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We construct a simple N ¼ ð0; 2Þ deformation of the two-dimensional Wess-Zumino model. In

addition to superpotential, it includes a ‘‘twisted’’ superpotential. Supersymmetry may or may not be

spontaneously broken at the classical level. In the latter case an extra right-handed fermion field �R
involved in the N ¼ ð0; 2Þ deformation plays the role of Goldstino.
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Recently it was found [1,2] that non-Abelian string
solitons in certain N ¼ 1 bulk gauge theories are de-
scribed on the world sheet by N ¼ ð0; 2Þ deformations
of the CPðN � 1Þ models. This finding raised interest to
N ¼ ð0; 2Þ deformations of two-dimensional N ¼ ð2; 2Þ
models in general. Here we will consider N ¼ ð0; 2Þ
deformations of the Wess-Zumino model [3]. General
elements of N ¼ ð0; 2Þ deformations were worked out
by Witten [4,5]. A broad class of the ð0; 2Þ Landau-
Ginzburg models were analyzed, from various perspec-
tives, in [6–8]. The prime interest of these studies was
the flow of the ð0; 2Þ Landau-Ginzburg models to nontrivial
ð0; 2Þ superconformal field theories [6,7], and N ¼ ð0; 2Þ
analogs of the topological rings in theN ¼ ð2; 2Þ theories
[8].

Here we will consider the N ¼ ð0; 2Þ deformation of
the Wess-Zumino model with the emphasis on an aspect
which will be thoroughly studied in a subsequent publica-
tion [9], namely, spontaneous breaking/nonbreaking of
supersymmetry. Related issues of interest are (i) a non-
renormalization theorem; (ii) Bogomol’nyi-Prasad-
Sommerfield (BPS) saturation of possible kinks. We use
a formalism which is simple enough and is adequate to the
problem. It parallelizes the formalism exploited in [2] to
construct the heterotic CPðN � 1Þ model; see also [10].
For simplicity we consider only the simplest version of the
Wess-Zumino model, in which interactions come only
from the potential term. Generalizations are straightfor-
ward; see also [6,7].

We find that, even though the N ¼ ð0; 2Þ supersymme-
try is implemented at the Lagrangian level, generically
supersymmetry is spontaneously broken at the tree level.
One can fine-tune a free parameter of the model in such a
way that it stays unbroken at the tree level, and then
(presumably) to any finite order in perturbation theory.

Two space-time coordinates are

x� ¼ ft; zg; � ¼ 0; 1: (1)

The N ¼ ð2; 2Þ superspace is spanned by1

fx�; ��; ���g; �; � ¼ 1; 2: (2)

In addition to the standard chiral superfields �a of the
conventional Wess-Zumino model, we will introduce
N ¼ ð0; 2Þ superfields

B ¼ f�Rðx� þ i �����Þ þ ffiffiffi
2

p
�RF g�yL;

By ¼ �Lf�yR ðx� � i �����Þ þ ffiffiffi
2

p
�yRF yg:

(3)

Since �L and �yL enter in Eq. (3) explicitly, B and By are
not superfields with regards to the supertransformations

with parameters �L, �
y
L. These supertransformations are

absent in the heterotic model. Only those survive which are

associated with �R, �
y
R. Note thatB andBy are superfields

with regards to the shifts with �R, �
y
R. As usual, we will

introduce a shorthand for the chiral coordinate

~x � ¼ x� þ i �����: (4)

Then the transformation laws with the parameters �R, �
y
R

are as follows (we set �L ¼ �yL ¼ 0):

��R ¼ �R; ��yR ¼ �yR;

�~x0 ¼ 2i�yR�R; �~x1 ¼ 2i�yR�R:
(5)

With respect to such supertransformations, B and By are
superfields. Indeed,

��R ¼ ffiffiffi
2

p
F �R; �F ¼ ffiffiffi

2
p

ið@L�RÞ�yR; (6)

plus Hermitian conjugate transformations.

