. Hilbert space

A complex Hilbert space H is equipped with a one-to-
one map into its dual space H y,

y: H ! H y; jc i � ðjc iÞy :¼ hc j; (1)

which defines an inner product hc j�i and satisfies the
following properties:
(1) For all jc i, j�i 2 H , and any complex number �

we have,

ð�jc iÞy ¼ hc j��; ðjc i þ j�iÞy ¼ hc j þ h�j:
(2)

(2) For all jc i, j�i 2 H ,

hc j�i� ¼ h�jc i: (3)

(3) For all jc i 2 H ,

hc jc i � 0 (4)

with equality holding if and only if jc i is the null
vector.

In particular, a qubit lives in the two-dimensional com-
plex Hilbert space C2. An arbitrary n-qubit system is then
simply a vector in the n-fold tensor product Hilbert space
C2 � � � � � C2 ¼ ½C2�n.
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B. LOCC and SLOCC

Two states are said to be LOCC equivalent if and only if
they may be transformed into one another with certainty
using LOCC protocols. Reviews of the LOCC paradigm
and entanglement measures may be found in [15,16]. It is
well known that two states of a composite system are
LOCC equivalent if and only if they are related by the
group of local unitaries (which we will refer to as the
LOCC equivalence group), unitary transformations that
factorize into separate transformations on the component
parts [17]. In the case of n qubits the group of local
unitaries is given (up to a global phase) by ½SUð2Þ�n.

Similarly, two quantum states are said to be SLOCC
equivalent if and only if they may be transformed into one
another with some nonvanishing probability using LOCC
operations [2,17]. The set of SLOCC transformations relat-
ing equivalent states forms a group (which we will refer to
as the SLOCC equivalence group). For n qubits the SLOCC
equivalence group is given (up to a global complex factor)
by the n-fold tensor product, ½SLð2;CÞ�n, one factor for
each qubit [2]. Note, the LOCC equivalence group forms a
compact subgroup of the larger SLOCC equivalence group.

The Lie algebra slð2Þ may be conveniently summarized
as

½PA1A2
; PA3A4

� ¼ 2"ðA1ðA3
PA4ÞA2Þ; (5)

where A ¼ 0, 1, and throughout this paper we use
‘‘strength one’’ (anti)symmetrization, so that

XðA1A2Þ � 1
2ðXA1A2

þ XA2A1
Þ: (6)

We permit the indices to be raised/lowered by the
SLð2;CÞ-invariant epsilon tensors according to the rules:

VA1
¼ "A1A2

VA2 ; VA1 ¼ "A1A2VA2
; (7)

where we adopt the following conventions:

"A1A2
¼ �"A1A2 ; "A1A2

"A2A3 ¼ �A3

A1
: (8)

Consequently,

UAVA ¼ �UAV
A: (9)

The compact subalgebra suð2Þ is given by

suð2Þ :¼ fX 2 slð2ÞjXy ¼ �Xg: (10)

An arbitrary element X 2 suð2Þ may be written as

X ¼ �iAi; (11)

where �i 2 R and

A1 ¼ i

2
ðP00 � P11Þ;

A2 ¼ 1

2
ðP00 þ P11Þ;

A3 ¼ iP01;

Ay
i ¼ �Ai:

(12)

C. One qubit

The one-qubit system (Alice) is described by the state

j�i ¼ aAjAi; (13)

and the Hilbert space has dimension 2. The SLOCC
equivalence group is SLð2;CÞA, under which aA transforms
as a 2.
The norm squared h�j�i is given by

h�j�i ¼ �A1A2a�A1
aA2

(14)

and is invariant under SUð2ÞA. The one-qubit density ma-
trix is given by

� :¼ j�ih�j ¼ aA1
a�A2

jA1ihA2j: (15)

The norm squared is then given by

h�j�i ¼ trð�Þ: (16)

Unnormalized pure state density matrices satisfy

�2 ¼ trð�Þ�: (17)

D. Two qubits

The two-qubit system (Alice and Bob) is described by
the state

j�i ¼ aABjABi; (18)

and the Hilbert space has dimension 22 ¼ 4. The SLOCC
equivalence group is SLð2;CÞA � SLð2;CÞB under which
aAB transforms as a ð2; 2Þ.
The norm squared h�j�i is given by

h�j�i ¼ �A1A2�B1B2a�A1B1
aA2B2

(19)

and is invariant under SUð2ÞA � SUð2ÞB. The two-qubit
density matrix is given by

� :¼ j�ih�j ¼ aA1B1
a�A2B2

jA1B1ihA2B2j: (20)

The reduced density matrices are defined using the partial
trace

�A ¼ trBj�ih�j; �B ¼ trAj�ih�j; (21)

or

ð�AÞA1A2
¼ �B1B2aA1B1

a�A2B2
;

ð�BÞB1B2
¼ �A1A2aA1B1

a�A2B2
:

(22)

L. BORSTEN et al. PHYSICAL REVIEW D 81, 105023 (2010)

105023-2



E. Three qubits

The three-qubit system (Alice, Bob, Charlie) is de-
scribed by the state

j�i ¼ aABCjABCi; (23)

and the Hilbert space has dimension 23 ¼ 8. The SLOCC
equivalence group is SLð2;CÞA � SLð2;CÞB � SLð2;CÞC
under which aABC transforms as a ð2; 2; 2Þ.

The norm squared h�j�i is given by

h�j�i ¼ �A1A2�B1B2�C1C2a�A1B1C1
aA2B2C2

(24)

and is invariant under SUð2ÞA � SUð2ÞB � SUð2ÞC. The
three-qubit density matrix is given by

� :¼ j�ih�j ¼ aA1B1C1
a�A2B2C2

jA1B1C1ihA2B2C2j: (25)

The singly reduced density matrices are defined using the
partial trace

�AB ¼ trCj�ih�j;
�BC ¼ trAj�ih�j;
�CA ¼ trBj�ih�j;

(26)

or

ð�ABÞA1A2B1B2
¼ �C1C2aA1B1C1

a�A2B2C2
;

ð�BCÞB1B2C1C2
¼ �A1A2aA1B1C1

a�A2B2C2
;

ð�CAÞC1C2A1A2
¼ �B1B2aA1B1C1

a�A2B2C2
:

(27)

The doubly reduced density matrices are defined using the
partial traces

�A ¼ trBCj�ih�j;
�B ¼ trCAj�ih�j;
�C ¼ trABj�ih�j;

(28)

or

ð�AÞA1A2
¼ �B1B2�C1C2aA1B1C1

a�A2B2C2
;

ð�BÞB1B2
¼ �C1C2�A1A2aA1B1C1

a�A2B2C2
;

ð�CÞC1C2
¼ �A1A2�B1B2aA1B1C1

a�A2B2C2
:

(29)

III. ENTANGLEMENT

A. Two qubits

For two qubits there are only two distinct SLOCC en-
tanglement classes—two qubits are either entangled or not.
The two classes are distinguished by the SLOCC invariant,
detaAB. For separable states detaAB ¼ 0, while it is non-
zero for any entangled state.

