
Entropic force and entanglement system

Yun Soo Myung* and Yong-Wan Kim†

Institute of Basic Science and School of Computer Aided Science, Inje University, Gimhae 621-749, Republic of Korea
(Received 8 March 2010; revised manuscript received 19 April 2010; published 12 May 2010)

We introduce the isothermal cavity, static holographic screen, and accelerating surface as holographic

screen to study the entropic force in the presence of the Schwarzschild black hole. These may merge to

provide a consistent holographic screen to define the entropic force on the stretched horizon near the event

horizon. Considering the similarity between the stretched horizon of black hole and the entanglement

system, we may define the entropic force in the entanglement system without referring to the source mass.
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I. INTRODUCTION

Since the discovery of the laws of black hole thermody-
namics [1], Bekenstein [2] and Hawking [3] have sug-
gested a deep connection between gravity and
thermodynamics, realizing black hole entropy and
Hawking radiation. Later on, Jacobson [4] has demon-
strated that Einstein equations (describing relativistic
gravitation) could be derived by combining general ther-
modynamic pictures with the equivalence principle.
Padmanabhan [5] has observed that the equipartition law
for horizon degrees of freedom combined with the Smarr
formula leads to Newton’s law of gravity.

Recently, Verlinde has proposed the Newtonian force
law as an entropic force (nonrelativistic version) by using
the holographic principle and the equipartition rule [6]. If it
is proven correct, gravity is not a fundamental interaction,
but an emergent phenomenon that arises from the statisti-
cal behavior of microscopic degrees of freedom encoded
on a holographic screen. In other words, the force of
gravity is not something ingrained in matter itself, but it
is an extra physical effect, emerging from the interplay of
mass, time, and space (information).

After his work, taking the apparent horizon as a holo-
graphic screen to derive the Friedmann equations [7],
derivation of the Friedmann equations using the equiparti-
tion rule and unproved Unruh temperature [8,9], the con-
nection to the loop quantum gravity [10], the accelerating
surfaces [11], holographic actions for black hole entropy
[12], and application to holographic dark energy [13] were
considered from the view of the entropic force. Further-
more, cosmological implications were reported in [14–19];
an extension to the Coulomb force [20] and the symmetry
aspect of the entropy force [21] were investigated. The
entropic force was discussed in the presence of black hole
[22–25].

However, one of the urgent issues to resolve is to answer
a question of how one can construct a spherical holo-
graphic screen of radius R, which encloses a source mass

M located at the origin, to understand the entropic force.
This is crucial because the holographic screen (an exotic
description of spacetime) originates from relativistic ap-
proaches to black hole [26,27] and cosmology [28].
Verlinde has introduced this screen by analogy with an
absorbing process of a particle around the event horizon of
black hole. Considering a smaller test massm located at�x
away from the screen and getting the change of entropy on
the screen, its behavior should resemble that of a particle
approaching a stretched horizon of a black hole, as de-
scribed by Bekenstein [2].
The next question is why the equipartition rule could be

applied to this nonrelativistic holographic screen to derive
the Newtonian force law without any justifications. For
black holes, the equipartition rule becomes the Smarr
formula of E ¼ NT=2 ¼ 2ST when using N ¼ 4S ¼
A=G in the natural units of @ ¼ c ¼ kB ¼ 1 and G ¼ l2pl.

Also it can be derived from the first law of thermodynamics
dE ¼ TdS for the Schwarzschild black hole where the
Komar charge is just the ADM mass M. Most of the
cosmological implications have used the holographic prin-
ciple (screen) and equipartition rule to derive the
Friedmann equations. However, these implications did
not explain clearly how their approach is related to the
appearance of the entropic force because these belong to
the relativistic approach. Even though the equipartition
rule is available for the Newtonian dynamics, the holo-
graphic principle ofN ¼ A=G is not guaranteed to apply to
any nonrelativistic situations. In this sense, this issue is
closely related to the first one.
If the above two questions are answered properly, one

will make a further step to understand the entropic force.
However, there is still a gap between nonrelativistic and
relativistic approaches. It seems that Verlinde was recy-
cling some ideas for obtaining Einstein equations due to
Jacobson’s derivation of Einstein equations. Also, we
would like to mention that he was using circular reasoning
in his equations, by starting out with gravity.
At this time, it seems hard to discuss an entropic force

