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The relationship between the nonperturbative Green’s functions of Yang-Mills theory and the confine-

ment potential is investigated. By rewriting the generating functional of quantum chromodynamics in

terms of a heavy quark mass expansion in Coulomb gauge, restricting to leading order in this expansion

and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation

to the gap and Bethe-Salpeter equations is shown to be exact in this case and an analytic, nonperturbative

solution is presented. It is found that there is a direct connection between the string tension and the

temporal gluon propagator. Further, it is shown that for the 4-point quark correlation functions, only

confined bound states of color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.
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I. INTRODUCTION

In quantum chromodynamics (QCD) there are two pri-
mary aspects of the theory that remain to this day elusive:
confinement and dynamical chiral symmetry breaking.
Both involve the existence of a nontrivial, nonperturbative
scale that is generated dynamically. Typically when one
works with a physical theory such as QCD, one does not
work directly with physical quantities, but rather with (the
more readily calculable) gauge-fixed Green’s functions. In
the process of ‘‘solving’’ the theory, one must regularize
and renormalize at some scale, assigning the various pa-
rameters of the theory physical values such that the dy-
namically generated nonperturbative scale acquires
physical meaning. This naturally raises the question: is
there a simple relationship between the Green’s functions
and the nonperturbative physical scale determined
externally?

Further to this, Yang-Mills theory as the subtheory of
QCD without quarks does not have any directly observable
quantities (the only observables are the glueballs and their
spectrum, neither of which can be detected without having
a detector made of matter, i.e., quarks and electrons).
Yang-Mills theory is known to be confining in the sense
that Wilson loops in lattice simulations exhibit an area law
at large separations and this area law gives rise to a linearly
rising potential, the coefficient of which is the string ten-
sion. Now while the lattice string tension exists, it has to be
related to some physically observable scale in the real
world and this has been explicitly done [1]. Unfor-
tunately, the Wilson loop is not particularly amenable to
calculation in continuum Yang-Mills theory (for recent
work on this subject, see Ref. [2] and references therein),
although it is the most natural quantity on the lattice.
However, the physical interpretation of the Wilson loop
of pure Yang-Mills theory as corresponding to two infi-
nitely heavy quark sources connected via gluon exchange
may provide a way of sidestepping the difficulties of con-
sidering the (gauge invariant) Wilson loop in the contin-

uum and providing the connection between the (gauge-
fixed) Green’s functions of Yang-Mills theory and physical
quark confinement. The heavy quark mass expansion (and
the effective theory associated with it) is a well-established
area of QCD and indeed uses phenomenologically moti-
vated potentials in place of the Yang-Mills sector [3–5]
(see also, for example, Ref. [6]). Moreover, in the heavy
quark mass limit the spin of the quark decouples from the
system (the so-called heavy quark symmetry) leading to
dramatic simplifications.
In full QCD, the Bethe-Salpeter equation is one tool for

describing systems composed of quark pairs with interac-
tions given via the Green’s functions of the theory. In the
light quark sector where one is concerned primarily with
dynamical chiral symmetry breaking and the spectrum of
the light mesons, covariant gauge Bethe-Salpeter studies
have proven to be extremely useful for phenomenology
(e.g., Refs. [7,8] or the contemporary review Ref. [9] and
references therein). Such studies are typically restricted to
the rainbow-ladder truncation, where the Bethe-Salpeter
kernel is reduced to the single exchange of a dressed gluon
and so that the problem is tractable. However, it is known
that the Bethe-Salpeter kernel is not so simple and indeed,
there has been recently some considerable attention fo-
cused on going beyond the rainbow-ladder approximation
both in terms of vertex corrections (see, for example,
Refs. [10–15]) and in unquenching effects (e.g.,
Refs. [11,16–18]). While more sophisticated kernels do
entail a considerable increase in effort, one of the more
intriguing results of these studies is that (aside from the
meson decay mechanism induced by unquenching [17])
the rainbow-ladder truncation seems surprisingly robust. In
Coulomb gauge, there also exist studies of dynamical
chiral symmetry breaking and the Bethe-Salpeter equation
(see, for example, Ref. [19] or the more recent Ref. [20]
and references therein). Here, potential models (corre-
sponding to the rainbow-ladder truncation) have been used.
As was recognized early on, Coulomb gauge is an ideal

choice for studying nonperturbative phenomena [21], but
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because of the inherent noncovariance, significant techni-
cal progress has been only recently achieved (mainly in
Yang-Mills theory). The Gribov-Zwanziger confinement
scenario [22–24] is particularly relevant in Coulomb
gauge. In this scenario, the temporal component of the
gluon propagator is infrared enhanced (providing a long-
range confining force) whereas the transverse spatial com-
ponents are infrared suppressed (and therefore do not
appear as asymptotic states). The relevance of Coulomb
gauge stems from the fact that the system reduces naturally
to physical degrees of freedom [24]. Using functional
methods, it has been formally shown that there exists a
conserved and vanishing total color charge (along with the
absence of the infamous Coulomb gauge energy divergen-
ces) [25]. In addition, the Dyson-Schwinger equations have
been explicitly derived [26–28], along with the Slavnov-
Taylor identities (for Yang-Mills theory) [29] and one-loop
perturbative results have been calculated [27,28,30]. On
the lattice, there are also initial results for the Yang-Mills
propagators now available (although at present the lattice
sizes are still modest) [31,32] (see also [33–35]). Of note is
that on the lattice, the temporal gluon propagator appears
largely independent of the energy (in the noncovariant
Coulomb gauge, the propagators are in general dependent
on both the energy and spatial momentum as separate
variables, unlike in covariant gauges) and is consistent
with a 1= ~q4 behavior in the infrared. Furthermore in
Coulomb gauge the static spatial lattice gluon propagator
is found to vanish in the infrared and to agree with Gribov’s
formula [31]. The lattice results support the findings of the
variational approach to continuum Yang-Mills theory in
Coulomb gauge [36,37] (cf. also [38,39]).

To establish a connection between the Green’s functions
of Yang-Mills theory and the physical world represented
by the existence of the string tension that confines quarks,
we propose to study here the full QCD Bethe-Salpeter
equation with a heavy quark mass expansion at leading
order in Coulomb gauge. Given that all quarks are confined
irrespective of their mass, it is reasonable to suppose that
the existence of the confinement potential and the value of
the string tension are independent of the mass and the
configuration of the quarks, the only important quantity
being their separation in this respect.

Now, the heavy quark mass expansion is clearly not a
new concept, nor is the Bethe-Salpeter equation and the
existence of a confinement potential. We shall be working
in Coulomb gauge and again, there do exist studies of the
Bethe-Salpeter equation within this context as discussed
above. Thus, we should be specific about what is new in
this work. Heavy quark effective theory is done typically in
covariant gauges. Separately, in Coulomb gauge the study
of the Bethe-Salpeter equation has focused on chiral sym-
metry breaking and the existence of the confinement po-
tential has been taken as being more or less a settled matter
(see, for example, Ref. [19]). However, the Coulomb gauge

Bethe-Salpeter studies have not gone beyond the leading
(rainbow-ladder) approximation. In this study, we shall
work with heavy quarks in Coulomb gauge and with the
emergent results for the explicit Green’s functions of the
Yang-Mills sector (at least under truncation). In addition
we will be working nonperturbatively, deriving and utiliz-
ing in part the Slavnov-Taylor identity for the quark-gluon
vertex and its peculiar Coulomb gauge form. We thus
combine the separate areas of study. What we shall show
is that as a result of this combination, the leading (rainbow-
ladder) approximation is exact in the case considered,
leading directly to the interpretation of quarks being con-
fined by a linearly rising potential and providing an explicit
link between the Green’s functions of the nonperturbative
Yang-Mills sector and the external physical scale.
The paper is organized as follows. In Sec. II we consider

the generating functional of Coulomb gauge QCD at lead-
ing order in the heavy quark mass expansion. The tree-
level quark and antiquark propagators are derived and the
relevant Feynman prescriptions are introduced. In Sec. III
the nonperturbative quark gap equation is discussed. Using
the Slavnov-Taylor identities in Coulomb gauge (derived
explicitly in the Appendix) and truncating the Yang-Mills
sector to include only dressed two-point functions, it is
found that the rainbow approximation to the quark and
antiquark gap equation is nonperturbatively exact. This
result is confirmed by the semiperturbative approach con-
sidered in Sec. IV. In Secs. V and VI, the Bethe-Salpeter
equations for quark-antiquark and diquark states are con-
sidered. It is shown that the ladder approximation to the
Bethe-Salpeter kernel is nonperturbatively exact and that
only color-singlet meson and SUð2Þ baryon states have
finite energy solutions. Moreover, a direct connection be-
tween the temporal gluon propagator and the string tension
is established, at least under the truncation scheme
considered.

II. HEAVY QUARK MASS EXPANSION

In this study, we are concerned with combining non-
perturbative physics with the heavy quark mass expansion.
The two are not automatically compatible; for example,
while the mass expansion assumes that the mass parameter
is the largest scale in the problem, loop integrals involve
momenta up to the UV-cutoff scale (supposing for the
moment that a UV-cutoff regularization is employed)
which is also assumed to be the largest scale. In heavy
quark effective theory (HQET), the recognition of this
apparent contradiction leads to the so-called matching
procedure [3]. This is just one example of the effect of
the heavy mass expansion and some care must be taken in
proceeding. The overriding concern here is that we wish to
use wherever possible the full nonperturbative QCD func-
tional formalism, i.e., the gap and Bethe-Salpeter equations
and Slavnov-Taylor identities for the complete quark
fields, rather than HQETexpressions that refer to the heavy
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quark degrees of freedom. The effect will be (see below)
that we are obliged to restrict ourselves to leading order in
the mass expansion. This naturally prohibits a quantitative
analysis involving real quarks (which are not infinitely
heavy) but does not deflect from the goal of studying the
relationship between the string tension and the Yang-Mills
Green’s functions.