There are two independent ½SUð2Þ�2 invariants, the norm
h�j�i1=2 and the 2-tangle �AB [1,18],

�AB ¼ 4 det�A ¼ 4 det�B ¼ 4j detaABj2: (30)

The 2-tangle is maximized, �AB ¼ 1, by the Bell state:

j�iBell ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ: (31)

B. Three qubits

For three qubits there are six distinct SLOCC entangle-
ment classes [2,4–6]. These classes and their representative
states are summarized as follows:
Separable: Zero entanglement orbit for completely fac-

torizable product states,

A-B-C: j000i: (32)

Biseparable: Three classes of bipartite entanglement

A-BC: j010i þ j001i;
B-CA: j100i þ j001i;
C-AB: j010i þ j100i:

(33)

W: Three-way entangled states that do not maximally
violate Bell-type inequalities in the same way as the GHZ
class discussed below. However, they are robust in the
sense that tracing out a subsystem generically results in a
bipartite mixed state that is maximally entangled under a
number of criteria [2],

W: j100i þ j010i þ j001i: (34)

GHZ: Genuinely tripartite entangled Greenberger-
Horne-Zeilinger [19] states. These maximally violate
Bell’s inequalities but, in contrast to class W, are fragile
under the tracing out of a subsystem since the resultant
state is completely unentangled,

GHZ : j000i þ j111i: (35)

The six classes may be distinguished either by appealing
to simple arguments concerning the conservation of re-
duced density matrix ranks as in [2] or by considering the
vanishing or not of five algebraically independent cova-
riants/invariants as in [6]. For our purposes it is more
convenient to follow the latter approach as it better facil-
itates our supersymmetric extension. The five covariants/
invariants are given as follows:
(1) Three covariants

ð�AÞA1A2
¼ aA1

BCaA2BC;

ð�BÞB1B2
¼ aAB1

CaAB2C;

ð�CÞC1C2
¼ aABC1

aABC2
;

(36)

transforming, respectively, as a ð3; 1; 1Þ, ð1; 3; 1Þ,
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and ð1; 1; 3Þ under SLAð2;CÞ � SLBð2;CÞ �
SLCð2;CÞ.

(2) One covariant TABC transforming as a ð2; 2; 2Þ under
½SLð2;CÞ�3, which may be written in one of three
equivalent forms

TABC ¼ ð�AÞAA0aA
0
BC;

TABC ¼ ð�BÞBB0aA
B0

C;

TABC ¼ ð�CÞCC0aAB
C0
:

(37)

(3) Cayley’s hyperdeterminant DetaABC [4,5,20], the
unique quartic ½SLð2;CÞ�3 invariant, where

DetaABC ¼ � det�A ¼ � det�B ¼ � det�C:

(38)

The entanglement classification as determined by these
covariants/invariants is summarized in Table I.

There are six independent ½SUð2Þ�3 pure state invariants
[21]: the norm, the three local entropies 4 det�A, 4 det�B,
4 det�C, the Kempe invariant [22], and finally the all
important 3-tangle �ABC [1],

�ABC ¼ 4jDetaABCj: (39)

The 3-tangle is maximized, �ABC ¼ 1, by the GHZ state:

j�iGHZ ¼ 1ffiffiffi
2

p ðj000i þ j111iÞ: (40)

IV. SUPERQUBITS

A. Super Hilbert space and uOSpð1j2Þ
1. The dual space

With one important difference, explained below, our
definition of a super Hilbert space follows that of DeWitt
[23]. We define a super Hilbert space to be a supervector
spaceH equipped with an injection to its dual spaceH z,

z: H ! H z; jc i � ðjc iÞz :¼ hc j: (41)

Details of even and odd Grassmann numbers and super-
vectors may be found in Appendix A. A basis in which all

basis vectors are pure even or odd is said to be pure. Such a
basis may always be found [23].
The map z: H ! H z defines an inner product hc j�i

and satisfies the following axioms:
(1) z sends pure bosonic (fermionic) supervectors inH

into bosonic (fermionic) supervectors in H z.
(2) z is linear

ðjc i þ j�iÞz ¼ hc j þ h�j: (42)

(3) For pure even/odd � and jc i
ðjc i�Þz ¼ ð�Þ�c�#hc j (43)

and

ð�hc jÞz ¼ ð�Þcþ�c jc i�#; (44)

where # is the superstar introduced in Appendix A.
In particular,

jc izz ¼ ð�Þc jc i: (45)

Note, an � (or c and the like) appearing in the
exponent of (� ) is shorthand for its grade,
degð�Þ, which takes the value 0 or 1 according to
whether � is even or odd. The impure case follows
from the linearity of z.

In a pure even/odd orthonormal basis fjiig we adopt the
following convention:

jc i ¼ jiic i (46)

so that for pure even/odd c (43) and (44) imply

ðjiic iÞz ¼ ð�Þc iic #
i hij ¼ ð�Þiþic c #

i hijðð�Þiþic c #
i hijÞz

¼ ð�Þc jiic i; (47)

where we have used degðc iÞ ¼ degðiÞ þ degðc Þ. This is
consistent with (A20).

2. Inner product

For all pure even/odd jc i, j�i 2 H , the inner product
hc j�i satisfies

hc j�i# ¼ ð�Þcþc�h�jc i: (48)

Consequently,

hc j�i## ¼ ð�Þcþ�h�jc i; (49)

as would be expected of a pure even/odd Grassmann
number since degðh�jc iÞ ¼ degðc Þ þ degð�Þ. In a pure
even/odd orthonormal basis we find

h�jc i ¼ ð�Þiþi��#
i c i: (50)

In using the superstar we depart from the formalism pre-
sented in [23], which uses the ordinary star. A comparison
of the star and superstar may be found in Appendix A. The
use of the superstar anticipates the implementation of

TABLE I. The entanglement classification of three qubits.

Class Vanishing Nonvanishing

A-B-C �A, �B, �C aABC
A-BC �B, �C �A

B-CA �A, �C �B

C-AB �A, �B �C

W DetaABC TABC

GHZ � � � DetaABC
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uOSpð1j2Þ as the compact subgroup of OSpð1j2Þ as will
be explained in IVB.

3. Linear superoperators and the superadjoint

A linear superoperator A: H ! H is required to sat-
isfy the following properties:

(1) Aðjc i þ j�iÞ ¼ Ajc i þ Aj�i,
(2) Aðjc i�Þ ¼ ðAjc iÞ�.

Linear superoperators may be combined using
(1) ðAþ BÞjc i ¼ Ajc i þ Bjc i,
(2) ðABÞjc i ¼ AðBjc iÞ.

A linear superoperator is said to be pure even (odd) if it

takes pure even supervectors into pure even (odd) super-
vectors and pure odd supervectors into pure odd (even)
supervectors.
The superadjoint of a pure even/odd linear superoperator

is defined through

ðAj�iÞz ¼ ð�Þ�Ah�jAz: (51)

This is, in fact, equivalent to

h�jAzjc i ¼ ð�Þcþ�cþð�þc ÞAhc jAj�i#; (52)

which is the natural supersymmetric generalization of the
conventional definition of the adjoint. This equivalence
may be established by simply inserting the identity opera-
tor, 1 ¼ jiihij, in (51),

ðjiihijAj�iÞz ¼ ð�Þ�Ah�jAzjiihij
) ð�ÞiðiþAþ�ÞhijAj�i#hij ¼ ð�Þ�Ah�jAzjiihij
) ð�Þiþi�þðiþ�ÞAhijAj�i# ¼ h�jAzjii
) X

i

ð�Þiþi�þðiþ�ÞAhijAj�i#c i ¼
X
i

h�jAzjiic i

) X
i

ð�Þiþi�þðiþ�ÞAþc iðiþAþ�Þþc iðc #
i hijAj�iÞ# ¼ X

i

h�jAzjiic i

) ð�Þcþ�cþðcþ�ÞAhc jAj�i# ¼ h�jAzjc i;

(53)

where we have defined jc i ¼ jiic i and used degðc Þ ¼
degðc iÞ þ degðiÞ. The converse implication follows from a
similar treatment, which we omit. From (52) we also have

ðh�jAÞz ¼ ð�Þ�þ�AAzj�i: (54)

Moreover,

Azz ¼ ð�ÞAA; (55)

which is consistent with the properties of supermatrices
and the supermatrix superadjoint given in Appendix A.