without referring to a holographic screen. Hence, we pro-
pose that introducing a holographic screen is a first step to
understand the entropic force.
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In this work, we show how a holographic screen is
constructed to define the entropic force well by implement-
ing the Schwarzschild spacetimes. Here, we introduce four
candidates of the isothermal cavity, static holographic
screen, accelerating surface, and stretched horizon to study
the entropic force. Finally, we consider the entanglement
system in the flat spacetime as a promising candidate for a
holographic screen to define the entropic force without
referring to the mass M. We must say that our approach
is not a complete scheme to understand the entropic
force because we have already introduced a given configu-
ration of gravitational field (relativistic situation), the
Schwarzschild spacetimes to define a holographic screen.

We show that to define the entropic force, three of the
isothermal cavity, static holographic screen, and accelerat-
ing surface might merge to provide a unified picture for a
holographic screen on the stretched horizon near the event
horizon. Considering a close relationship between black
hole thermodynamics on the stretched horizon and the
entanglement system, we propose that an entropic force
may be defined in the entanglement system without refer-
ring to the source mass M.

II. ENTROPIC FORCE

In this section, we briefly review how the Newtonian
force law emerges from entropic considerations. Explicitly,
when a test particle with mass m is located near a holo-
graphic screen with distance �x, the change of entropy on
a holographic screen may take the form

�S ¼ 2�m�x: (1)

Considering that the entropy of a system depends on the
distance �x, an entropic force F could be arisen from the
thermodynamical conjugate of the distance as

F�x ¼ T�S; (2)

which may be regarded as an indication that the first law of
thermodynamics is realized on the holographic screen.
Plugging (1) into (2) leads to an important connection
between the entropic force and temperature

F ¼ 2�mT: (3)

In this work, we use this connection mainly to derive the
entropic force, after setting the temperature T on the holo-
graphic screen.

Let us assume that the energy E is distributed on a
spherical screen with radius R and the source mass M is
located at the origin of coordinates. Then, we assume that
the equipartition rule [5,29], the equality of energy and
mass, and the holographic principle, respectively, hold as

E ¼ 1

2
NT; E ¼ M; N ¼ A

G
¼ 4S (4)

with the area of a holographic screen A ¼ 4�R2. These are
combined to provide the temperature on the screen,

T ¼ GM

2�R2
: (5)

Substituting (5) into (3), one obtains the Newtonian force
law as the entropic force

F ¼ GmM

R2
: (6)

However, as was emphasized previously, the usage holo-
graphic screen is not guaranteed to describe a nonrelativ-
istic case of a source mass M.

III. ENTROPIC FORCE ON THE ISOTHERMAL
CAVITY

In this section, to define a holographic screen, we con-
sider the Schwarzschild spacetimes instead of the source
mass M as

ds2Sch ¼ g��dx
�dx�

¼ �
�
1� 2GM

r

�
dt2 þ dr2

ð1� 2GM
r Þ þ r2d�2

2: (7)

Here the event horizon (EH) is located at r ¼ rEH ¼ 2GM
whose horizon area is AEH ¼ 4�r2EH.
It is well known that the Schwarzschild black hole could

be in thermal equilibriumwith a finite-size heat reservoir in
asymptotically flat spacetimes. This is made by introduc-
ing a cavity enclosing the black hole. In this case, we may
introduce the local temperature (Tolman temperature) and
the quasilocal energy on the isothermal cavity. Now let us
introduce the Tolman redshift transformation on the black
hole system [30]. Using this transformation, the local
temperature observed by an observer located at r > rEH
is defined by [31]

TLðrÞ ¼ T1ffiffiffiffiffiffiffiffiffiffi�gtt
p ¼ 1

8�GM

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

r

q ; (8)

where

T1 ¼ 1

8�GM
¼ 1

4�rEH
� TH (9)

is the Hawking temperature TH measured by an observer at
infinity and the denominator of

ffiffiffiffiffiffiffiffiffiffi�gtt
p

is the redshift factor.