1The gamma matrices are chosen as �0 ¼ �t ¼ 	2, �1 ¼
�z ¼ i	1, �5 � �0�1 ¼ 	3. Moreover, �� ¼ �y�0. With these
definitions, the � ¼ 1 spinor component is right-handed while
� ¼ 2 is left-handed.
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Thus, the boson sector of the deformed model coincides
with that of the conventional Wess-Zumino model, while
the fermion sector is expanded. In addition to the fermion
fields c a

R;L of the Wess-Zumino model, it includes a right-

handed fermion field �R.
The N ¼ ð0; 2Þ action can be written as

S¼
Z

d2xfd4��ay�a þ½d2�W ð�aÞþH:c:�þ�Lhg;

�Lh ¼
� ffiffiffi

2
p



Z

d�yLd�RBþH:c:

�
� 2

Z
d4�ByB

þ 2

�Z
d�yLd�R�Ld�LBSð�aÞþH:c:

�
; (7)

where the second term presents the heterotic deformation,
W is the superpotential, while Sð�aÞ is a function of the
chiral superfield � which couples the heterotic sector to
the conventional Wess-Zumino model. (Some generaliza-
tions will be considered later.) Let us call it h superpoten-
tial. Moreover, 
 is a constant of dimension of mass. Note
that both superpotential and h superpotential have dimen-
sions of mass too. The terms containing B and given by
integrals over a reduced superspace will be referred to as h
terms. Adding a constant to the h superpotential is equiva-
lent to shifting 
 since they enter only in the combination
Sð�aÞ þ 
; see Eq. (9). One can use this freedom to fix the
value of S at some given point, without loss of generality.

In components

L ¼ @��
ay@��a þ �c a��i@�c

a þ FayFa

þ fFa@aW � ð@a@bW Þðc a
Lc

b
RÞ þ H:c:g þ �Lh;

(8)

where

�Lh ¼ �yRi@L�R þF yF þ fF ½Sð�aÞ þ 
�
� �Rc

a
L@aS þ H:c:g; (9)

and

@L ¼ @t þ @z; @R ¼ @t � @z: (10)

The auxiliary superfield F , as usual, can be eliminated via
equations of motion,

F y ¼ �½Sð�aÞ þ 
�: (11)

Then the bosonic part of Lh takes the form

L h;bos ¼ �jSð�aÞ þ 
j2: (12)

Adding the Wess-Zumino part we obtain the scalar poten-
tial,

V ¼ j@aW j2 þ jSð�aÞ þ 
j2: (13)

Supersymmetric vacua exist (at the classical level) pro-
vided that the set of equations

@aW ¼ 0 ðall aÞ; Sð�aÞ þ 
 ¼ 0 (14)

are satisfied at one or more critical points ��. Considering

 as a free parameter one can always fine-tune it in such a
way that at least one vacuum [a solution @aW ð��Þ ¼ 0]
will be classically supersymmtric.
It is instructive to derive conserved supercurrents. If in

the undistorted model withN ¼ ð2; 2Þ supersymmetry we
had four conserved supercurrents, J

�
L , J

�
R , and their com-

plex conjugated, now we expect only two of those to
survive. The conserved components are

J
�
L ¼ ffiffiffi

2
p fi��c y

RFþ i���yRF þ ���c L@L�
yg;

ðJ�L Þy ¼ ffiffiffi
2

p f�i��c RF
y � i���RF y þ ���c y

L@L�g;
(15)

where summation over a is implicit, and we defined two
conjugated 2-vectors,

�� ¼ f1; 1g; ��� ¼ f1;�1g: (16)

The corresponding superalgebra is as follows:

fQy
LQLg ¼ 2ðH� PzÞ: (17)

From Eq. (17) it is obvious that massless right movers can
(and do) form short (single-state) ‘‘multiplets.’’
In theN ¼ ð2; 2ÞWess-Zumino model (B ¼ 0) there is

a relation for the dilatation operator

ð��J
�ÞL;R ¼ i2

ffiffiffi
2

p
Fðc yÞL;R: (18)