In a pure even/odd orthonormal basis the supermatrix
representation of a linear operator A is given by

Aij :¼ hijAjji: (56)

In particular, (52) implies that the component form of the
adjoint is given by

ðAzÞij ¼ ð�ÞjþijþðiþjÞAA#
ji; (57)

where an index in the exponent of (� ) is understood to
take the value 0 or 1 according to whether it corresponds to
an even or odd basis vector. This is just the conventional
supermatrix superadjoint used to define uOSpð1j2Þ in
IVB.

For any linear operator of the form jc ih�j one obtains
ðjc ih�jÞz ¼ ð�Þ�þ�c j�ihc j: (58)

For pure even/odd jc i the butterfly operator jc ihc j is
manifestly self-adjoint.
The inner product is invariant under the action of all

even operators satisfying the superunitary condition

AzA ¼ 1; Az
ijAjk ¼ �ik: (59)

Let jc i be a pure even/odd supervector and

j ~c i ¼ Ajc i: (60)

Then, in a pure orthonormal basis fjiig
~c i ¼ hij ~c i ¼ hijAjjic j ¼ Aijc j: (61)

Hence, for pure even/odd supervectors j�i and jc i and
even A the transformed inner product is given by

h ~�j ~c i ¼ ð�Þiþi ~� ~�#
i
~c i ¼ ð�Þiþi�ðAij�jÞ#Aikc k

¼ ð�Þiþi�þðjþ�ÞðiþjÞ�#
jA

#
ijAikc k

¼ ð�Þiþi�þðjþ�ÞðiþjÞ�#
j ð�ÞiþijAst#

ji Aikc k

¼ ð�Þðjþj�Þ�#
jA

z
jiAikc k ¼ ð�Þðjþj�Þ�#

jc j

¼ h�jc i; (62)

where we have used degðAijÞ ¼ degðiÞ þ degðjÞ.
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4. Physical states

For all jc i 2 H

hc jc iB � 0: (63)

Here zB 2 C denotes the purely complex number compo-
nent of the Grassmann number z and is referred to as the
body, a terminology introduced in [23]. The soul of z,
denoted zS , is the purely Grassmannian component. Any
Grassmann number may be decomposed into body and
soul, z ¼ zB þ zS.

A Grassmann number has an inverse iff it has a non-
vanishing body. Consequently, a state jc i is normalizable
iff hc jc iB > 0. The state may then be normalized,

jĉ i ¼ Nc jc i; Nc ¼ hc jc i�1=2; (64)

where Nc is given by the general definition of an analytic

function f on the space of Grassmann numbers (A3).
Explicitly,

hc jc i�1=2 ¼ X1
k¼0

1

k!2k

Yk
j¼0

ð1� 2jÞhc jc i�ðð2kþ1Þ=2Þ
B hc jc ikS :

(65)

Motivated by the above considerations a state jc i is said
to be physical iff hc jc iB > 0. We restrict our attention to
physical states throughout.

B. Super LOCC and SLOCC

We promote the conventional SLOCC equivalence
group SLð2;CÞ to its minimal supersymmetric extension
OSpð1j2Þ [24,25]. The orthosymplectic superalgebras and
OSpð1j2Þ, in particular, are described in Appendix B.

The three even elements PA1A2
form an slð2Þ subalgebra

generating the bosonic SLOCC equivalence group, under
which QA transforms as a spinor.

The supersymmetric generalization of the conventional
group of local unitaries is given by uOSpð1j2Þ, a compact
subgroup of OSpð1j2Þ [25,26]. It has a supermatrix repre-
sentation as the subset of OSpð1j2Þ supermatrices satisfy-
ing the additional superunitary condition

MzM ¼ 1; (66)

where z is the superadjoint given by

Mz ¼ ðMstÞ#: (67)

The uOSpð1j2Þ algebra is given by

uospð1j2Þ :¼ fX 2 ospð1j2ÞjXz ¼ �Xg: (68)

An arbitrary element X 2 uospð1j2Þ may be written as

X ¼ �iAi þ �#Q0 þ �Q1; (69)

where �i and � are pure even/odd Grassmann numbers,
respectively, and

A1 ¼ i

2
ðP00 � P11Þ; A2 ¼ 1

2
ðP00 þ P11Þ;

A3 ¼ iP01; Qz
A ¼ "AA0QA0 ; Az

i ¼ �Ai:

(70)

C. One superqubit

The one-superqubit system (Alice) is described by the
state

� ¼ jAiaA þ j	ia	; (71)

where aA is commuting with A ¼ 0, 1 and a	 is anticom-
muting. That is to say, the state vector is promoted to a
supervector. The super Hilbert space has dimension 3, two
‘‘bosons,’’ and one ‘‘fermion.’’ In more compact notation
we may write

j�i ¼ jXiaX; (72)

where X ¼ ðA;	Þ.
The super SLOCC equivalence group for a single qubit

isOSpð1j2ÞA. Under the SLð2ÞA subgroup aA transforms as
a 2 while a	 is a singlet as shown in Table II. The super
LOCC entanglement equivalence group, i.e. the group of
local unitaries, is given by uOSpð1j2ÞA, the unitary sub-
group of OSpð1j2ÞA.
The norm squared h�j�i is given by

h�j�i ¼ �A1A2a#A1
aA2

� a#	a	; (73)

where h�j ¼ ðj�iÞz and h�j�i is the conventional inner
product that is manifestly uOSpð1j2Þ invariant. The one-
superqubit state may then be normalized.
As explained in Appendix A the n-superqubit Hilbert

space is defined over a 2nþ1-dimensional Grassmann alge-
bra for which z2nþ1

S ¼ 0 for all z. So (65) terminates after a

finite number of terms:

h�j�i�1=2 ¼ Xn
k¼0

1

k!2k

Yk
j¼0

ð1� 2jÞh�j�i�ðð2kþ1Þ=2Þ
B h�j�ikS ;

(74)

where the sum only runs to n since the bracket h�j�iS is at
least quadratic in Grassmann variables. For one superqubit,
with aA pure body, this gives

h�j�i�1=2 ¼ ð�A1A2a�A1
aA2

Þ�1=2

þ 1
2ð�A1A2a�A1

aA2
Þ�3=2a#	a	 (75)

TABLE II. The action of the ospð1j2Þ generators on the super-
qubit fields.

Generator Field acted upon

aA3
a	

PA1A2
"ðA1jA3

ajA2Þ 0

2QA1
"A1A3a	 aA1
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so the normalized wave function j�̂i, for which h�̂j�̂i ¼
1, is

j�̂i ¼ jAiâA þ j	iâ	; (76)

where

âA ¼ aA½ð�A1A2a�A1
aA2

Þ�1=2 þ 1
2ð�A1A2a�A1

aA2
Þ�3=2a#	a	�;

â	 ¼ a	ð�A1A2a�A1
aA2

Þ�1=2: (77)

The one-superqubit density matrix is given by

� :¼ j�ih�j
¼ ð�ÞX2 jX1iaX1

a#X2
hX2j ¼ jA1iaA1

a#A2
hA2j � jA1i

� aA1
a#	h	j þ j	ia	a#A2

hA2j � j	ia	a#	h	j: (78)

Alternatively, in components, we may write

�X1X2
¼ hX1j�jX2i ¼ ð�ÞX2aX1

a#X2
: (79)

The density matrix is self-superadjoint,

�z
X1X2

¼ ð�st
X1X2

Þ# ¼ ð�ÞX2þX1X2�#
X2X1

¼ ð�ÞX2þX1X2ð�ÞX1a#X2
a##X1

¼ ð�ÞX2aX1
a#X2

¼ �X1X2
:

(80)

The norm squared is then given by the supertrace

str ð�Þ ¼ ð�ÞX1�X1X2hX1j�jX2i ¼
X
X

aXa
#
X

¼ X
X

ð�ÞXa#XaX ¼ h�j�i (81)

as one would expect.
Unnormalized pure state super density matrices satisfy

�2 ¼ strð�Þ�,
�2 ¼ ð�ÞX2aX1

a#X2
�X2X3ð�ÞX4aX3

a#X4

¼ �X2X3aX2
a#X3

ð�ÞX4aX1
a#X4

¼ strð�Þ�; (82)

the appropriate supersymmetric version of the conven-
tional pure state density matrix condition (17).