It is worthwhile to mention two limiting cases. On the
cavity located at r ¼ rEH þ l2pl=rEH near the event horizon,

this local temperature is given approximately by T ¼
1=4�lpl, which is independent of the black hole mass M

[32]. On the other hand, for r � rEH, it reduces to the
Hawking temperature TH.
Similarly, the quasilocal energy is derived by consider-

ing the first law of thermodynamics and assuming that the
Bekenstein-Hawking entropy SBH ¼ 4�GM2 is not
changed on the cavity
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dEQLðrÞ ¼ TLðrÞdSBH; (10)

which is integrated to give

EQLðrÞ ¼ r

G

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

r

s �
: (11)

Here the energy observed at infinity is surely the ADM
mass M

EQLð1Þ ¼ M ¼ rEH
2G

: (12)

Solving EQL for M leads to

M ¼ EQL �
GE2

QL

2r
; (13)

which states that the ADM mass consists of the thermal
energy and the gravitational self-energy to create a cavity
at r > rEH. In this sense, the isothermal cavity, which was
an artificial device to make a phase transition from a hot
gas to a black hole [30], is different from the holographic
screen.

Consequently, it seems unlikely to define the entropic
force on the isothermal cavity except the case that it
located near the event horizon.

IV. ENTROPIC FORCE ON THE STATIC
HOLOGRAPHIC SCREEN

We briefly review how to derive the entropic force on the
static holographic screen in the Schwarzschild spacetime
(7). We introduce the proper acceleration [33]

a� ¼ ���
�
;�; (14)

where �� is a timelike Killing vector field that satisfies
��;� þ ��;� ¼ 0. We define an integral

EðVÞ ¼ 1

4�

I
@V

a�n�dA; (15)

where V is the bulk volume enclosed by spacelike hyper-
surface @V ¼ S2 and n� is a spacelike unit normal vector

S2. This can be rewritten as the Komar integral to define the
concept of energy in the stationary spacetime

EðVÞ ¼ 1

8�

I
@V

��;�d���; (16)

where

d��� ¼ ðn��� � n���ÞdA: (17)

For r > rEH, a nonzero component of the Killing vector is
given by

�t ¼ 1: (18)

On the S2, a nonzero component of the normal vector is

nr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

r

s
: (19)

Using these, it is easily shown that the Komar integral (16)
becomes the local energy that is defined on the holographic
screen (HS) in the stationary spacetime [22]

EHS ¼ E1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

r

q ; E1 ¼ M: (20)

EHS indicates the energy of the gravitational field from the
viewpoint of an observer at rest with respect to the
Schwarzschild coordinate r. It is important to note that
the local energy EHS defined on the holographic screen is
not the quasilocal energy EQL of (11) on the isothermal

cavity. At this stage, we propose the local equipartition rule

EHSðrÞ ¼ 2SHSðrÞTHSðrÞ; (21)

where the entropy SHS is defined on the holographic screen
located at r > rEH,

SHSðrÞ ¼ �r2

G
: (22)

Then, the temperature on the holographic screen is given
by

THSðrÞ ¼ GM

2�r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

r

q ; (23)

which takes a different form from the local temperature
TLðrÞ in Eq. (8). Plugging (23) into (3), we obtain the
entropic force as

FHS ¼ 2�mTHSðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rEH

r

q GmM

r2
; (24)

which shows that the mass m feels an infinitely tidal force
in the limit of r ! rEH, while it takes the Newtonian force
law at the large distance of r � rEH. In this picture, it is
hard to introduce a proper acceleration a because one
works in the stationary spacetime.
Consequently, in obtaining the entropic force (24), an

important step was making use of the local equipartition
rule (21) to assign the temperature on the static screen.