Throughout this work, we shall use the conventions and
notations established previously in Refs. [26–29]. Wework

in Minkowski space with the metric g�� ¼ diagð1;�~1Þ

and all minus signs associated with the spatial components
of covariant and contravariant vectors are explicitly ex-
tracted. Roman sub/superscripts (i; j; . . . ) denote spatial
indices, and superscripts (a; b; . . . ) denote color indices
in the adjoint representation. Configuration space coordi-
nates may be denoted with subscript (x; y; . . . ) when no
confusion arises. Other index notation will be explained as
the context arises. The Dirac �matrices satisfy f��; ��g ¼
2g��. The explicit quark contribution to the full QCD
generating functional is [28]

Z½ ��; �� ¼
Z

D�exp

�
{
Z

d4x �q�ðxÞ½{�0D0 þ { ~� � ~D�m���q�ðxÞ
�
exp

�
{
Z

d4x½ ���ðxÞq�ðxÞ þ �q�ðxÞ��ðxÞ� þ {SYM

�

(2.1)

with the temporal and spatial components of the covariant
derivative (in the fundamental color representation) given
by

D0 ¼ @0 � {gTa�aðxÞ; ~D ¼ ~rþ {gTa ~AaðxÞ: (2.2)

In the above, D� generically denotes the functional in-
tegration measure over all fields present. q�ðxÞ denotes the
full quark field ( �q is the conjugate or antiquark field) where
in this case, the subscript � refers to the fundamental color,
flavor, and spin attributes collectively. The sources ��ðxÞ
and ���ðxÞ are for the complete quark fields. The Yang-
Mills contribution to the generating functional (which will
only be of direct relevance to this study in the Appendix)
is in the standard, second order formalism [27,29].
Additionally, ~A and � refer to the spatial and temporal
components of the gluon field, respectively. The Ta are the
(Hermitian) generators of the SUðNcÞ group satisfying
½Ta; Tb� ¼ {fabcTc (with the fully antisymmetric structure
constants fabc) and normalized via TrðTaTbÞ ¼ �ab=2. For
later use we introduce the color factor associated with the
quark self-energy:

CF ¼ N2
c � 1

2Nc

: (2.3)

Now consider the following decomposition of the quark
and antiquark fields:

q�ðxÞ ¼ e�{mx0½hðxÞ þHðxÞ��;
h�ðxÞ ¼ e{mx0½PþqðxÞ��;
H�ðxÞ ¼ e{mx0½P�qðxÞ��;
�q�ðxÞ ¼ e{mx0½ �hðxÞ þ �HðxÞ��;
�h�ðxÞ ¼ e�{mx0½ �qðxÞPþ��;
�H�ðxÞ ¼ e�{mx0½ �qðxÞP���;

(2.4)

where the (spinor) projection operators are

P� ¼ 1

2
ð1� �0Þ; Pþ þ P� ¼ 1;

PþP� ¼ 0; P2� ¼ P�:
(2.5)

This decomposition is a particular case of the heavy quark
transform underlying HQET [3]. There, one recognizes
that a heavy quark within a hadron is almost on shell and
moves with the hadron velocity v such that the 4-
momentum can be written p� ¼ mv� þ k� where jkj �
mjvj and v2 ¼ 1 (such that when jkj ¼ 0, p2 ¼ m2). One
then uses the general projectors P� ¼ ð1� v6 Þ=2 and with
the exponential terms e�{mv�x. The case used here corre-

sponds to the rest frame of the quark, v� ¼ ð1; ~0Þ, but
within the context of the generating functional is simply
a choice of (arbitrary) decomposition that will prove useful
in Coulomb gauge. In fact, this choice will result in the
simplification whereby the spatial components of the
Yang-Mills Green’s functions are absent at leading order
in the mass expansion. The virtue of the heavy quark
decomposition is that the projection operators satisfy the
following further relations:

Pþ�0Pþ ¼ PþPþ; Pþ�0P� ¼ 0;

Pþ�iPþ ¼ 0; P��0P� ¼ �P�P�
(2.6)

such that the following relations hold for the components
of the quark field:

�h�0h ¼ �hh; �H�0H ¼ � �HH;

�h�0H ¼ �H�0h ¼ �h�ih ¼ �H�iH ¼ 0:
(2.7)

Inserting the decomposition of the quark fields given by
Eq. (2.4) into the generating functional Eq. (2.1) and using
these relationships one obtains
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Z½ ��; �� ¼
Z

D�exp

�
{
Z

d4x½ �h�ðxÞ½{D0���h�ðxÞ þ �h�ðxÞ½{ ~� � ~D���H�ðxÞ þ �H�ðxÞ½{ ~� � ~D���h�ðxÞ

þ �H�ðxÞ½�2m� {D0���H�ðxÞ�
�
exp

�
{
Z

d4x½e�{mx0 ���ðxÞ½hðxÞ þHðxÞ��

þ e{mx0½ �hðxÞ þ �HðxÞ����ðxÞ� þ {SYM

�
: (2.8)

The difference between the mass expansion (as used here)
and HQET can now be explained. Because of our insist-
ence on retaining the source terms for the full quark fields,
our generating functional has only been rewritten in terms
of different integration variables (note that the Jacobian of
the transform is field independent and thus trivial) and not
altered, although the source term expression in the above is
slightly modified by the appearance of the exponential
factors. We will thus be able to work with the full gap
and Bethe-Salpeter equations for quarks which are derived
from Z½ ��; ��. This is in contrast to HQETwhere the quark

sources are replaced with sources for the h fields (the
H fields are integrated out as below). The differences are
mainly cosmetic at the level of this study (which will
concentrate on the leading order in the mass expansion,
see below) but serve to illustrate some useful points which
will be highlighted as they arise.
The point of the heavy quark decomposition of the fields

is that for the h-field (‘‘large’’) components, the quark
mass parameter m does not appear directly. When we
integrate out the H fields however, we get the following
expression:

Z½ ��; �� ¼
Z

D�Det½{D0 þ 2m� exp
�
{
Z

d4x½ �h�ðxÞ½{D0���h�ðxÞ

þ ½ �hðxÞ{ ~� � ~Dþ e�{mx0 ��ðxÞ��½{D0 þ 2m��1
��½{ ~� � ~DhðxÞ þ e{mx0�ðxÞ���

�

� exp

�
{
Z

d4x½e�{mx0 ���ðxÞh�ðxÞ þ e{mx0 �h�ðxÞ��ðxÞ� þ {SYM

�
: (2.9)

Obviously, since we have integrated out a nontrivial component of the original quark field, our expression is nonlocal and
this is where the heavy mass expansion is necessary. We notice that [3]

Det ½{D0 þ 2m� � N þOð1=m2Þ; ½{D0 þ 2m��1
��X� � 1

2m
X� þOð1=m2Þ; (2.10)

where N is a trivial constant absorbed into the implicit renormalization of the functional integral. Leaving the e�{mx0

factors as they are, we can thus write

Z½ ��; �� ¼
Z

D�exp

�
{
Z

d4x

�
�h�ðxÞ½{D0���h�ðxÞ þ 1

2m
½ �hðxÞ{ ~� � ~Dþ e�{mx0 ��ðxÞ��½{ ~� � ~DhðxÞ þ e{mx0�ðxÞ��

��

� exp

�
{
Z

d4x½e�{mx0 ���ðxÞh�ðxÞ þ e{mx0 �h�ðxÞ��ðxÞ� þ {SYM

�
þOð1=m2Þ: (2.11)

Our generating functional is now local in the fields and arranged in an expansion in the parameter 1=m (this will be referred
to as the mass expansion although strictly speaking, it is an expansion in the inverse mass). However, locality does not
mean that the above expression can be directly applied. Let us consider the classical (full) quark field in the presence of
sources:

1

Z

Z
D�q�ðxÞ expf{Sg ¼ 1

Z

�Z

�{ ���ðxÞ ¼
1

Z

Z
D�

�
e�{mx0h�ðxÞ þ e�{mx0

2m
½{ ~� � ~DhðxÞ þ e{mx0�ðxÞ��

�
expf{Sg þOð1=m2Þ

(2.12)

where S is the combined action (with source terms) of
Eq. (2.11). One sees immediately that even at Oð1=mÞ, the
classical quark field has components that involve interac-
tion type terms ( ~Dh� ~Ah) brought about by the truncation
of the nonlocality. Of course, this is nothing more than the
statement that the h field is nontrivially (and dynamically)

related to the full q field. It also means that if we want to
use the nonperturbative gap and Bethe-Salpeter equations
(i.e., those equations derived from the action for the full
quark fields q and their sources � and which are the
equations of QCD as opposed to HQET) then we cannot
expect that the mass expansion can realistically be ex-
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tended far beyond the leading order in order to do practical
calculations. As stated previously though, the aim is to
investigate the connection between the Yang-Mills sector
and the physical world made of quarks; the string tension
that represents our goal is not dependent on the quark mass
(both light and heavy quarks are confined in the same way,
as far as we know). Therefore, we restrict our attention to
the leading order in the mass expansion as follows (and
writing D0 explicitly):

Z½ ��; �� ¼
Z

D�exp

�
{
Z

d4x �h�ðxÞ

� ½{@0x þ gTa�aðxÞ���h�ðxÞ
�

� exp

�
{
Z

d4x½e�{mx0 ���ðxÞh�ðxÞ

þ e{mx0 �h�ðxÞ��ðxÞ� þ {SYM

�
þOð1=mÞ:

(2.13)

The standard machinery of functional methods is now
employed. From the observation that up to boundary terms
(which are assumed to vanish) the integral of a derivative
vanishes, we have the quark field equation of motion:

0 ¼
Z

D�
�

�{ �h�ðxÞ
expf{Sg

¼
Z

D�f½{@0x þ gTa�aðxÞ���h�ðxÞ
þ e{mx0��ðxÞg expf{Sg þOð1=mÞ: (2.14)

The field equation of motion for the antiquark gives
equivalent results and can be neglected. The generating
functional of connected Green’s functions (for the full
quarks) is defined via Z ¼ eW . Denoting the derivatives
with respect to sources ofW½ ��;�� with an obvious bracket
notation, the classical fields are

q�ðxÞ ¼ 1

Z

Z
D�q�ðxÞ expf{Sg ¼ 1

Z

�Z½ ��; ��
�{ ���ðxÞ

¼: h{ ���ðxÞi;

�q�ðxÞ ¼ 1

Z

Z
D��q�ðxÞ expf{Sg ¼ � 1

Z

�Z½ ��; ��
�{��ðxÞ

¼: �h{��ðxÞi:

(2.15)

Also (	 is the source for the � field, implicit within Z and
W),

Z
D��aðxÞq�ðxÞ expf{Sg ¼ �2Z½ ��; ��

�{	aðxÞ�{ ���ðxÞ
¼ Z½ ��; ��½h{	aðxÞ{ ���ðxÞi

þ h{	aðxÞih{ ���ðxÞi�:
(2.16)

Notice that from Eq. (2.13), the following relations hold:

�Z½ ��; ��
�{ ���ðxÞ ¼

Z
D�e�{mx0h�ðxÞ expf{Sg þOð1=mÞ;

�Z½ ��; ��
�{��ðxÞ ¼ �

Z
D�e{mx0 �h�ðxÞ expf{Sg þOð1=mÞ

(2.17)

[recalling the earlier discussion of neglecting the Oð1=mÞ
terms] such that the field equation of motion, Eq. (2.14),
can be written in terms of derivatives of W:

0 ¼ ½{@0x���e{mx0h{ ���ðxÞi þ ½gTa���e{mx0½h{	aðxÞ{ ���ðxÞi
þ h{	aðxÞih{ ���ðxÞi� þ e{mx0��ðxÞ þOð1=mÞ: (2.18)

Factoring out the exponential terms gives then

0 ¼ ½{@0x �m���h{ ���ðxÞi þ ½gTa���½h{	aðxÞ{ ���ðxÞi
þ h{	aðxÞih{ ���ðxÞi� þ ��ðxÞ þOð1=mÞ: (2.19)

To continue, we make a Legendre transform in order to
construct the effective action for the full quark fields.
Explicitly separating the quark and Yang-Mills compo-
nents:

�½�; �q; q� ¼ W½J; ��;�� � {J��� � { ���q� � { �q���;

(2.20)

such that

q�ðxÞ ¼ h{ ���ðxÞi; ��ðxÞ ¼ �h{ �q�ðxÞi;
�q�ðxÞ ¼ �h{��ðxÞi; ���ðxÞ ¼ h{q�ðxÞi;
�aðxÞ ¼ h{	aðxÞi; 	aðxÞ ¼ �h{�aðxÞi

(2.21)

where the same bracket notation for derivatives of the
effective action with respect to the classical fields is used
(there is no confusion between the two sets of brackets
since the two sets of derivatives are never mixed). J� and
�� denote generic gluonic (Yang-Mills) sources and clas-
sical fields, respectively; the index � here refers to all
attributes of the (gluonic) object in question (including
its type and position argument) and we use the common
convention that this index is either summed or integrated
over as appropriate. The field equation of motion can then
be rewritten in terms of derivatives of the effective action
(which are the proper Green’s functions when sources are
set to zero):

h{ �q�ðxÞi ¼ ½{@0x �m���q�ðxÞ þ ½gTa���½h{	aðxÞ{ ���ðxÞi
þ �aðxÞq�ðxÞ� þOð1=mÞ: (2.22)

With the field equation of motion written in the above
forms, we can now derive the Feynman rules for the quark
components of the theory (the Yang-Mills parts are already
known [27]). We start with the quark propagator. From
Eq. (2.19), ignoring interaction terms and functionally
differentiating we get the tree-level propagator in configu-
ration space
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0 ¼ ½{@0x �m���h{��ðzÞ{ ���ðxÞið0Þ � {����ðz� xÞ
þOð1=mÞ: (2.23)

We now write the Fourier transforms to define both the
anti- and quark propagators, respectively, utilizing the
translational invariance:

h{��ðzÞ{ ���ðxÞi � Wq �q��ðz� xÞ
¼

Z
}ke�{k�ðz�xÞWq �q��ðkÞ;

h{ ���ðzÞ{��ðxÞi � W �qq��ðz� xÞ
¼

Z
}ke�{k�ðz�xÞW �qq��ðkÞ

(2.24)

such that in momentum space, we get

0 ¼
Z

}ke�{k�ðz�xÞf½�k0 �m���Wð0Þ
q �q��ðkÞ � {���g

þOð1=mÞ;
0 ¼

Z
}ke�{k�ðz�yÞfWð0Þ

�qq��ðkÞ½k0 �m��� þ {���g
þOð1=mÞ:

(2.25)

Naively, one would write the solutions as

Wð0Þ
�qq��ðkÞ ¼

�{���

½k0 �m� þOð1=mÞ;

Wð0Þ
q �q��ðkÞ ¼

�{���

½k0 þm� þOð1=mÞ:
(2.26)

However, in order to define the Fourier transform, one must
first define a prescription for handling the poles in the
energy integral. Unlike the conventional tree-level quark
propagator, we do not have a pair of simple poles in the
complex k0 plane; we have instead single poles and this is
due to the mass expansion. For the quark propagator, we
write

Wð0Þ
�qq��ðkÞ ¼

�{���

½k0 �mþ {"� þOð1=mÞ: (2.27)

Notice the following. The tree-level quark propagator is a
scalar quantity (or rather, diagonal in the outer product of
the fundamental color, flavor, and spinor spaces) as a
consequence of the mass expansion. This is one of the
most striking features of HQETand physically corresponds
to the decoupling of the spin from the heavy quark system.

Wð0Þ
�qq is identical to the heavy quark tree-level propagator

[3] up to the appearance of the mass term. In HQET, where
one uses sources for the h fields directly, this term does not
appear and is simply due to a shift of the energy by an
amount m (such that one is working with the ‘‘small’’
momenta around the rest mass energy). We retain this
term for completeness in order to see what effect it may
have—the Yang-Mills sector may not be compatible with

such a shift in the energy, although this will turn out not to
be the case. Also, note that the kinetic term of the tree-level

propagator would read � ~k2=2m in the denominator factor
and is at higher order in the mass expansion. Such terms are
obviously important to the UV properties of the loop
integrals but will not play any role here since we shall be
interested in the infrared limit.
Returning to the issue of the Feynman prescription, one

of the direct consequences of the single energy pole is that
when one considers a closed quark loop (a virtual quark-
antiquark pair) at lowest order, the energy integral auto-
matically vanishes (see also Ref. [3] for an alternate dis-
cussion on this topic), i.e.,

Z dk0
½k0 �mþ {"�½k0 þ p0 �mþ {"� ¼ 0: (2.28)

It can be justified that all such closed quark loops vanish in
similar fashion (indeed, precisely this type of integral will
be heavily used in the following sections); in other words,
the heavy mass expansion at leading order is quenched.
One interpretation of the above result is that due to the
presence of only the single pole, the heavy quark can only
propagate forward in time and the corresponding antiquark
is not present. This leads to a conundrum: how can we
construct a quark-antiquark pair in the Bethe-Salpeter
equation? The resolution is straightforward—in the
Bethe-Salpeter equation one is not considering a virtual
quark-antiquark pair but rather a system composed of two
separate unphysical particles. It is known that in Coulomb
gauge, Gauss’s law forbids the creation of a colored state in
isolation (the total color charge is conserved and vanishing
[25]) and so, the Feynman prescription for the quark (or the
antiquark) propagator has no physical meaning in isola-
tion. The quenching of the theory means that closed quark
loops vanish and from covariant gauge Bethe-Salpeter
studies, the connection between such loops and the
Bethe-Salpeter kernel is qualitatively understood [17]. In
the quenched case, the quark and antiquark lines of the
Bethe-Salpeter equation are never connected by a primitive
vertex (unlike the closed quark loop). Another way of
seeing this is to consider the flavor nonsinglet Bethe-
Salpeter equation—in other words the quark and antiquark
constituents are considered as two distinct flavors. Because
the quark and antiquark are genuinely separate (unphysi-
cal) particles, we are at liberty to choose that the antiquark
propagator in the Bethe-Salpeter equation has the opposite
Feynman prescription as follows:

Wð0Þ
q �q��ðkÞ ¼

�{���

½k0 þmþ {"� þOð1=mÞ: (2.29)

As shall be seen, this results in a physical interpretation for
the quark-antiquark Bethe-Salpeter equation as a whole.
Another way of viewing the above is to realize that the four
components of the full quark Dirac equation (quark and
antiquark moving either forward or backward in time
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according to causality) have been separated by the mass
expansion (the large h or small H field components) and
the breaking of the time-reversal symmetry. In the context
of the mass expansion, there is only the quark or antiquark
moving forward in time corresponding to the above
Feynman prescriptions. The closed quark loop involves a
quark going backward in time (similarly for an antiquark
loop) which is prohibited, or more precisely suppressed by
the mass, so that such closed quark-loop integrals vanish at
leading order whereas the quark-antiquark Bethe-Salpeter
equation has a physical solution.

For the proper two-point and three-point functions, we
use functional derivatives of Eq. (2.22) and we get directly
in momentum space

�ð0Þ
�qq��ðkÞ ¼ {½k0 �m���� þOð1=mÞ;

�ð0Þ
q �q��ðkÞ ¼ {½k0 þm���� þOð1=mÞ;

�ð0Þa
�qq���ðk1; k2; k3Þ ¼ ½gTa��� þOð1=mÞ;

�ð0Þa
q �q���ðk1; k2; k3Þ ¼ �½gTa��� þOð1=mÞ:

(2.30)

Importantly, the tree-level spatial quark-gluon vertex does
not appear at leading order in the mass expansion:

�ð0Þa
�qqA��i ¼ �ð0Þa

q �qA��i ¼ Oð1=mÞ: (2.31)

Notice the ordering of the indices for the �q �q� vertex. Also

notice that �ð0Þ
�qq��ðkÞ ¼ ��ð0Þ

q �q��ð�kÞ since the two-point

function requires no Feynman prescription and is diagonal
in the outer product of the fundamental color, flavor, and
spinor spaces. In addition, W �qq��qq ¼ 1 as usual.