D. Two superqubits

The two-superqubit system (Alice and Bob) is described
by the state

� ¼ jABiaAB þ jA	iaA	 þ j 	 Bia	B þ j 	 	ia		;
(83)

where aAB is commuting, aA	 and a	B are anticommuting,
and a		 is commuting. The super Hilbert space has dimen-
sion 9: 5 bosons and 4 fermions. The super SLOCC group
for two superqubits is OSpð1j2ÞA �OSpð1j2ÞB. Under the
SLð2ÞA � SLð2ÞB subgroup aAB transforms as a ð2; 2Þ, aA	
as a ð2; 1Þ, a	B as a ð1; 2Þ, and a		 as a ð1; 1Þ as summarized
in Table III. The coefficients may also be assembled into a
ð2j1Þ � ð2j1Þ supermatrix

hXYj�i ¼ aXY ¼ aAB aA	
a	B a		

� �
: (84)

See Fig. 1.
The norm squared h�j�i is given by

h�j�i ¼ ð�ÞX1þY1�X1X2�Y1Y2a#X1Y1
aX2Y2

¼ �A1A2�B1B2a#A1B1
aA2B2

� �A1A2a#A1	aA1	

� �B1B2a#	B1
a	B1

þ a#		a		; (85)

where h�j ¼ ðj�iÞz and h�j�i is the conventional inner
product that is manifestly uOSpð1j2ÞA � uOSpð1j2ÞB
invariant.
The two-superqubit density matrix is given by

� ¼ j�ih�j ¼ ð�ÞX2þY2 jX1Y1iaX1Y1
a#X2Y2

hX2Y2j: (86)

The reduced density matrices for Alice and Bob are given
by the partial supertraces:

�A ¼ X
Y

ð�ÞYhYj�jYi ¼ X
Y

ð�ÞX2 jX1iaX1Ya
#
X2Y

hX2j; (87a)

�B ¼ X
X

ð�ÞXhXj�jXi ¼ X
X

ð�ÞY2 jY1iaXY1
a#XY2

hY2j: (87b)

In component form the reduced density matrices are
given by

TABLE III. The action of the ospð1j2Þ 
 ospð1j2Þ generators
on the 2-superqubit fields.

Generator Field acted upon

Bosons Fermions

aA3B3
a		 aA3	 a	B3

PA1A2
"ðA1jA3

ajA2ÞB3
0 "ðA1jA3

ajA2Þ	 0

PB1B2
"ðB1jB3

aA3jB2Þ 0 0 "ðB1jB3
a	jB2Þ

2QA1
"A1A3

a	B3
aA1	 "A1A3a		 aA1B3

2QB1
"B1B3

aA3	 �a	B1
aA3B1

�"B1B3
a		

aAB aA

a B a

FIG. 1. The 3� 3 square supermatrix.
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ð�AÞX1X2
¼ X

Y

ð�ÞX2aX1Ya
#
X2Y

;

ð�BÞY1Y2
¼ X

X

ð�ÞY2aXY1
a#XY2

;

(88)

and

�A ¼ str�B ¼ h�j�i: (89)

E. Three superqubits

The three-superqubit system (Alice, Bob, and Charlie) is
described by the state

j�i ¼ jABCiaABC þ jAB	iaAB	 þ jA 	 CiaA	C
þ j 	 BCia	BC þ jA 	 	iaA		 þ j 	 B	ia	B	
þ j 	 	Cia		C þ j 	 		ia			; (90)

where aAB is commuting, aAB	 aA	C a	BC are anticommut-
ing, aA		 a	B	 a		C are commuting, and a			 is anticom-
muting. The super Hilbert space has dimension 27: 14
bosons and 13 fermions. The super SLOCC group for three
superqubits is OSpð1j2ÞA �OSpð1j2ÞB �OSpð1j2ÞC.
Under the SLð2ÞA � SLð2ÞB � SLð2ÞC subgroup aABC
transforms as a ð2; 2; 2Þ, aAB	 as a ð2; 1; 1Þ, aA	C as a
ð2; 1; 2Þ, a	BC as a ð1; 2; 2Þ, aA		 as a ð2; 1; 1Þ, a	B	 as a
ð1; 2; 1Þ, a		C as a ð1; 1; 2Þ, and a			 as a ð1; 1; 1Þ as
summarized in Table IV. The coefficients may also be
assembled into a ð2j1Þ � ð2j1Þ � ð2j1Þ superhypermatrix

hXYZj�i ¼ aXYZ: (91)

See Fig. 2.
The norm squared h�j�i is given by

h�j�i ¼ ð�ÞX1þY1þZ1�X1X2�Y1Y2�Z1Z2a#X1Y1Z1
aX2Y2Z2

¼ �A1A2�B1B2�C1C2a#A1B1C1
aA2B2C2

� �A1A2�B1B2a#A1B1	aA2B2	 � �A1A2�C1C2a#A1	C1
aA2	C2

� �B1B2�C1C2a#	B1C1
a	B2C2

þ �A1A2a#A1		aA2		 þ �B1B2a#	B1	a	B2	 þ �C1C2a#		C1
a		C2

� a#			a			; (92)

where h�j ¼ ðj�iÞz and h�j�i is the conventional inner
product that is manifestly uOSpð1j2ÞA � uOSpð1j2ÞB �
uOSpð1j2ÞC invariant.

The three-superqubit density matrix is given by

� ¼ j�ih�j
¼ ð�ÞX2þY2þZ2 jX1Y1Z1iaX1Y1Z1

a#X2Y2Z2
hX2Y2Z2j: (93)

The singly reduced density matrices are defined using the

partial supertraces

�AB ¼ X
Z

ð�ÞZhZj�jZi;

�BC ¼ X
X

ð�ÞXhXj�jXi;

�CA ¼ X
Y

ð�ÞYhYj�jYi;

(94)

or

TABLE IV. The action of the ospð1j2Þ 
 ospð1j2Þ 
 ospð1j2Þ generators on the 3-superqubit fields.