In the N ¼ ð0; 2Þ-deformed model the analog of this
relation is

���J
�
L ¼ i2

ffiffiffi
2

p ðFc y
R þF �yR Þ: (19)

Some generalizations.—In addition to (9), one can
couple theB field to other fields through a number of extra
terms, for instance,

Z
d4�ByBfð��yÞ or

Z
d4�B~fð��yÞ þ H:c:

(20)

The first term gives, in particular, a coupling of the �
kinetic term with the �, �y fields. As was mentioned,
such interactions will not be considered for the time being.
The second term was considered in [2]. It generates the
�R@L�

yc R interaction and an additional bifermion term

c y
Lc R in (11), as well as �yRc L in F, resulting in four-

fermion interactions in the Lagrangian.
Nonrenormalization of h terms.—As well-known, F

terms in the effective Lagrangian in theN ¼ ð2; 2Þ theory
are protected from renormalizations by nonrenormaliza-
tion theorems [11,12]. Thus, the superpotential term, being
an integral over a reduced superspace, is unaffected by
loops. Since the h terms are also given by integrals over a
reduced superspace, similar theorems can be established in
the N ¼ ð0; 2Þ models for these terms. An appropriate
choice of the background field in this case is
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�y
b ¼ 0; �b ¼ C1 þ C�

2 �� þ C3�
2;

By
b ¼ 0; Bb ¼ C4�

y
L þ C5�R�

y
L;

(21)

where the subscript ‘‘b’’ marks the background fields, and
C1;2;3;4;5 are c-numerical constants. This choice assumes

that � and �y are treated as independent variables, not
connected by complex conjugation, and so are B and By
(i.e. we keep in mind a kind of analytic continuation). The
x independent fields (21) are invariant under the action of

Qy
L. Next, to do the calculation of the effective action we

decompose the superfields

� ¼ �b þ�qu; �y ¼ �b þ�y
qu;

B ¼ Bb þ�qu; By ¼ Bb þBy
qu;

(22)

where the subscript ‘‘qu’’ denotes the quantum part of the
superfield, expand the action in �qu, Bqu dropping the

linear terms, and treat the remainder as the action for the
quantum fields. We, then, integrate the quantum fields over,
order by order, keeping the background field fixed. The
crucial point is that in the given background field (a) the

terms containing W and B, without W y and By, do not
vanish, and (b) there exists an exact supersymmetry under

Qy
L-generated supertransformations.
After substituting in loops Green’s functions in the given

background and integrating over all vertices except the first
one, we arrive at an expression of the type

Z
d�yR � ða �yR independent functionÞ ¼ 0: (23)

The �yR independence follows from the fact that our super-

space is homogeneous in the �yR direction even in the
presence of the background field (21). This completes the
proof of nonrenormalization of F and h terms in theN ¼
ð0; 2Þ theory.
A subtle point here is that this proof tacitly assumes the

absence of infrared singularities. Thus, it is certainly valid
for the Wilsonean effective action [13]. If infrared contri-
butions are included (i.e. the generator of 1-particle irre-
ducible amplitudes is studied) the question should be
investigated on a case by case basis.
Kinks.—N ¼ ð2; 2Þ models with two or more super-

symmetric vacua (two or more zeros of @aW ) support
interpolating kink solutions which, typically, are 1=2
BPS saturated, i.e. preserve two out of four supersymme-
tries of theN ¼ ð2; 2Þmodel under consideration. Adding
an N ¼ ð0; 2Þ deformation can destroy vacuum degener-
acy and, thus, eliminate kinks altogether. Even if we
choose a deformatioin of a special form which does not
break N ¼ ð0; 2Þ supersymmetry in two or more vacua,
BPS-saturated kinks do not exist in such theories. This is
readily seen through the Bogomoln’yi completion [14].
With the heterotic deformation switched on the
Bogomol’nyi completion of the bosonic part of the energy
functional is impossible, generally speaking.
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