Now, because of our insistence of using the full quark
sources, all the nonperturbative equations involving the
quarks (the Dyson-Schwinger equations for two-point
and three-point functions, the Slavnov-Taylor identities,
and the Bethe-Salpeter equation) will not alter their form
at leading order in the mass expansion (beyond leading
order, as previously illustrated, the nontrivial classical field
and the resolution of the Legendre transform would play a
role). The only alterations are that the tree-level factors
have been changed and we demand that only the leading
order terms in the mass expansion of the resulting equa-
tions are retained. Obviously, in order to solve the non-
perturbative system we must further specify our truncation
scheme. Recall that at leading order in the mass expansion,
the theory is already quenched. The truncation scheme we
propose is to consider only the dressed two-point functions
of the Yang-Mills sector (i.e., the nonperturbative gluon
propagators derived from a hypothetical solution of the
complete Yang-Mills theory). This amounts to setting all
the pure Yang-Mills vertices and higher n-point functions
occurring in the quark equations to zero. It is worth point-
ing out that because of the mass expansion, any loop
diagram with a tree-level spatial quark-gluon vertex will
be suppressed, such that the number of loop diagrams

arising because of the Yang-Mills vertices is heavily re-
stricted and those loops that do contribute will not include
the leading order perturbative corrections (the fully tem-
poral gluon Green’s functions ����;�����; . . . are zero at
tree level). The most important physical point that will
emerge is that when we set the Yang-Mills vertices to zero,
we exclude the non-Abelian part of the charge screening
mechanism of the quark color charge and any potential
glueball states. On the other hand, the charge screening
mechanism and glueball contributions of the gluon field
(i.e., the color string) is implicitly encoded in the non-
perturbative form of the temporal gluon propagator.
With the truncation scheme as outlined above, the Yang-

Mills sector collapses to the inclusion of a single object:
the temporal gluon propagator which is written as [27]

Wab
��ðkÞ ¼ �ab {

~k2
D��ð ~k2Þ: (2.32)

There are three important features to this propagator. First,
there are indications on the lattice that the dressing func-
tion D�� is largely independent of energy [32], justifying
the energy independence of the above form. Indeed on
general grounds, the temporal gluon propagator must
have some part that is constant in the energy in order to
cancel closed ghost loops and resolve the Coulomb gauge
energy divergences (see also the more formal considera-
tions of Ref. [40]). Second, the lattice analysis indicates
that the dressing function D�� is infrared divergent and is

likely to behave as 1= ~k2 for vanishing ~k2. We are interested
mainly in the relationship betweenD�� (as the input of the
Yang-Mills sector) and the string tension so we will not
need the specific form until toward the end. Third, the
product g2D�� is a renormalization group invariant quan-
tity and thus a natural candidate for being relevant to the
physical string tension [24,29].

III. GAP EQUATION: NONPERTURBATIVE
TREATMENT

Let us begin by considering the Dyson-Schwinger equa-
tion for the quark two-point proper function (the gap
equation). In full QCD (i.e., second order formalism,
Coulomb gauge without the mass expansion and derived
from the first order formalism results of Ref. [28]), it reads
[}! ¼ d4!=ð2
Þ4]:

��qq��ðkÞ ¼ �ð0Þ
�qq��ðkÞþ

Z
}!f�ð0Þa

�qq���ðk;�!;!� kÞ
�W �qq��ð!Þ�b

�qq���ð!;�k;k�!ÞWab
��ðk�!Þ

þ�ð0Þa
�qqA��iðk;�!;!� kÞW �qq��ð!Þ

��b
�qqA��jð!;�k;k�!ÞWab

AAijðk�!Þg (3.1)

(WAA is the spatial gluon propagator, which will be unim-
portant here). The full quark-gluon vertices obey the
Slavnov-Taylor identity. The derivation of this identity
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follows from the invariance of the action under a Gauss-
BRST transform [24] that is peculiar to Coulomb gauge
and is similar to the identities derived for the pure Yang-
Mills sector [29]. This derivation is presented in the
Appendix (and is a technical result of this study in its
own right). The identity reads, Eq. (A18),

k03�
d
�qq���ðk1; k2; k3Þ

¼ {
k3i
~k23
�a

�qqA��iðk1; k2; k3Þ�ad
�cc ð�k3Þ

þ ��qq��ðk1Þ½~�d
�q; �ccqðk1 þ q0; k3 � q0; k2Þ þ {gTd���

þ ½~�d
q; �cc �qðk2 þ q0; k3 � q0; k1Þ � {gTd�����qq��ð�k2Þ

(3.2)

where k1 þ k2 þ k3 ¼ 0, q0 is the arbitrary energy injec-
tion scale, ��cc is the ghost proper two-point function, and
~��q; �ccq and ~�q; �cc �q are ghost-quark kernels associated with

the Gauss-BRST transform (see the Appendix for details).
In order to use the Slavnov-Taylor identity as input for

solving the gap equation, we first apply our truncation
scheme in the context of the heavy mass expansion at
leading order. Starting with the dressed spatial quark-gluon
vertex, consider the terms that contribute to the Dyson-
Schwinger equation shown schematically in Fig. 1.
According to the truncation scheme, we set all Yang-
Mills vertices to zero, meaning that diagrams (c)–(f) are
excluded. This then leaves us with the tree-level term (a)
and the quark-loop term (b). However, both of these in-

volve at least one tree-level spatial quark-gluon vertex
which is not present at leading order in the mass expansion
[and the loop integral of (b) presumably cannot generate a
compensating factor proportional to m]. Thus, we obtain
the nonperturbative result that

�a
�qqA��iðk1; k2; k3Þ ¼ Oð1=mÞ: (3.3)

It is straightforward to justify that the ghost-quark kernels
of the Slavnov-Taylor identity, given their definition,
Eq. (A19), involve Yang-Mills vertices and do not contrib-
ute here. Thus, in our truncation scheme and at leading
order in the mass expansion, the Slavnov-Taylor identity
reads

k03�
d
�qq���ðk1; k2; k3Þ

¼ ��qq��ðk1Þ½{gTd��� � ½{gTd�����qq��ð�k2Þ þOð1=mÞ:
(3.4)

Clearly, the truncation scheme thus results in an Abelian
type Ward identity. Moreover, since the temporal quark-
gluon vertex is simply multiplied by the temporal gluon
energy (the primary feature of Coulomb, as opposed to
covariant, gauge Slavnov-Taylor identities) and the quark
proper two-point function is color diagonal, we can imme-
diately write the solution:

�d
�qq���ðk1; k2; k3Þ ¼

{g

k03
fTd½��qqðk1Þ � ��qqð�k2Þ�g��

þOð1=mÞ: (3.5)

(a)

A

~

(b) (c) (d)

(e) (f)

FIG. 1. Diagrams that contribute to the Dyson-Schwinger equation for the spatial quark-gluon vertex (without prefactors or signs).
Internal propagators are fully dressed and blobs represent dressed proper vertex and (reducible) kernels. Internal propagators

represented by springs may be either spatial ( ~A) or temporal (�) propagators; dashed lines represent the ghost propagator and solid
lines represent the quark propagator.
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The above solution is trivially satisfied at tree level. We
notice however that there appears to be a potential problem

with the energy. When k03 ¼ 0, but ~k3 � 0 (a spacelike

gluon configuration), the simple pole should presumably
be canceled by the difference of proper quark two-point
functions. Since the spatial momentum configuration is
arbitrary, this means that ��qqðkÞ ! ��qqðk0Þ þOð1=mÞ.
The assumption that the nonperturbative vertex solution
to the Coulomb gauge Slavnov-Taylor identity be free of
kinematic divergences (here, simply the 1=k03 factor) is a

variation of the covariant gauge situation considered some
time ago in Ref. [41]. More recently though, it has been
argued that such kinematic divergences may indeed be
present [42,43]. In the present study, we shall however
shortly see that this assumption leads to a consistent
solution.

Inserting the results, Eqs. (3.3) and (3.5), for the vertices,
using the Feynman rules given by Eq. (2.30), with the
temporal gluon propagator given by Eq. (2.32) and resolv-
ing the color structure the nonperturbative gap equation,
Eq. (3.1) under truncation and at leading order in the mass
expansion thus reads

��qq��ðk0Þ ¼ {½k0 �m���� � g2CF

Z }!D��ð ~k� ~!Þ
ðk0 �!0Þð ~k� ~!Þ2

�W �qq��ð!0Þ½��qqð!0Þ � ��qqðk0Þ���
þOð1=mÞ: (3.6)

There exists one particularly simple solution to this equa-
tion as we shall now demonstrate. It is given by

W �qq��ðkÞ ¼
�{���

½k0 � Cþ {"� þOð1=mÞ;
��qq��ðkÞ ¼ {���½k0 � C� þOð1=mÞ

(3.7)

and where the constant [} ~! ¼ d3 ~!=ð2
Þ3]

C ¼ mþ 1

2
g2CF

Z } ~!D��ð ~!Þ
~!2

þOð1=mÞ: (3.8)

Putting the above solution into the Slavnov-Taylor identity,
we also have that for the vertex

�d
�qq���ðk1; k2; k3Þ ¼ ½gTd��� þOð1=mÞ: (3.9)

In other words, the dressed temporal quark-gluon vertex is
trivial and the gap equation reduces to the rainbow trunca-
tion. There is a subtlety to the solution, Eq. (3.7), involving
the ordering of the limits in the spatial and temporal
integrals and potential divergences in the constant given
by Eq. (3.8). Here, let us consider the case when we
perform the temporal integral first under the condition
that the spatial integral is somehow regularized and finite
(this will be done throughout the rest of the paper).
Inserting the solution given by Eq. (3.7), the gap equation
under truncation, Eq. (3.6), and with a regularized (i.e.,
finite) spatial integral denoted by the subscript r, reads

Cr ¼ mþ g2CF

Z
r

} ~!D��ð ~k� ~!Þ
ð ~k� ~!Þ2

� {

2

lim
R!1

Z R

�R

d!0

½!0 � Cr þ {"� þOð1=mÞ

¼ mþ 1

2
g2CF

Z
r

} ~!D��ð ~k� ~!Þ
ð ~k� ~!Þ2 þOð1=mÞ: (3.10)