V. ENTROPIC FORCE ON THE ACCELERATING
SURFACE

Now we are in a position to define the entropic force on
the accelerating surface in the presence of the
Schwarzschild black hole (7). In this case, the accelerating
surface plays the role of the holographic screen. The
accelerating surface was introduced in [33,34]. Here we
use the accelerating surface as the accelerating screen
(AS). For the nonstationary spacetime, we introduce a
future pointing unit vector
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u� (25)

of the congruence for the timelike world lines of the points
on S2. It satisfies the orthogonality with the normal vector
n� as

u�n� ¼ 0: (26)

Also this vector is necessary to define the change of the
heat. In this case, a proper acceleration vector field is
defined by

a� ¼ u�u
�
;� (27)

and an AS is defined by the following properties:ffiffiffiffiffiffiffiffiffiffiffiffi
a�a�

q
¼ a ¼ const; a ¼ a�n� (28)

at every point on S2. The flux of the proper acceleration
vector field through the AS is defined to be

�AS ¼ aAAS; (29)

where AAS is the area of the AS. A nonzero component of
the future pointing unit vector is

ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

r

q ; (30)

and a nonzero component of the proper acceleration vector
a� is given by

ar ¼ utur;t ¼ �GM

r2
: (31)

The proper acceleration defined by

a ¼ a�n� ¼ GM

r2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2GM
r

q (32)

plays the role of the Unruh temperature

TUðrÞ ¼ a

2�
¼ GM

2�r2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2GM
r

q : (33)

Considering the temperature (23) defined on the accelerat-
ing screen, we find that

THS ¼ TU; (34)

which means that the screen temperature THS is equal to the
bulk temperature TU. A natural interpretation of this result
is that an accelerating observer on the AS observes thermal
radiation with the Unruh temperature TU. This is a well-
known result of the local quantum field theory, which is
called the Unruh effect. This effect states that an acceler-
ating observer always observes thermal particles even
when, from the viewpoint of all inertial observers, there
are no particles at all. In the Newtonian limit, it reduces to

a ¼ GM

r2
; (35)

which is the acceleration of particles freely falling in the
gravitational field created by a point mass M. Then, the
flux is given by

�AS ¼ 4G�Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

r

q ; (36)

when using AAS ¼ 4�r2.
Now let us introduce the change of the heat in terms of a

differential d�AS of the flux �AS through the AS as

�Q ¼ 1

4�G
d�AS: (37)

Considering that the surface gravity � is constant on the
event horizon, we keep a fixed on the AS when varying the
flux �AS. That is, daðr;MÞ ¼ 0 implies

dM ¼ 2GMr� 3ðGMÞ2
r2 �GMr

dr

G
: (38)

Using this, Eq. (37) leads to

�Q ¼ 2M

r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

r

q dr: (39)

In this case, the entropy is defined by

SAS ¼ A

2G
¼ 2�r2

G
; (40)

and thus, its differential is dSAS ¼ 4�rdr=G. Plugging this
into (39) leads to the fact that the change of the heat is
balanced by the change of the entropy when fixing the
temperature on the AS

�Q ¼ GM

2�r2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2GM
r

q dSAS ¼ TUðrÞdSAS ¼ a

2�
dSAS:

(41)

We confirm that the entropic force on the point mass m
near the AS is given by

FHS ¼ 2�mTU ¼ ma ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

r

q GmM

r2
: (42)

Finally, we observe that if one introduces the accelerating
surface as the accelerating screen, it is very natural to
define the acceleration a of a test particle m through the
Unruh temperature TU, and thus, the entropic force (24) is
recovered properly.

VI. ENTROPIC FORCE ON THE STRETCHED
HORIZON

Since the isothermal cavity, the static holographic
screen, and the accelerating screen do not provide a con-
sistent form like the entropic force (6), it is natural to ask
where is the specific place to give a consistent form. In this
section, we suggest that this place is just on the stretched
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horizon (SH) [35]. This means that all thermodynamic
quantities are measured by an observer located at the
proper distance lpl away from the horizon.

As is shown in Fig. 1, this horizon is considered as the
holographic screen at r ¼ rEH þ l2pl=rEH near the event

horizon. The length contraction of l2pl=rEH ¼ ffiffiffiffiffiffiffiffiffiffi�gtt
p

lpl is

due to the redshift transformation of
ffiffiffiffiffiffiffiffiffiffi�gtt

p ’ lpl=rEH near

the horizon. On the SH, the local temperature is given by

TSH
L ¼ 1

4�lpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2pl

r2EH

vuut ’ 1

4�lpl

�
1þ 1

2

l2pl

r2EH

�

¼ 1

4�lpl

�
1þ 1

8l2plM
2

�
; (43)

which is independent of the black hole mass M in the
leading order [32]. On the other hand, the HS temperature
(¼ Unruh temperature) leads to