Generator Bosons acted upon

aA3B3C3
aA3		 a	B3	 a		C3

PA1A2
"ðA1jA3

ajA2ÞB3C3
"ðA1jA3

ajA2Þ		 0 0

PB1B2
"ðB1jB3

aA3jB3ÞC2
0 "ðB1jB3

a	jA2Þ	 0

PC1C2
"ðC1jC3

aA3B3jC2Þ 0 0 "ðC1jC3
a		jC2Þ

2QA1
"A1A3

a	B3C3
"A1A3

a			 aA1B3	 aA1	C3

2QB1
"B1B3

aA3	C3
aA3B1	 �"B1B3a			 �a	B1C3

2QC1
"C1C3

aA3B3	 �aA3	C1
�a	B3C1

"C1C3a			
Fermions acted upon

aA3B3	 aA3	C3
a	B3C3

a			
PA1A2

"ðA1jA3
ajA2ÞB3	 "ðA1jA3

ajA2Þ	C3
0 0

PB1B2
"ðB1jB3

aA3jB3Þ	 0 "ðB1jB3
a	jB3ÞC2

0

PC1C2
0 "ðC1jC3

aA3	jC2Þ "ðC1jC3
a	B3jC2Þ 0

2QA1
"A1A3

a	B3	 "A1A3
a		C3

aA1B3C3
aA1		

2QB1
"B1B3

aA3		 aA3B1C3
�"B1B3

a		C3
�a	B1	

2QC1
aA3B3C1

�"C1C3
aA3		 �"C1C3

a	B3	 a		C1
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�AB ¼ X
Z

ð�ÞX2þY2 jX1Y1iaX1Y1Za
#
X2Y2Z

hX2Y2j;

�BC ¼ X
X

ð�ÞY2þZ2 jY1Z1iaXY1Z1
a#XY2Z2

hY2Z2j;

�CA ¼ X
Y

ð�ÞX2þZ2 jX1Z1iaX1YZ1
a#X2YZ2

hX2Z2j:
(95)

The doubly reduced density matrices for Alice, Bob, and
Charlie are given by the partial supertraces

�A ¼ X
Y;Z

ð�ÞYþZhYZj�jYZi;

�B ¼ X
X;Z

ð�ÞXþZhXZj�jXZi;

�C ¼ X
X;Y

ð�ÞXþYhXYj�jXYi;

(96)

or

�A ¼ X
Y;Z

ð�ÞX2 jX1iaX1YZa
#
X2YZ

hX2j;

�B ¼ X
X;Z

ð�ÞY2 jY1iaXY1Za
#
XY2Z

hY2j;

�C ¼ X
X;Y

ð�ÞZ2 jZ1iaXYZ1
a#XYZ2

hZ2j:

(97)

V. SUPER ENTANGLEMENT

A. Two superqubits

In seeking a supersymmetric generalization of the 2-
tangle (30) one might be tempted to replace the determi-
nant of aAB by the Berezinian of aXY

BeraXY ¼ detðaAB � aA	a�1		a	BÞa�1		 : (98)

See Appendix A. However, although the Berezinian is the
natural supersymmetric extension of the determinant, it is
not defined for vanishing a		, making it unsuitable as an
entanglement measure.

A better candidate follows from writing

detaAB ¼ 1
2a

ABaAB ¼ 1
2 trðat"a"tÞ ¼ 1

2 tr½ða"Þt"a�: (99)

This expression may be generalized by a straightforward
promotion of the trace and transpose to the supertrace and
supertranspose and replacing the SLð2Þ invariant tensor "
with the OSpð1j2Þ invariant tensor E. See Appendix A.
This yields a quadratic polynomial, which we refer to as
the superdeterminant, denoted sdet:

sdetaXY ¼ 1
2 str½ðaEÞstEa�

¼ 1
2ðaABaAB � aA	aA	 � a	Ba	B � a		a		Þ

¼ ða00a11 � a01a10 þ a0	a1	 þ a	0a	1Þ � 1
2a		

2;

(100)

which is clearly not equal to the Berezinian, but is never-
theless supersymmetric since QA annihilates aABaAB �
a	Ba	B and aA	aA	 þ a		a		, while QB annihilates
aABaAB � aA	aA	 and a	Ba	B þ a		a		. Satisfyingly,
(100) reduces to detaAB when aA	, a	B, and a		 are set
to zero. We then define the super 2-tangle as

�XY ¼ 4sdetaXYðsdetaXYÞ#: (101)

In summary, 2-superqubit entanglement seems to have the
same two entanglement classes as 2-qubits with the invari-
ant detaAB replaced by its supersymmetric counterpart
sdetaXY .
Nonsuperentangled states are given by product states for

which aAB ¼ aAbB, aA	 ¼ aAb	, a	B ¼ a	bB, a		 ¼
a	b	, and sdetaXY vanishes. This provides a nontrivial
consistency check.
An example of a normalized physical superentangled

state is given by

j�i ¼ 1ffiffiffi
3

p ðj00i þ j11i þ ij 	 	iÞ (102)

for which

sdetaXY ¼ 1
3 þ 1

2 � 13 ¼ 1
2 (103)

and

�XY ¼ 4 sdetaXYðsdetaXYÞ# ¼ 1: (104)

So this state is not only entangled but maximally en-
tangled, just like the Bell state

j�i ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ (105)

for which sdetaXY ¼ 1=2 and �XY ¼ 1. Another more
curious example is

j�i ¼ ij 	 	i; (106)

which is not a product state since a		 is pure body and
hence could never be formed by the product of two odd
Grassmann numbers. In fact, sdetaXY ¼ 1=2 and �XY ¼ 1,
so this state is also maximally entangled.
We may interpolate between these two examples with

the normalized state

aABC

a

a BC

aAB

aA C

a C

a B

aA

FIG. 2. The 3� 3� 3 cubic superhypermatrix.
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ðj�j2 þ j	j2Þ�1=2½�j�iBell þ 	j 	 	i�; (107)

where �, 	 2 C, for which we have

sdetaXY ¼ 1

2

�2 � 	2

j�j2 þ j	j2 ; �XY ¼ j�2 � 	2j2
ðj�j2 þ j	j2Þ2 :

(108)

The entanglement for this state is displayed as a function of
the complex parameter 	 in Fig. 3 for the case � ¼ 1.
Note, in particular, that while the entanglement is maxi-
mized for arbitrary pure imaginary 	, it has its minimum
value on the real axis at 	 ¼ �1 as shown in Fig. 4.

B. Three superqubits

In seeking to generalize the 3-tangle (39), invariant
under ½SLð2Þ�3, to a supersymmetric object, invariant
under ½OSpð1j2Þ�3, we need to find a quartic polynomial
that reduces to Cayley’s hyperdeterminant when aAB	,
aA	C, a	BC, aA		, a	B	, a		C, and a			 are set to zero.
We do this by generalizing the � matrices:

�A1A2 :¼ aA1

BCaA2BC � aA1

B	aA2B	 � aA1

	CaA2	C
� aA1

		aA2		; (109a)

�A1	 :¼ aA1

BCa	BC þ aA1

B	a	B	 þ aA1

	Ca		C
� aA1

		a			; (109b)

�	A2
:¼ a	BCaA2BC � a	B	aA2B	 � a		CaA2	C

� a			aA2		; (109c)

together with their B and C counterparts; notice that the
building blocks with two indices are bosonic and those
with one index are fermionic. The final bosonic possibility,
�ð		Þ, vanishes identically. The simple supersymmetry

relations are given by

QA1
�A2A3

¼ "A1ðA2
�A3Þ	; QA1

�A2	 ¼ 1
2�A1A2

;

QB�A1A2
¼ 0 ¼ QC�A1A2

; QB�A	 ¼ 0 ¼ QC�A	:
(110)

Using these expressions we define the superhyperdetermi-
nant, denoted sDeta:

sDet aXYZ ¼ 1
2ð�A1A2�A1A2

� �A	�A	 � �	A�	AÞ; (111)

which is invariant under the action of the superalgebra. The
corresponding expressions singling out superqubits B and
C are also invariant and equal to (111). sDetaXYZ can be
seen as the definition of the super-Cayley determinant of
the cubic superhypermatrix given in Fig. 2.

FIG. 3 (color online). The 2-tangle �XY for the state (107) for a
complex parameter 	.