The effect of performing the temporal integral first is that
the regularized constant Cr in the denominator factor be-
comes irrelevant. The spatial integral now involves no
external scale and removing the spatial regularization, we
arrive at our above result, Eq. (3.8).
A brief discussion about the physical interpretation of

these results is in order. First, it might be the case that there
exist other solutions to the truncated gap equation. As will
be shown in the next section though, the above solution can
also be derived from a semiperturbative type of expansion.
However, as is the case with many systems, especially
those with strong couplings or phase transitions, the fully
nonperturbative solution might not be the same as the
resummed perturbative solution. Second, that the solution
involves potentially divergent constants is not a comfort-
able situation but does not necessarily contradict the phys-
ics. We notice that the quark propagator has a single pole,
so it cannot represent physical propagation (which requires
a covariant double pole) and this arises obviously from the
truncation of the mass expansion and where the charge
conjugation symmetry has been explicitly broken. Indeed,
the position of the pole has no physical meaning since the
quark can never be on shell. That the single pole is shifted
to infinity simply means that either one requires infinite
energy to create a quark from the vacuum or that should
one have an incoming quark (from some other hadron),
only the relative energy is important. Note that in Coulomb
gauge it is known that the total color charge of the system is
conserved and vanishing [25], so one cannot prepare an
isolated colored state of a single quark under any circum-
stances. Further, the divergences here have no interpreta-
tion with regard to renormalization, at least within the
context of the mass expansion to leading order. The mass
parameter cannot be renormalized simply because one
cannot construct an appropriate counterterm in the action
that is linear in m to absorb the constant C. Also, the quark
field renormalization is trivial at leading order, as one sees
from the explicit form of the temporal quark-gluon vertex,
Eq. (3.9). The upshot of this is that one must consider only
the relative energies in the system—the divergence of the
absolute energy has no physical meaning and this will
become especially relevant when we study the Bethe-
Salpeter equation (indeed this has been known for quite
some time, see, for example, Ref. [19]).
Having discussed the quark propagator, let us now dis-

cuss the antiquark propagator. Recall that at tree level, we
used a different Feynman prescription for the two denomi-
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nator factors and this gives rise to some rather interesting
physical consequences. As previously discussed, the heavy
mass expansion employed here breaks the charge conju-
gation symmetry relating particle and antiparticle, so we
cannot expect that the two propagators are necessarily
equivalent. Starting with the gap equation for full QCD,

Eq. (3.1), we reverse the ordering of the quark and anti-
quark functional derivatives that form the quark Green’s
functions (still within the context of the full quark fields
and sources) and rearrange the ordering to get the gap
equation for the antiquark propagator:

��q �q��ð�kÞ ¼ ��ð0Þ
q �q��ð�kÞ �

Z
}!f�b

q �q���ð�k;!; k�!ÞWq �q��ð�!Þ�ð0Þa
q �q���ð�!; k;!� kÞWab

��ðk�!Þ

þ �b
q �qA��jð�k;!; k�!ÞWq �q��ð�!Þ�ð0Þa

q �qA��ið�!; k;!� kÞWab
AAijðk�!Þg: (3.11)

Applying our truncation scheme reduces the above to

�q �q��ð�kÞ ¼ �ð0Þ
q �q��ð�kÞ þ

Z
}!�b

q �q���ð�k;!; k�!ÞWq �q��ð�!Þ�ð0Þa
q �q���ð�!; k;!� kÞWab

��ðk�!Þ þOð1=mÞ:
(3.12)

In similar fashion, we have the Slavnov-Taylor identity for the antiquark-gluon vertex:

� k03�
d
q �q���ðk2; k1; k3Þ ¼ þ�q �q��ðk2Þ½igTd�T�� � ½igTd�T���q �q��ð�k1Þ þOð1=mÞ: (3.13)

The form of the solution to Eq. (3.12) is similar to the
previous results:

Wq �q��ðkÞ ¼
�{���

½k0 þ �Cr þ {"� þOð1=mÞ;

�q �q��ðkÞ ¼ {���½k0 þ �Cr� þOð1=mÞ
(3.14)

with the corresponding solution for the vertex

�d
q �q���ðk1; k2; k3Þ ¼ �½gTd��� þOð1=mÞ: (3.15)

However, the constant (obtained in the same way as before
by first doing the temporal integral under the assumption
that the spatial integral is regularized in some hypothetical
manner) is now

�C r ¼ m� 1

2
g2CF

Z
r

} ~!D��ð ~!Þ
~!2

þOð1=mÞ: (3.16)

We notice that the sign of the loop correction has changed
and this will turn out (in the context of the Bethe-Salpeter
equations for mesons and diquarks) to have far-reaching
consequences. For the moment we interpret this result as
being simply another manifestation of the breaking of the
charge conjugation (particle-antiparticle) symmetry via the
mass expansion.

IV. GAP EQUATION: SEMIPERTURBATIVE
TREATMENT

While we have already solved the gap (and antigap)
equation, it proves instructive to reconsider it within the
context of a semiperturbative analysis since this will natu-
rally introduce a technical feature crucial for considering
the Bethe-Salpeter equation nonperturbatively. We have

seen that the solutions for the proper two-point function
leads to a temporal quark-gluon (and antiquark-gluon)
vertex that is not dressed. Under our truncation scheme,
the nonperturbative Dyson-Schwinger equation for the
temporal quark-gluon vertex involves the diagrams shown
in Fig. 2. The semiperturbative expansion is based on a
hybrid loop expansion whereby all internal propagators
are taken to be dressed, but all internal vertices are tree
level. To show that all the loop corrections [contained in
diagram (b) of Fig. 2] vanish, it suffices to consider two
types of diagram, given in Figs. 3 and 4.
In Fig. 3 we consider a single ladder exchange correction

to the temporal quark-gluon vertex. This diagram (neglect-
ing the overall color and prefactors) gives rise to the
following scalar integral (as in the previous section, the
spatial integral is regularized such that one can perform the
temporal integral first):

(a)

~

σ

(b)

FIG. 2. Diagrams that contribute under our truncation scheme
to the Dyson-Schwinger equation for the temporal quark-gluon
vertex (without prefactors or signs). Internal propagators are
fully dressed and blobs represent dressed proper vertex and
(reducible) kernels. Internal propagators represented by solid
lines represent the quark propagator.
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Z
r

} ~!D��ð ~k� ~!Þ
ð ~k� ~!Þ2

1

2


�
Z 1

�1
d!0

½!0 � Cr þ {"�½!0 þ q0 � Cr þ {"� : (4.1)

Now we apply the following identity (for finite, real a, b;
the case a ¼ b is trivial):

Z 1

�1
dz

½z� aþ {"�½z� bþ {"�
¼ 1

ða� bÞ
Z 1

�1
dz

�
1

½z� aþ {"� �
1

½z� bþ {"�
�
¼ 0:

(4.2)

Thus we see that where the spatial integral is regularized,
the temporal integral vanishes. It is simple to see that the
planar one-loop diagrams with two or more external tem-

poral gluon legs (which under the truncation scheme con-
sidered here connect only to the internal quark line) and
one internal temporal gluon will also vanish.
Now let us consider a generic crossed box (nonplanar)

type of diagram, illustrated in Fig. 4. Considering only the
temporal double integral components of the explicit inter-
nal quark propagators, we have the following form:

Z 1

�1
d!0dv0

½v0 � a1 þ {"�½!0 � a2 þ {"�½!0 þ q0 � a3 þ {"�½!0 � v0 � p0 � a4 þ {"�
¼

Z 1

�1
d!0

½!0 � a2 þ {"�½!0 þ q0 � a3 þ {"�½!0 � p0 � a1 � a4 þ 2{"�
�

Z 1

�1
dv0

�
1

½v0 � a1 þ {"� �
1

½v0 �!0 þ p0 þ a4 � {"�
�

¼ �2
{
Z 1

�1
d!0

½!0 � a2 þ {"�½!0 þ q0 � a3 þ {"�½!0 � p0 � a1 � a4 þ 2{"� ¼ 0 (4.3)

where in the last line, we have used a variation of the
identity Eq. (4.2). Thus we have the result that the generic
crossed box type of diagram shown in Fig. 4 also vanishes.

Given that both the single ladder type exchange diagram
and the generic crossed box diagrams considered so far
vanish, it is easy to see that any vertex dressing diagram
will vanish (including all subdiagrams such as internal
vertex corrections and so on), since all diagrams are merely
variations or combinations of these two under our trunca-
tion scheme. This result is a consequence of the fact that
the energy and Feynman prescription of the denominator
factors follow the quark line through the diagram so that
eventually the identity, Eq. (4.2), can be used. It is also

precisely the reason why all closed quark loops vanish, as
previously discussed.
Thus, the semiperturbative expansion confirms our pre-

vious result that the temporal quark-gluon vertex remains
bare to all orders. Also clear should be that the result
applies to the antiquark-gluon vertex too. With the corre-
sponding simple forms for the self-energy integrals of the
gap and antigap equations (which as we recall, reduce to
the rainbow truncation), the results for the quark propaga-
tor functions are also confirmed. Notice though that while
all orders of the semiperturbative result must match the
nonperturbative result, the converse is not necessarily true.
It remains the case that there may exist further solutions,

k

q

p

ω

FIG. 3. Ladder type loop correction to the temporal quark-
gluon vertex. Internal propagators are fully dressed: solid lines
represent the quark propagator and springs denote the temporal
gluon propagator.

v

q

p

ω

k

FIG. 4. Generic crossed box type loop correction to the tem-
poral quark-gluon vertex. Internal propagators are fully dressed:
solid lines represent the quark propagator and springs denote the
temporal gluon propagator. The box represents any combination
of interactions allowed under our truncation.
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but these must be purely nonperturbative in character if
they exist. That the identities that have been introduced
here conform to the nonperturbative case previously
studied is useful since it allows us to apply them with
confidence to the Bethe-Salpeter equation in the next
sections.

V. BETHE-SALPETER EQUATION: MESONS

As has been emphasized, because we initially consider
the generating functional for full quark sources and fields
we are at liberty to use the full functional (nonperturbative)
equations as a starting point and then subsequently apply
our mass expansion and truncation scheme. Let us now
consider the homogeneous Bethe-Salpeter equation for
quark-antiquark bound states. In full QCD and with our
conventions (the minus sign arises from the definitions of
the Legendre transform and Green’s functions), this equa-
tion reads

���ðp;PÞ ¼ �
Z

}kK��;��ðp; k;PÞ
� ½W �qqðkþÞ�ðk;PÞW �qqðk�Þ��� (5.1)

where kþ ¼ kþ �P, k� ¼ kþ ð�� 1ÞP (similarly for
p�) are the momenta of the quarks, P is the pole 4-
momentum of the bound state (assuming that a solution
exists), � ¼ ½0; 1� is the so-called momentum sharing frac-
tion that dictates how much of the total meson momentum
is carried by each quark constituent, K represents the
Bethe-Salpeter kernel, and � is the Bethe-Salpeter vertex
function for the particular bound state that one is consid-
ering and whose indices explicitly denote only its quark
content (we will see later what color, flavor, and spin
structure the solutions may have). Physically, results
should be independent of � and this has been numerically
observed in phenomenological studies [7]. The Bethe-
Salpeter equation is shown pictorially in Fig. 5.