TSH
HS ¼ TSH

U ¼ 1

4�lplð1þ l2
pl

r2EH
Þ3=2

’ 1

4�lpl

�
1� 3

2

l2pl

r2EH

�
:

(44)

Importantly, we observe that three temperatures are the
same,

TSH
L ¼ TSH

HS ¼ TSH
U ¼ 1

4�lpl
; (45)

in the leading order. Similarly, the local energy is given by

ESH
HS ¼

r2EH
2l3pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2pl

r2EH

vuut ’ AEH

8�l3pl

�
1þ 1

2

l2pl

r2EH

�
: (46)

In the leading order, we check easily that the equipartition
rule is satisfied as is shown by

ESH
HS ¼

AEH

8�l3pl
¼ NSHTSH

HS

2
; (47)

with NSH ¼ AEH=l
2
pl. However, this shows a different case

when comparing with (4) on the holographic screen for a
nonrelativistic case. Especially, the energy and tempera-
ture take different forms

ESH
HS ¼ 2lplM

2; TSH
HS ¼ 1

4�lpl
; (48)

which show that the energy is proportional to mass squared
M2, while the temperature is independent of the mass. We
remind the reader that this is a feature of thermodynamic
quantities of black hole on the stretched horizon, which can
be approximated by the Rindler spacetimes where a com-
mutation relation of ½M; t� ¼ i is defined for the
Schwarzschild mass and time. Here, ESH

HS is the Rindler

energy as defined by an observer near the horizon, whileM
is the Schwarzschild mass (energy) as measured by an
observer at infinity. Importantly, we observe that the first
law of thermodynamics holds on the stretched horizon as

dESH
HS ¼ TSH

HSdS
SH: (49)

Here the entropy on the stretched horizon is given by

SSH ¼ AEH

2l2pl
; (50)

which is clearly different from the Bekenstein-Hawking
entropy

SBH ¼ AEH

4l2pl
: (51)

Finally, the entropic force is consistently defined by

FSH ¼ 2�mTSH
L ¼ 2�mTSH

HS ¼ 2�mTSH
U ¼ m

2lpl
; (52)

which takes a familiar form of

FSH ¼ maSH (53)

with the proper acceleration aSH ¼ 1
2lpl

on the stretched

horizon.
However, we note that the quasilocal energy takes a

different form on the SH

ESH
QL ’ 1

2lplM

�
1� 1

2

l2pl

r2EH

�
(54)

when comparing with the local energy in Eq. (48). The
equipartition rule is not satisfied, as is evident from ESH

QL �

2SBHT
SH
L in the leading order. Therefore, it seems that the

quasilocal energy is not directly related to the entropic
force.

VII. ENTANGLEMENT SYSTEM

Entanglement entropy is a general concept, which is a
coarse graining entropy for a quantum system caused by an
observer’s partial ignorance of the information on state

M

rEH

m

FIG. 1. The Schwarzschild black hole is present by noting the
event horizon rEH (solid circle). At the position r ¼ rEHþ
l2pl=rEH near the event horizon, equality of isothermal cavity ¼
static holographic screen ¼ accelerating screen is depicted in
terms of the dotted circle in order to define the entropic force.
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[36]. For an entanglement system in the flat spacetime, we
consider the three-dimensional spherical volume V and its
enclosed boundary B ¼ S2 (see Fig. 2). We assume that
this system with radius R and the cutoff scale b is described
by the local quantum field theory of a free scalar field �.
The entanglement energy is carried by the modes around
B, which implies that the cutoff scale b is introduced only
in the r direction through the length contraction b2=R2. We
start by noting the similarity between the entanglement
system in the flat spacetime and the stretched horizon
formulation of the Schwarzschild black hole. Here we
introduce the first law of thermodynamics for the entan-
glement system

dEENT ¼ TENTdSENT; (55)

whose thermodynamic quantities are given by [37]