3 2 1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

1.2

XY

2 tangle with real

FIG. 4 (color online). The 2-tangle �XY for the state (107) for a
real parameter 	.
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Writing

�A :¼ �A1A2
�A1	

�	A2
�		

� �
¼ �A1A2

�A1	
�A2	 0

� �
; (112)

we obtain an invariant analogous to (100)

sDet aXYZ ¼ 1
2 str½ð�AEÞstE�A� (113)

so that

sDet aXYZ ¼ �sdet�A (114)

in analogy to the conventional three-qubit identity (38).
This result for sDet agrees with that of [7].

Finally, using �A we are able to define the supersym-
metric generalization TXYZ of the 3-qubit tensor TABC as
defined in (37),

TXYZ ¼ �A
XX0aX

0
YZ: (115)

It is not difficult to verify that TXYZ transforms in precisely
the same way as aXYZ (as given in Table IV) under
ospð1j2Þ 
 ospð1j2Þ 
 ospð1j2Þ. The superhyperdetermi-
nant may then also be written as

sDetaXYZ ¼ TABCa
ABC þ T	BCa	BC � TA	CaA	C

� TAB	aAB	 � TA		aA		 þ T	B	a	B	

þ T		Ca		C � T			a			: (116)

In this sense sDetaXYZ, ð�AÞX1X2
, and TXYZ are the natu-

ral supersymmetric generalizations of the hyperdetermi-
nant, DetaABC, and the covariant tensors, ð�AÞA1A2

and

TABC, of the conventional 3-qubit treatment summarized
in III B. Finally we are in a position to define the super 3-
tangle:

�XYZ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sDetaXYZðsDetaXYZÞ#

q
: (117)

In summary, 3-superqubit entanglement seems to have the
same five entanglement classes as that of 3-qubits shown in
Table I, with the covariants aABC, �

A, �B, �C, TABC, and
DetaABC replaced by their supersymmetric counterparts
aXYZ, �

A, �B, �C, TXYZ, and sDetaABC.
Completely separable nonsuperentangled states are

given by product states for which aABC ¼ aAbBcC, aAB	 ¼
aAbBc	, aA	C ¼ aAb	cC, a	BC ¼ a	bBcC, aA		 ¼
aAb	c	, a	B	 ¼ a	bBc	, a		C ¼ a	b	cC, a			 ¼
a	b	c	, and sDetaXYZ vanishes. This provides a nontrivial
consistency check.

An example of a normalized physical biseparable state is
provided by

j�i ¼ 1ffiffiffi
3

p ðj000i þ j011i þ j0 	 	iÞ (118)

for which

ð�AÞ00 ¼ 1
3 (119)

and �B, �C, TXYZ, and sDetaXYZ vanish. More generally,
one can consider the combination

j�i ¼ ðj�j2 þ j	j2Þ�1=2

�
�
1ffiffiffi
2

p �ðj000i þ j011iÞ þ 	j0 	 	i
�

(120)

for which

ð�AÞ00 ¼ �2 � 	2

j�j2 þ j	j2 (121)

and the other covariants vanish.
An example of a normalized physical W state is pro-

vided by

j�i ¼ 1ffiffiffi
6

p ðj110i þ j101i þ j011i þ j 	 	1i þ j 	 1	i

þ j1 	 	iÞ (122)

for which

ð�AÞ11 ¼ ð�BÞ11 ¼ ð�CÞ11 ¼ �1
2 (123)

and

T111 ¼ 1

2
ffiffiffi
6

p (124)

while sDetaXYZ vanishes. One could also consider

j�i ¼ 1ffiffiffi
3

p ðj�j2 þ j	j2Þ�1=2½�ðj110i þ j101i þ j011iÞ

þ 	ðj 	 	1i þ j 	 1	i þ j1 	 	iÞ� (125)

for which

ð�AÞ11 ¼ ð�BÞ11 ¼ ð�CÞ11 ¼ � 2�2 þ 	2

3ðj�j2 þ j	j2Þ (126)

and

T111 ¼ �ð2�2 þ 	2Þ
3

ffiffiffi
3

p ðj�j2 þ j	j2Þ3=2 (127)

while the other T components and sDetaXYZ vanish.
An example of a normalized physical superentangled

state is provided by

j�i ¼ 1ffiffiffi
8

p ðj000i þ j 	 	0i þ j 	 0	i þ j0 	 	i þ j111i

þ j 	 	1i þ j 	 1	i þ j1 	 	iÞ (128)

for which

sDetaXYZ ¼ 1

64
(129)

and
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�XYZ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sDetaXYZðsDetaXYZÞ#

q
¼ 1

16
: (130)

VI. CONCLUSION

In this paper we have taken the first steps toward gen-
eralizing quantum information theory to super quantum
information theory. We introduced the superqubit defined
over an appropriate super Hilbert space. We acknowledge
that there are still important issues to address, notably how
to interpret ‘‘physical’’ states with nonvanishing soul for
which probabilities are no longer real numbers but ele-
ments of a Grassman algebra. (The sum of the probabilities
still add up to one, however.) The examples of V avoided
this problem, being pure body. DeWitt advocates retaining
only such pure body states in the Hilbert space [23], but
this may be too draconian. See [27] for an alternative
approach.

Nevertheless, for the SLOCC equivalence group
½SLð2;CÞ�n and the LOCC equivalence group ½SUð2Þ�n,
we presented their minimal supersymmetric extensions,
½OSpð1j2Þ�n and ½uOSpð1j2Þ�n, respectively, and showed
explicitly how superqubits would transform under these
groups for n ¼ 1, 2, 3. Furthermore, we found supersym-
metric invariants that are the obvious candidates for super-
symmetric entanglement measures for n ¼ 2, 3. We hope
in future work to classify fully the 2 and 3 superqubit
entanglement classes and their corresponding orbits as
was done for the 2 and 3 qubit entanglement classes in
[2,4,6].

As noted in the Introduction, a physical realization of
our superqubit is more likely to be found in condensed-
matter physics than high-energy physics. While the polar-
izations of a photon or the spins of an electron provide
examples of a qubit, the inclusions of photinos or selec-
trons do not obviously provide examples of a superqubit,
since the supersymmetrization of the (S)LOCC equiva-
lence groups is distinct from the supersymmetrization of
the spacetime Poincaré group.

We would also like to point out that this work is part of
the ongoing correspondence between ideas in string and
M-theory and ideas in quantum information theory. See
[28] for a review. This paper continues the trend of using
mathematical tools from one side to describe phenomena
on the other.
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Note added.—A very interesting paper has recently ap-
peared [32], which analyzes quantum computing with
superqubits.

APPENDIX A: SUPERLINEAR ALGEBRA

Grassmann numbers are the 2n-dimensional vectors pop-
ulating the Grassmann algebra�n, which is generated by n
mutually anticommuting elements f
igni¼1.
Any Grassmann number z may be decomposed into

‘‘body’’ zB 2 C and ‘‘soul’’ zS viz.

z ¼ zB þ zS ; zS ¼ X1
k¼1

1

k!
ca1���ak


a1 � � � 
ak ; (A1)

where ca1���ak 2 C are totally antisymmetric. For finite

dimension n the sum terminates at k ¼ 2n and the soul is
nilpotent znþ1

S ¼ 0.
One may also decompose z into even and odd parts u and

v

u ¼ zB þ X1
k¼1

1

ð2kÞ! ca1���a2k

a1 � � � 
a2k ;

v ¼ X1
k¼0

1

ð2kþ 1Þ! ca1���a2kþ1

a1 � � � 
a2kþ1 ;