Aside from the quark propagators (which we shall dis-
cuss shortly), the central element to solving the Bethe-
Salpeter equation involves the construction of the kernel

K. As discussed in the Introduction, for technical reasons
the most widely studied system is based on the ladder
kernel which is either constructed via the interchange of
a single gluon (for example [8]) or as a phenomenological
potential (see, for example, Ref. [19]). However, there has
been much recent attention focused on the construction of
more sophisticated kernels. One key element of the con-
struction is the axial vector Ward-Takahashi identity
(AXWTI), which relates the gap equation to the Bethe-
Salpeter kernel and which ensures that chiral symmetry
and its spontaneous breaking are consistently implemented
(e.g., Refs. [10,15,19]). Here, we shall show that the ladder
Bethe-Salpeter kernel is exact at leading order in the heavy
mass expansion and under our truncation scheme. This
derivation follows in the same way as the semiperturbative
analysis of the previous section.
Following from the truncation of the heavy mass expan-

sion to leading order, it was argued that the antiquark
propagator must be treated as distinct from the quark
propagator. This means that we have to be very explicit
about which propagator is which. Since we are studying the
quark-antiquark system (we will analyze the quark-quark,
or diquark system in the next section), the Bethe-Salpeter
equation for our purposes more properly reads

���ðp;PÞ ¼ �
Z

}kK��;��ðp; k;PÞ
� ½W �qqðkþÞ�ðk;PÞð�1ÞWT

q �qð�k�Þ��� (5.2)

where we have explicitly identified the antiquark propa-
gator contribution (it corresponds to the lower line of
Fig. 5) by reordering the functional derivatives and there
is implicitly a similar antiquark contribution within the
kernel which absorbs the explicit minus sign. Recall that
we are implicitly considering only the flavor nonsinglet
case.
To construct the full Bethe-Salpeter kernel, consider the

generic semiperturbative crossed box contribution given in
Fig. 6. As before, at leading order in the mass expansion

p

p

= −

k

k +

P

-

K

-

+

FIG. 5. Homogeneous Bethe-Salpeter equation for quark-
antiquark bound states. Internal propagators are fully dressed
and solid lines represent the quark propagator. The box repre-
sents the Bethe-Salpeter kernel K and filled blobs represent the
Bethe-Salpeter vertex function � with the (external) bound state
leg given by a dashed line. See text for details.

p

k- -

ω

+

FIG. 6. Generic crossed box type of diagram that contributes to
the Bethe-Salpeter kernel. Internal propagators are fully dressed,
whereas vertices are tree level. The upper (lower) solid line
denotes the quark (antiquark) propagator; springs denote the
temporal gluon propagator and the box represents any combina-
tion of nontrivial interactions allowed under our truncation
scheme. See text for details.
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and under our truncation scheme we only have the tempo-
ral quark-gluon and antiquark-gluon vertices, both of
which have been shown to be given by their tree-level
forms. Additionally, it was justified that all planar dia-
grams with multiple external temporal gluon legs vanish.
Thus, aside from the ladder contribution to the Bethe-
Salpeter kernel, this generic crossed box diagram contains
all possible nontrivial contributions. Such a diagram has at
least the following terms in the temporal integral (as be-
fore, we assume that the spatial integral is regularized and
finite so that we are able to first perform the temporal
integral without complication)

Z d!0

½!0 þ p0þ � Cr þ {"� � � � ½!0 � k0� þ �Cr þ {"� : (5.3)

The first factor corresponds to the explicit quark (upper)
propagator, the last factor to the explicit antiquark (lower)
propagator. Implicitly (represented by the dots), there may
be multiple propagator factors which carry the same de-
pendence on the integration energy !0 but crucially, all
these will have the same relative sign for the Feynman
prescription term, i.e., !0 þ {", regardless of whether they
originate from internal quark or antiquark propagators.
Therefore, this type of integral can always be reduced to
the difference of integrals over a simple pole and with the
same sign for carrying out the analytic integration, just as
in Eq. (4.2) and the semiperturbative treatment of the
vertex discussed in the last section. Thus, all generic
crossed box diagrams in the Bethe-Salpeter kernel are
zero and one is left with simply the ladder contribution
to the kernel. Actually, this could have been anticipated
from the beginning—the AXWTI connects the self-energy
term of the gap equation and the Bethe-Salpeter kernel and
since it has been shown explicitly that the self-energy
integral reduces to the rainbow truncation, the correspond-
ing Bethe-Salpeter kernel is simply given by ladder
exchange.

Given all this, the Bethe-Salpeter equation for the quark-
antiquark system, at leading order in the mass expansion
and within our truncation scheme, can be explicitly written
as

���ðp;PÞ ¼ �
Z

}k�a
�qq���ðpþ;�kþ; k� pÞWab

��ðp� kÞ
� �bT

q �q���ð�p�; k�; p� kÞW �qq��ðkþÞ
�WT

q �q�
ð�k�Þ��
ðk;PÞ þOð1=mÞ: (5.4)

Inserting the nonperturbative results for the propagators
and vertices so far, Eqs. (3.7), (3.9), (3.14), and (3.15) and
taking the form, Eq. (2.32), for the temporal gluon propa-
gator, we get the equation (the temporal and spatial inte-
grals are separated as before)

���ðp;PÞ ¼ g2
Z
r

} ~kD��ð ~p� ~kÞ
ð ~p� ~kÞ2

{

2


�
Z 1

�1
dk0

½k0þ � Cr þ {"�½k0� � �Cr � {"�
� ½Ta�ðk;PÞTa��� þOð1=mÞ: (5.5)

We see immediately that the flavor and spin structure of the
meson decouples from the problem—this is a well-known
property of the heavy mass expansion. The color structure
will be discussed shortly. Since the external energy p0 does
not enter the right-hand side of the above equation, we
further have that the Bethe-Salpeter equation must be
independent of the relative quark energy (and only implic-
itly dependent on the putative bound state energy P0). Thus
we can write

���ð ~p;PÞ ¼ g2
Z
r

} ~kD��ð ~p� ~kÞ
ð ~p� ~kÞ2 ½Ta�ð ~k;PÞTa��� {

2


�
Z 1

�1
dk0

½k0þ � Cr þ {"�½k0� � �Cr � {"�
þOð1=mÞ

¼ �g2
Z
r

} ~kD��ð ~p� ~kÞ
ð ~p� ~kÞ2

½Ta�ð ~k;PÞTa���
½P0 � Cr þ �Cr þ 2{"�

þOð1=mÞ: (5.6)

Thus, at leading order in the mass expansion, inserting the

expressions Eqs. (3.10) and (3.16), for Cr and �Cr, respec-
tively, it is now clear that

�
P0 � g2CF

Z
r

} ~!D��ð ~!Þ
~!2

�
���ð ~p;PÞ

¼ �g2
Z
r

} ~kD��ð ~p� ~kÞ
ð ~p� ~kÞ2 ½Ta�ð ~k;PÞTa��� þOð1=mÞ:

(5.7)

We notice that the explicit quark mass contributions of the
self-energy expressions cancel. This is a feature of the
quark-antiquark Bethe-Salpeter equation—it does not
make any reference to the origins of its constituents and
why, for example, the pion can be a massless bound state of
massive constituents. Physically, one can visualize that the
quark and antiquark are moving with equal and opposite
velocities such that the center of mass system (the bound
state) is stationary. This is related explicitly to the choice of
Feynman prescription for the constituent quark and anti-
quark. Were the Feynman prescription for the antiquark
chosen to coincide with that of the quark, the right-hand
side of Eq. (5.6) would simply vanish and there would be
certainly no physical quark-antiquark state. The Feynman
prescription for the antiquark corresponds precisely to a
particle moving with the opposite velocity. Also, at leading
order in the mass expansion, the momentum sharing pa-
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rameter, �, has dropped out. Thus, the results retain the
important physical requirement that they be independent of
�. Shifting integration momenta, we can write

P0���ð ~p;PÞ ¼ g2
Z
r

} ~!D��ð ~!Þ
~!2

fCF���ð ~p;PÞ
� ½Ta�ð ~p� ~!;PÞTa���g þOð1=mÞ:

(5.8)

To see the physical meaning of this equation, we rewrite
the Bethe-Salpeter vertex function as a Fourier transform:

���ð ~p;PÞ ¼
Z

d~ye�{ ~p� ~y���ð ~yÞ (5.9)

(in the homogeneous Bethe-Salpeter equation, the total
momentum P denotes the solution and is not a variable).
We also write for the color structure

½Ta�ð ~yÞTa��� ¼ CM���ð ~yÞ (5.10)

where CM is yet to be identified. Then, the Bethe-Salpeter
equation reduces to

Z
d~ye�{ ~p� ~yP0���ð ~yÞ ¼

Z
d~ye�{ ~p� ~yg2

Z
r

} ~!D��ð ~!Þ
~!2

� fCF���ð ~yÞ � e{ ~!� ~yCM���ð ~yÞg
þOð1=mÞ (5.11)

with the simple solution

P0 ¼ g2
Z
r

} ~!D��ð ~!Þ
~!2

fCF � e{ ~!� ~yCMg þOð1=mÞ:
(5.12)

Because the total color charge of the system is conserved
and vanishing [25], neither the quark nor antiquark can
exist as an independent asymptotic physical state. Thus,
the bound state energy, P0, can only increase linearly as the
separation between them increases (physically confining)
or be infinite when the hypothetical regularization is re-
moved (so that the system cannot be physically created).
Whether the system is confining or disallowed can only
depend on the color structure, since the temporal gluon
propagator dressing function would be common to both
situations. In configuration space, an infrared confining
solution is characterized by the solution P0 ¼ �j ~yj for
large j ~yj and where � is the string tension such that as
the separation between the quark and antiquark increases,
the energy of the system should increase linearly without
bound and infinite energy input is required to fully separate
them (at least in the absence of unquenching). The small
j ~yj (and large j ~!j) properties are of no concern here. The
Fourier transform integral needed for the infrared confin-
ing solution is

Z } ~!