SENT ’ A

b2
; EENT ’ A

b3
; TENT ’ 1

b
; (56)

where A ¼ 4�R2 is the area of the boundary B of the
system. Equation (56) shows a universal behavior for all
entanglement systems in Minkowski spacetime. We note
that the zero-point energy of the system was subtracted in
the calculation of the entanglement energy EENT, thus
degrees of freedom on the boundary contribute to giving
EENT � A. It seems that its areal behavior is compatible
with the concept of the entanglement. The entanglement
entropy behaves universally as SENT � A, which takes the
same form as that of the black hole. This is why the
entanglement entropy is considered as the origin of the
black hole entropy. The entanglement temperature is inde-
pendent of the radius R of the system. Considering the
connection between R $ rEH and b $ lpl, thermodynamic

quantities are nearly the same as those of the black hole on
the stretched horizon:

SENT $ SSH; EENT $ ESH
HS;

TENT $ TSH
HS ¼ TSH

L ¼ TSH
U :

(57)

In order to compare (56) with those for the black hole
observed at infinity, one observes that entanglement quan-
tities at r ¼ Rþ b2=R are blueshifted with respect to those
at infinity by inserting the factor of 1=

ffiffiffiffiffiffiffiffiffiffi�gtt
p

. Withffiffiffiffiffiffiffiffiffiffi�gtt
p ’ b=R, one obtains E1

ENT ’ ffiffiffiffiffiffiffiffiffiffi�gtt
p

EENT ¼ R=b2

and T1
ENT ’ ffiffiffiffiffiffiffiffiffiffi�gtt

p
TENT ¼ 1=R [32,38]. It shows how an

inclusion of gravity alters thermodynamics of the entan-
glement system. Later on, the same authors have calculated
the entanglement energy in the Schwarzschild background
without introducing the redshift factor [39].
Comparing the entanglement system with the stretched

horizon of the Schwarzschild black hole, two are very
similar to each other even though the entanglement system
does not have the source massM, and thus, it has no effects
of gravity definitely. Importantly, we may consider the
entanglement system as a genuine system to define the
entropic force. This is because we could define the entropic
force in the entanglement system without introducing the
mass M. In this case, the equipartition rule

EENT ’ NENTTENT ¼ A

b2
1

b
(58)

is very special because the energy is proportional to the
area A (but not the mass M) and the temperature is inde-
pendent of the area.
Finally, we propose that an entropic force could be

defined by

FENT ¼ 2�mTENT ’ m

2b
; (59)

which takes another form of

FENT ’ maENT (60)

with the proper acceleration aENT ¼ 1
2b in the flat space-

time. This proposition may be a good idea to ensure the
entropic force if the latter does really exist.

VIII. DISCUSSIONS

It is fair to say that the origin of the gravity is not yet
fully understood. If the gravity is not a fundamental force,
it may be emergent from the other approach to gravity.
Newtonian force law could be emergent from the equipar-
tition rule and the holographic principle [6]. However,
one important issue is whether the holographic screen
could be nicely defined for a nonrelativistic case of a
source mass M.
In this work, in order to realize the entropic force, we

have first introduced the isothermal cavity, static holo-
graphic screen, and accelerating screen as a candidate for
the holographic screen by implementing the Schwarzschild
spacetimes. Then, using Eq. (3), we have found the en-
tropic forces (24) and (42) that are different from the
original form (6). Furthermore, these might merge to pro-
vide a unified picture to define the entropic force (52) on
the stretched horizon near the event horizon.

A

R
m

FIG. 2. The entanglement system is present by noting the
boundary B of area A ¼ 4�R2 (solid circle) enclosing the
volume V. At the position r ¼ Rþ b2=R near the boundary, a
screen is depicted in terms of the dotted circle to define the
entropic force.
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It is well known that the entanglement system also
respects the equipartition rule and the holographic princi-
ple in the flat spacetime [37]. Considering a close relation-
ship between black hole thermodynamics on the stretched
horizon and the entanglement system, we have proposed
that an entropic force could be realized as (59) in the
entanglement system without referring to a source massM.

Finally, we should say that our approach is not a com-
plete scheme to understand the entropic force because we
have already introduced a given configuration of gravita-
tional field (Schwarzschild spacetimes) to define the holo-

graphic screen. However, given the holographic screen
properly as was in this work, one could define the entropic
force by using (3).
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