(A2)

which may also be expressed as the direct sum decompo-
sition�n ¼ �0

n 
�1
n. Furthermore, analytic functions f of

Grassmann numbers are defined via

fðzÞ :¼ X1
k¼0

1

k!
fðkÞðzBÞzkS ; (A3)

where fðkÞðzBÞ is the kth derivative of f evaluated at zB and
is well defined if f is nonsingular at zB [23].
One defines the grade of a Grassmann number as

degx :¼
�
0 x 2 �0

n

1 x 2 �1
n;

(A4)

where the grades 0 and 1 are referred to as even and odd,
respectively.
Define the star ? and superstar # operators [25,26,29]

satisfying the following properties:

ð�0
nÞ? ¼ �0

n; ð�1
nÞ? ¼ �1

n;

ð�0
nÞ# ¼ �0

n; ð�1
nÞ# ¼ �1

n;

ðx
iÞ? ¼ x�
?i ; 
??i ¼ 
i; ð
i
jÞ? ¼ 
?j 

?
i ;

ðx
iÞ# ¼ x�
#i ; 
##i ¼ �
i; ð
i
jÞ# ¼ 
#i 

#
j ;

(A5)

where x 2 C and � is ordinary complex conjugation, which
means

�?? ¼ �; �## ¼ ð�Þdeg�� (A6)

for pure even/odd Grassmann �. The impure case follows
by linearity.
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Following [23] one may, if so desired, take the formal
limit n ! 1 defining the infinite dimensional vector space
�1. Elements of �1 are called supernumbers. Our results
are independent of the dimension of the underlying
Grassmann algebra and one can use supernumbers
throughout, but for the sake of simplicity we restrict to
finite dimensional algebra by assigning just one
Grassmann generator 
 and its superconjugate 
# to every
superqubit.

The grade definition applies to the components TX1���Xk

of any k-index array of Grassmann numbers T, but one
may also define degXi, the grade of an index, for such an
array by specifying a characteristic function from the range
of the index Xi to the set f0; 1g. In general the indices can
have different ranges and the characteristic functions can
be arbitrary for each index. It is then possible to define
degT, the grade of an array, as long as the compatibility
condition

degT � degðTX1���Xk
Þ þXk

i¼1

degXi mod 2 8 Xi (A7)

is satisfied. In precisely such cases the entries of T satisfy

degðTX1���Xk
Þ ¼ degT þXk

i¼1

degXi mod 2;

) degT ¼ degðT1 � � � 1|fflffl{zfflffl}
k

Þ;

degðT1T2Þ ¼ degT1 þ degT2 mod 2; (A8)

so that in other words T is partitioned into blocks with
definite grade such that the nearest neighbors of any block
are of the opposite grade to that block. The array grade
simply distinguishes the two distinct ways of accomplish-
ing such a partition (i.e. the two possible grades of the first
element T1���1). Grassmann numbers and the Grassmann
number grade may be viewed as special cases of arrays and
the array grade.

Special care must be taken not to confuse this notion of
array grade with whether the array entries at even/odd
index positions vanish. An array T may be decomposed as

T ¼ TE þ TO; (A9)

where the pure even part TE is obtained from T by setting
to zero all entries satisfying degðTX1���Xk

Þ ¼ 1, and simi-

larly mutatis mutandis for TO. The property of being pure
even or pure odd is therefore independent of the array
grade as defined above.

The various grades commonly appear in formulas as
powers of �1 and the shorthand

ð�ÞX :¼ ð�1ÞdegX (A10)

is often used. The indices of superarrays may be super-
symmetrized as follows:

TX1���½½Xij���jXj�����Xk

:¼ 1
2½TX1���Xi���Xj���Xk

þ ð�ÞXiXjTX1���Xj���Xi���Xk
�: (A11)

While we require these definitions for some of our consid-
erations, one typically only uses arrays with 0, 1, or 2
indices where the characteristic functions are monotonic:
supernumbers, supervectors, and supermatrices, respec-
tively. Functions of grades extend to mixed superarrays
(with nonzero even and odd parts) by linearity.
A ðpjqÞ � ðrjsÞ supermatrix is just an ðpþ qÞ � ðrþ

sÞ-dimensional block partitioned matrix

M ¼
r s

p
q

A B
C D

� �
; (A12)

where entries in the A and D blocks are grade degM, and
those in the B and C blocks are grade degMþ 1mod 2.
The special cases s ¼ 0 or q ¼ 0 can be permitted to make
the definition encapsulate row and column supervectors.
Supermatrix multiplication is defined as for ordinary ma-
trices; however, the trace, transpose, adjoint, and determi-
nant have distinct super versions [25,30].
The supertrace strM of a supermatrix is M defined as

str M :¼ X
X

ð�ÞðXþMÞXMXX (A13)

and is linear, cyclic modulo sign, and insensitive to the
supertranspose

strðMþ NÞ ¼ strðMÞ þ strðNÞ;
strðMNÞ ¼ ð�ÞMNstrðNMÞ; strMst ¼ strM:

(A14)

The supertranspose Mst of a supermatrix M is defined
componentwise as

Mst
X1X2

:¼ ð�ÞðX2þMÞðX1þX2ÞMX2X1
: (A15)

Unlike the transpose the supertranspose is not idempotent;
instead,

Mst st
X1X2

¼ ð�ÞðX1þX2ÞMX1X2
;

Mst st st
X1X2

¼ ð�ÞðX1þMÞðX1þX2ÞMX2X1
;

Mst st st st
X1X2

¼ MX1X2
;

(A16)

so that it is of order 4. The supertranspose also satisfies

ðMNÞst ¼ ð�ÞMNNstMst: (A17)

The adjoint y and superadjoint z of a supermatrix are
defined as

My :¼ M?t; Mz :¼ M#st; (A18)

and satisfy

Myy ¼ M; Mzz ¼ ð�ÞMM;

ðMNÞy ¼ NyMy; ðMNÞz ¼ ð�ÞMNNzMz:
(A19)
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The preservation of anti-super-Hermiticity, Mz ¼ �M,
under scalar multiplication by Grassmann numbers, as
required for the proper definition of uospð1j2Þ [31], ne-
cessitates the left/right multiplication rules:

ð�MÞX1X2
¼ ð�ÞX1��MX1X2

;

ðM�ÞX1X2
¼ ð�ÞX2�MX1X2

�:
(A20)

The Berezinian is defined as

BerM :¼ detðA� BD�1CÞ= detðDÞ
¼ detðAÞ= detðD� CA�1BÞ (A21)

and is multiplicative, insensitive to the supertranspose, and
generalizes the relationship between trace and determinant

BerðMNÞ ¼ BerðMÞBerðNÞ;
BerMst ¼ BerM;

BereM ¼ estrM:

(A22)

The direct sum and super tensor product are unchanged
from their ordinary versions. As such, the dimension of the
tensor product of two superqubits is given by

ð2j1Þ � ð2j1Þ ¼ ð2j1j2j3j1Þ; (A23)

while the threefold product is

ð2j1Þ�3 ¼ ð2j1j2j3j3j1j2j3j1j2j1j2j3j1Þ; (A24)

with similar results holding for the associated density
matrices. In analogy with the ordinary case we have

ðM � NÞt ¼ Mt � Nt;

ðM � NÞst ¼ Mst � Nst;

strðM � NÞ ¼ strMstrN:

(A25)

These definitions are manifestly compatible with
Hermiticity and super-Hermiticity.

Denoting the total number of bosonic elements in the
product of n superqubits by Bn, and similarly the total
number of fermionic elements by Fn, we know that Bn

(Fn) is given by the total number of basis kets with an even
(odd) number of 	’s:

Bn ¼ n
0

� �
2n þ n

2

� �
2n�2 þ � � � ¼ 3n þ 1

2
;

Fn ¼ n
1

� �
2n�1 þ n

3

� �
2n�3 þ � � � ¼ 3n � 1

2
;

(A26)

so that, in particular, Bn � Fn ¼ 1: the number of bosonic
elements is always one more than the number of fermionic
ones.