~!4
½1� e{ ~!� ~y� ¼ j ~yj

8

: (5.13)

If the temporal gluon propagator dressing function is more
infrared divergent than 1=j ~!j, as above, then

CF ¼ CM (5.14)

is required such that the spatial integral is convergent and
the energy of the system well defined, as the hypothetical
regularization is removed (since we are interested in the
low j ~!j regime, it becomes clear that the regularization
here would be infrared in character). Using the Fierz
identity for the generators Ta:

2½Ta���½Ta��� ¼ ������ � 1

Nc

������ (5.15)

gives the condition

CF���ð ~yÞ � CM���ð ~yÞ ¼ 1

2
������ð ~yÞ � 1

2Nc

���ð ~yÞ;
(5.16)

or with the definition Eq. (2.3),

���ð ~yÞ ¼ ����ð ~yÞ: (5.17)

In other words, the quark-antiquark Bethe-Salpeter equa-
tion with D�� more infrared singular than 1=j ~!j can only
have a finite solution for color-singlet states where the
divergent constant integral coming from the unphysical
quark self-energy cancels; otherwise the energy of the
system is divergent.
Another way to see that only color-singlet states are

physical is to consider that if the temporal gluon propaga-
tor is the origin of a potential in configuration space, this
potential can always be shifted by some spatial constant
[19]. In momentum space, this means that one can make
the replacement

g2
D��ð ~!Þ

~!2
! g2

D��ð ~!Þ
~!2

þ const� ð2
Þ3�ð ~!Þ (5.18)

without changing the physical bound state energy. This
automatically gives the constraint CF ¼ CM regardless of
whether or not the temporal gluon propagator is infrared
enhanced.
Assuming that in the infrared (as is indicated by the

lattice data [32] or by the above argument about the non-
existence of asymptotic quark states), D�� ¼ X= ~!2 where
X is some combination of constants (and further knowing
that g2X is a renormalization group invariant [24,29]), then

P0 � �j ~yj ¼ g2CFX

8

j ~yj þOð1=mÞ: (5.19)

The above result is that there exists a direct connection
between the string tension and the nonperturbative Yang-
Mills sector of QCD at least under the truncation scheme
considered here. The veracity of the truncation scheme will
be discussed at the end.
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VI. BETHE-SALPETER EQUATION: DIQUARKS

Let us now briefly take a look at the diquark Bethe-
Salpeter equation. The difference between this and the
previously considered quark-antiquark system is actually
rather simple from a technical standpoint, but leads to a
completely different physical result. Recall that the quark
and the antiquark propagators share the same Feynman
prescription relative to their energy and only the constant
components change. Thus, preserving the momentum rout-
ing of the Bethe-Salpeter equation, the result that the
crossed box contributions to the Bethe-Salpeter kernel
extends to the diquark case since this is purely dependent
on the Feynman prescription. This means that we can
immediately write down the Bethe-Salpeter equation for
diquarks, at leading order in the mass expansion and within
our truncation scheme:

���ðp;PÞ ¼ �
Z

}k�a
�qq���ðpþ;�kþ; k� pÞWab

��ðp� kÞ
� �b

�qq���ð�p�; k�; p� kÞW �qq��ðkþÞ
�W �qq�
ð�k�Þ��
ðk;PÞ þOð1=mÞ: (6.1)

Again, the indices of the Bethe-Salpeter vertex function
correspond to the quark content of the diquark and since
the flavor and spin content decouple from the system, we
shall only be interested in the color content of the diquark
below. Expanding this out as before, we get the analogous
result

�
P0 � 2m� g2CF

Z
r

} ~!D��ð ~!Þ
~!2

�
���ð ~p;PÞ

¼ g2
Z
r

} ~!D��ð ~!Þ
~!2

½Ta���½Ta��
��
ð ~p� ~!;PÞ
þOð1=mÞ: (6.2)

Fourier transforming as previously, and writing

½Ta���½Ta��
��
ð ~yÞ ¼ CD���ð ~yÞ (6.3)

gives the solution

P0 ¼ 2mþ g2
Z
r

} ~!D��ð ~!Þ
~!2

fCF þ e{ ~!� ~yCDg þOð1=mÞ:
(6.4)

The reappearance of the quark mass simply indicates that
in contrast to the quark-antiquark system, there are now
two comoving quarks. The expression for the antidiquark
system is identical to the above, but with minus twice the
mass—their velocities are simply reversed. The diquark is
antisymmetric under interchange of the two quark legs and
since the spin and flavor structure decouples, this means
that the color structure must be antisymmetric. As for the
quark-antiquark system, the system can only have a finite
energy confining (energy increasing with separation) solu-
tion (if CD ¼ �CF) or no finite solution at all. Using the

Fierz identity Eq. (5.15), the color condition then reads

� CF���ð ~yÞ � CD���ð ~yÞ ¼ 1

2
���ð ~yÞ � 1

2Nc

���ð ~yÞ:
(6.5)

Demanding the diquark color antisymmetry and with the
definition Eq. (2.3) this becomes

N2
c � Nc � 2 ¼ 0 ) Nc ¼ �1; 2: (6.6)

So in SUðNc ¼ 2Þ there exists a confined, antisymmetric
bound state of two quarks—the SUð2Þ baryon and other-
wise there are no (finite) physical states.

VII. SUMMARY, DISCUSSION, AND
CONCLUSIONS

The connection between the Green’s functions of
Coulomb gauge Yang-Mills theory and physical quark
confinement has been studied. Since all quarks are con-
fined (irrespective of their mass), the generating functional
of full QCD was expanded in the mass parameter and the
leading order considered in a manner appropriate to
Coulomb gauge and such that the system simplifies dra-
matically. This allowed the usage of the full nonperturba-
tive quark equations of QCD in order to study the
confinement properties. Using the Coulomb gauge
Slavnov-Taylor identity for the quark-gluon vertices
(whose derivation is one of the results of this study) and
truncating the Yang-Mills sector to include only the non-
perturbative gluon propagator, it was shown how the rain-
bow approximation to the quark and antiquark gap
equations is exact in this case. It was then demonstrated
that the corresponding ladder approximation to the Bethe-
Salpeter equation was also exact. The mass expansion
breaks the time-reversal and charge conjugation properties
of the theory and in order to describe physical quark-
antiquark states, the relevant Feynman prescription was
introduced. With the analytic solutions to the gap equation,
the Bethe-Salpeter equation was solved for the quark-
antiquark and quark-quark channels. It was found that
the only solutions correspond to confinement, namely,
that only color-singlet meson and SUð2Þ baryon states
have finite energy. This energy must increase linearly
with separation either because (i) there are no asymptotic
quark states as is known in Coulomb gauge from the
conserved and vanishing total charge [25], or (ii) as is
suggested from the lattice results [32], the temporal propa-
gator is infrared enhanced. Further, there exists a direct
connection between the temporal gluon propagator of
Yang-Mills theory and the string tension, at least within
this truncation scheme.
Because of the (almost embarrassingly) simple results, it

is worth reemphasizing the input to the calculations.
Different areas of study have been combined here: the
heavy quark mass expansion, the Dyson-Schwinger for-
malism along with the Slavnov-Taylor identity and the
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Bethe-Salpeter equation, all of which have been considered
within Coulomb gauge. Indeed, the simplification arising
from this combination underscores how powerful the
choice of Coulomb gauge is for nonperturbative studies.
There are two approximations used. First, the temporal
gluon propagator is considered to be energy independent.
This is consistent with available lattice data [32], although
explicitly in disagreement with perturbation theory [27].
Since this study is interested in the infrared properties of
the theory, using the lattice suggestion seems justified.
Actually, the connection between the explicit one-loop
perturbative expressions and the leading order perturbative
expansion (in covariant gauges, the resummation of the
leading logarithms via the anomalous dimensions) is not
yet understood in Coulomb gauge. Further, since the non-
perturbative ghost propagator in Coulomb gauge is strictly
independent of the energy [29] in order to cancel the closed
ghost loops occurring in the Yang-Mills expressions, the
temporal gluon propagator must have some part that is also
independent of the energy (the spatial gluon propagator is
explicitly dependent on the energy). Thus it seems reason-
able to assume that whatever energy dependence the tem-
poral gluon propagator does have (and that is not visible
with current lattice configurations), it is not important to
the conclusions here.

The second approximation used in this study was to
neglect the vertex and higher n-point functions of Yang-
Mills theory. Recall that the tree-level spatial quark-gluon
vertex is suppressed by the mass. This means that the
number of truncated terms at leading order in the mass
expansion is heavily suppressed. It was seen that without
such terms, the quark-gluon vertices (and the Bethe-
Salpeter kernel) reduced to their tree-level forms. This
suggests that while the dressing function D�� does implic-
itly contain all nonperturbative effects associated with the
dynamical dressing of the color charge (including, for
example, potential glueball states), the quark-gluon verti-
ces correspond to the naked quark color charge. One might
express the results here as corresponding to a dressed color
string confining two naked color sources. In the gap and
Bethe-Salpeter equations, the explicit Yang-Mills contri-
butions presumably cannot obliterate the effect of the
rainbow-ladder exchange for a given temporal propagator
input since (assuming the infrared enhancement as sug-
gested from the lattice [32]) one would require an exact
‘‘anticonfining’’ cancellation. Covariant gauge studies of
the effect of non-Abelian corrections to the Bethe-Salpeter
equation as applied to the light quark sector indicate that
they are dominant compared to the Abelian corrections
[11]. However, in the case studied here, there are no
Abelian corrections and the diagrammatic content of the
non-Abelian contribution is reduced by the mass expan-
sion, making a quantitative comparison to known Bethe-
Salpeter studies somewhat speculative. Perhaps a better
comparison about the nature of neglecting the non-