In supermatrix representations of superalgebras, one
may represent the superbracket of generators M and N as

½½M;N�� :¼ MN � NEM� NOðME �MOÞ: (A27)

One may also consider supermatrices M and N whose

components are themselves supermatrices. Provided the
component supermatrices are pure even (odd) at even
(odd) index positions (e.g. M11 is a pure even supermatrix
for even M), one may write the superbracket of such
supermatrices as

½½MX1X2
; NX3X4

�� ¼ MX1X2
NX3X4

� ð�ÞðX1þX2ÞðX3þX4ÞNX3X4
MX1X2

;

(A28)

where the final two indices are suppressed. This grouping
of supermatrices into supermatrices is useful for summa-
rizing the superbrackets of superalgebras.

APPENDIX B: ORTHOSYMPLECTIC
SUPERALGEBRAS

Supermatrix representations of the orthosymplectic
supergroup OSpðpj2qÞ consist of supermatrices M 2
GLðpj2qÞ satisfying

MstEM ¼ E; (B1)

but for convenience we choose instead to use supermatrices
M 2 GLð2qjpÞ satisfying (B1). In this convention, the
invariant supermatrix E is defined by

E :¼ J2q 0
0 1p

� �
; J2q :¼ 0 1p

�1p 0

� �
: (B2)

Definitions of supermatrices, the supertranspose, and fur-
ther details of superlinear algebra may be found in
Appendix A.
Writing a generic supermatrix M of the super Lie alge-

bra ospðpj2qÞ as

M ¼ A B
C D

� �
(B3)

permits (B1) to be rewritten as the following conditions on
the blocks of the algebra supermatrices:

AtJ ¼ �JA; C ¼ BtJ; Dt ¼ �D: (B4)

Depending on the value of p, the superalgebra falls into
one of three basic, ‘‘classical’’ families

ospðpj2qÞ ¼
8<
:
Bðr; qÞ p ¼ 2rþ 1; r � 0
Cðqþ 1Þ p ¼ 2
Dðr; qÞ p ¼ 2r; r � 2:

(B5)

Clearly it is the first case that will concern us, in particular,
with r ¼ 0, q ¼ 1. Bðr; qÞ has rank qþ r, dimension
2ðqþ rÞ2 þ 3qþ r, and even part soðpÞ 
 spð2qÞ, which
for ospð1j2Þ are 1, 5, and slð2Þ, respectively.
One generates ospðpj2qÞ as a matrix superalgebra by

defining the supermatrices U and G

ðUX1X2
ÞX3X4

:¼ �X1X4
�X2X3

; G :¼ J2q 0
0 Hp

� �
; (B6)
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where

Hp :¼
�
�1 � 1r p ¼ 2r
½�1 � 1r� 
 ð1Þ p ¼ 2rþ 1

(B7)

with �1 being the first Pauli matrix. Here the indices Xi

range from 1 to 2qþ p and are partitioned as Xi ¼ ð �Xi; _XiÞ
with �Xi ranging from 1 to 2q, and _Xi taking on the
remaining p values. Note that under (B6), G has the
following symmetry properties:

G �X1
�X2
¼ �G �X2

�X1
; G _X1

_X2
¼ þG _X2

_X1
;

G �X1
_X2
¼ 0 ¼ G _X2

�X1
;

(B8)

which are shared with the invariant supermatrix E. In the
special case p ¼ 1, G reduces to E.

The generators T are obtained as

TX1X2
¼ 2G½½X1jX3

UX3jX2��; (B9)

where T has array grade zero and the index grades are
monotonically increasing:

degX :¼
�
0 X 2 f1; . . . ; 2qg
1 X 2 f2qþ 1; . . . ; 2qþ pg: (B10)

Clearly T has symmetry properties TX1X2
¼ T½½X1X2��. The

2qð2qþ 1Þ=2 generators T �X1
�X2
generate spð2qÞ, the pðp�

1Þ=2 generators T _X1
_X2
generate soðpÞ, and both are even

(bosonic), while the 2pq generators T �X1
_X2
are odd (fermi-

onic). These supermatrices yield the ospðpj2qÞ super-
brackets

½½TX1X2
; TX3X4

�� :¼ 4G½½X1½½X3
TX2��X4��; (B11)

where the supersymmetrization on the right-hand side is
over pairs X1X2 and X3X4 as on the left-hand side. The
action of the generators on (2qjp)-dimensional supervec-
tors aX is given by

ðTX1X2
ÞX3X4

aX4
� ðTX1X2

aÞX3
¼ 2G½½X1jX3

aX2��: (B12)

This action may be generalized to an N-fold super tensor
product of (2qjp) supervectors by labeling the indices with
integers k ¼ 1; 2; . . . ; N

ðTXkYk
aÞZ1���Zk���ZN

¼ð�ÞðXkþYkÞ
P

k�1
i¼1

jZij2G½½XkjZk
aZ1���jYk�����ZN

:

(B13)

In our special case p ¼ 1 we denote the lone dotted index
_Xi by a bullet 	 and start counting the barred indices at zero
so that Xi ¼ ð0; 1;	Þ. Obviously the T		 generator van-
ishes identically, leaving only the following superbrackets:

½TA1A2
; TA3A4

� ¼ 4EðA1ðA3
TA2ÞA4Þ;

½TA1A2
; TA3	� ¼ 2EðA1jA3

TA2Þ	;

fTA1	; TA2	g ¼ TA1A2
;

(B14)

which are written out in Table V with TA � TA	 � T	A.
Explicitly the generators are

T01 ¼
�1 0 0
0 1 0
0 0 0

0
@

1
A; T00 ¼

0 2 0
0 0 0
0 0 0

0
@

1
A;

T11 ¼
0 0 0
�2 0 0
0 0 0

0
@

1
A;

(B15a)

appearing with Grassmann even coefficients with complex
parameters, and

T0 ¼
0 0 1
0 0 0
0 1 0

0
@

1
A; T1 ¼

0 0 0
0 0 1
�1 0 0

0
@

1
A; (B15b)

appearing with Grassmann odd coefficients with complex
parameters. In particular, (B15a) with complex coefficients
generate the bosonic subalgebra slð2;CÞ. In order to make
contact with [7], we rescale the generators into a new
supermatrix P

PX1X2
:¼ 1

2TX1X2
� E½½X1jX3

UX3jX2�� (B16)

to yield the superbrackets

½PA1A2
; PA3A4

� ¼ 2"ðA1ðA3
PA2ÞA4Þ;

½PA1A2
; QA3

� ¼ "ðA1jA3
QA2Þ;

fQA1
; QA2

g ¼ 1
2PA1A2

;

(B17)

where QA � PA, which are summarized as

½½PX1X2
; PX3X4

�� ¼ 2E½½X1½½X3
PX2��X4��: (B18)

The rescaled generators have the action

ðPX1X2
aÞX3

¼ E½½X1jX3
aX2��;

ðPXkYk
aÞZ1���Zk���ZN

¼ ð�ÞðXkþYkÞ
P

k�1
i¼1

ZiE½½XkjZk
aZ1���jYk�����ZN

;

(B19)

which summarizes Tables II, III, and IV.

TABLE V. ospð1j2Þ superbrackets.
T01 T00 T11 T0 T1

T01 0 �2T00 2T11 �T0 T1

T00 2T00 0 4T01 0 2T0

T11 �2T11 �4T01 0 �2T1 0

T0 T0 0 2T1 T00 T01

T1 �T1 �2T0 0 T01 T11
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