Abelian corrections is with Ref. [24], which refers to the
Wilson loop of pure Yang-Mills theory. With effectively
the same truncation (i.e., neglecting the Yang-Mills verti-
ces), it was demonstrated that a string tension (the so-
called Coulomb string tension) can also be extracted.
Subsequently, it was shown that the physical string tension
is lower than the Coulomb string tension [44] (a statement
colloquially referred to as ‘‘no confinement without
Coulomb confinement’’). Thus, we anticipate that the ef-
fect of including the non-Abelian corrections to the formal-
ism presented here would result not in the removal of the
linearly rising bound state energy (i.e., not the cancellation
of the ladder exchange) but rather in the softening of the
coefficient by shifting the pole position by some finite
amount. Physically, this amounts to the charge screening
of the quark color charge.
The outlook of this study is extremely positive, with

several avenues that might prove fruitful for further inves-
tigation. Maintaining the truncation scheme, one can con-
sider the three quark (or two quark plus antiquark etc.)
Faddeev equation to investigate SUð3Þ baryons and
whether or not the simple results for color confinement
persist to the many-body system. Even more speculatively,
given the simplicity of the leading order mass expansion
one might imagine going even further and considering the
two quark, two antiquark system. A second important line
of study would be to consider the explicit inclusion of the
Yang-Mills vertices to the combined system of Dyson-
Schwinger, Slavnov-Taylor, and Bethe-Salpeter equations,
either phenomenologically or self-consistently to assess
the influence of the truncation scheme considered so far.
A third possibility is to investigate what happens when one
chooses a different velocity parameter in the original de-
composition of the quark fields. This would mix the tem-
poral and spatial parts of the Coulomb gauge framework
and allow one to investigate the connection between the
respective gluon propagators.
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APPENDIX: QUARK SLAVNOV-TAYLOR
IDENTITY

The derivation of the Slavnov-Taylor identity for the
quark-gluon vertex will be presented in this Appendix.
This derivation follows almost automatically as an exten-
sion to the Slavnov-Taylor identities for the Yang-Mills
sector [29]. The full QCD action in the standard, second
order formalism reads

C. POPOVICI, P. WATSON, AND H. REINHARDT PHYSICAL REVIEW D 81, 105011 (2010)

105011-16



SQCD ¼
Z

d4x

�
�q�½{�0@0 þ gTa�0�a þ { ~� � ~r

� gTa ~� � ~Aa �m���q� � 1

4
Fa
��F

a��

�
(A1)

where the (antisymmetric) field strength tensor F is given
in terms of the gauge field Aa

�:

Fa
�� ¼ @�A

a
� � @�A

a
� þ gfabcAb

�A
c
�: (A2)

The action is invariant under a local SUðNcÞ gauge trans-
form characterized by the parameter �ax :

Ux ¼ expf�{�axT
ag (A3)

such that for infinitesimal �ax , the fields transform as (recall
that � � A0)

�a ! �0a ¼ �a � 1

g
@0�

a � fabc�b�c;

~Aa ! ~A0a ¼ ~Aa þ 1

g
~r�a � fabc ~Ab�c;

q� ! q0� ¼ q� � {�a½Ta���q�;
�q� ! �q0� ¼ �q� þ {�a �q�½Ta���:

(A4)

Fixing to Coulomb gauge ( ~r � ~Aa ¼ 0) via the Faddeev-
Popov technique introduces new terms into the action:

S FP ¼
Z

d4x½��a ~r � ~Aa � �ca ~r � ~Dabcb�; (A5)

where

~D ab ¼ �ab ~r� gfacb ~Ac
(A6)

is the spatial covariant derivative (in the adjoint represen-
tation), �a is a Lagrange multplier field to locally imple-
ment the gauge condition, and �ca and cb are the
Grassmann-valued ghost fields. The action is invariant
under a Gauss-BRST transform [24] whereby the infini-
tesimal spacetime-dependent parameter �ax is factorized
into two Grassmann-valued components: �ax ¼ cax��t,
where ��t is the time-dependent infinitesimal variation.
The Gauss-BRST transform is a Coulomb gauge specific
form of the standard BRS transform, allowed because the
gauge-fixing term does not involve temporal differential
operators. The variations of the new fields read

� �ca ¼ 1

g
�a��t; �ca ¼ � 1

2
fabccbcc��t;

��a ¼ 0:

(A7)

Including a source term,

Ss ¼
Z

d4x½	a�a þ ~Ja � ~Aa þ �ca�a þ ��aca þ �a�a

þ �q��� þ ���q��; (A8)

the generating functional is given by

Z½J� ¼
Z

D�expf{SQCD þ {SFP þ {Ssg: (A9)

The Coulomb gauge Slavnov-Taylor identities arise from
regarding the Gauss-BRST transform as a change of inte-
gration variables under which the generating functional is
invariant. Since the Jacobian factor is trivial [26] and only
the source term varies, we deduce that

0 ¼
Z

D�
�

�½{��t� expf{SQCD þ {SFP þ {Ss þ {�Ssgj��t¼0

¼
Z

D�expf{SQCD þ {SFP þ {Ssg
Z

d4x�ðt� x0Þ
�
� 1

g
ð@0x	a

xÞcax þ fabc	a
x�

b
xc

c
x � 1

g
Jaixrixc

a
x þ fabcJaixA

b
ixc

c
x

� { ���xc
a
xT

a
��q�x � {cax �q�xT

a
����x þ 1

g
�a
x�

a
x þ 1

2
fabc ��a

xc
b
xc

c
x

�
: (A10)

Just as for the pure Yang-Mills case, the time dependence of the variation, ��t, results in the �-function constraint �ðt�
x0Þ. The above identity is most usefully expressed in terms of proper functions and repeating the manipulations of
Ref. [29], one arrives at the identity

0 ¼
Z

d4x�ðt� x0Þ
�
1

g
ð@0xh{�a

xiÞcax � fabch{�a
xi½h{	b

x{ ��
c
xi þ �b

xc
c
x� � 1

g

� rix

ð�r2
xÞ
h{Aa

ixi
�
h{ �caxi

� fabch{Aa
ixitijð ~xÞ½h{Jbjx{ ��c

xi þ Ab
jxc

c
x� � 1

g
�a
xh �caxi þ 1

2
fabch{caxi½h{ ��b

x{ ��
c
xi þ cbxc

c
x� þ {Ta

��h{q�xi½h{ ���x{ ��
a
xi � caxq�x�

þ {Ta
��½h{��x{ ��

a
xi þ cax �q�x�h{ �q�xi

�
: (A11)

Note that functional derivatives involving the Lagrange multiplier result merely in a trivial identity such that the classical
field �a

x can be set to zero [29]. Further, to derive the quark Slavnov-Taylor identities, one functional derivative with respect
to {cdz is needed and then the ghost fields/sources can be set to zero. Implementing this then gives
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0 ¼
Z

d4x�ðt� x0Þ
�
� {

g
ð@0xh{�d

xiÞ�ðz� xÞ � fabch{�a
xi
�

�

�{cdz
h{	b

x{ ��
c
xi � {�b

x�
dc�ðz� xÞ

�

þ 1

g

� rix

ð�r2
xÞ
h{Aa

ixi
�
h{ �cax{cdz i � fabch{Aa

ixitijð ~xÞ
�

�

�{cdz
h{Jbjx{ ��c

xi � {Ab
jx�

dc�ðz� xÞ
�

� {Ta
��h{q�xi

�
�

�{cdz
h{ ���x{ ��

a
xi þ �da�ðz� xÞ{q�x

�
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��

�
�

�{cdz
h{��x{ ��

a
xi � �da�ðz� xÞ{ �q�x

�
h{ �q�xi

�
: (A12)

Two further functional derivatives with respect to {q�! and { �q�v are taken and all remaing fields/sources set to zero. Given
that [29]

�

�{cdz
h{	b

x{ ��
c
xijJ¼0 ¼ tijð ~xÞ �

�{cdz
h{Jbjx{ ��c

xijJ¼0 ¼ 0; (A13)

one obtains the Slavnov-Taylor identity for the quark-gluon vertices in configuration space:

0 ¼
Z

d4x�ðt� x0Þ
�
� {

g
ð@0xh{ �q�v{q�!{�d

xiÞ�ðz� xÞ þ 1

g

� rix

ð�r2
xÞ
h{ �q�v{q�!{Aa

ixi
�
h{ �cax{cdz i

þ {Ta
��h{ �q�v{q�xi

�
�2

�{q�!�{c
d
z

h{ ���x{ ��
a
xijJ¼0 þ �da�ðz� xÞ����ð!� xÞ

�

þ {Ta
��

�
�2

�{ �q�v�{c
d
z

h{��x{ ��
a
xijJ¼0 � �da�ðz� xÞ����ðv� xÞ

�
h{ �q�x{q�!i

�
: (A14)

As with all Slavnov-Taylor identities, the above involves nontrivial ghost scattering-like kernels. Introducing some
notation, these can be expressed via the Legendre transform in terms of a loop integral over proper Green’s functions
and propagators in the following way:

~�d
�q; �ccq��ðx; z;!Þ � {gTa

��

�2

�{q�!�{c
d
z

h{ ���x{ ��
a
xijJ¼0

¼ {gTa
��f�h{ ���x{�"ih{ �q"{q�!{��ihJ�{J
ih ��a

x{��ih{ �c�{cdz {�
i þ h{ ���x{�
ih{ �q
{q�!{ �c�{cdz ih{ ��a
x{��ig;

~�d
q; �cc �q��ðx; z; vÞ �

�2

�{ �q�v�{c
d
z

h{��x{ ��
a
xijJ¼0{gT

a
��

¼ fh ��a
x{��ih{ �c�{cdz {�
ih{J
{J�ih{ �q�v{q"{��ih{ ��"{��xi � h{ ��a

x{��ih{ �c�{cdz { �q�v{q
ih{ ��
{��xig{gTa
��:

(A15)

In the above, J and � are dummy sources/fields referring to either ~A or � only; the internal indices otherwise refer to all
attributes of the object in question (summed or integrated over). The configuration space Slavnov-Taylor identity can thus
be written

0 ¼
Z

d4x�ðt� x0Þ
�
�ð{@0xh{ �q�v{q�!{�d

xiÞ�ðz� xÞ þ
� rix

ð�r2
xÞ
h{ �q�v{q�!{Aa

ixi
�
h{ �cax{cdz i

þ h{ �q�v{q�xi½~�d
�q; �ccq��ðx; z; !Þ þ {gTd

���ðz� xÞ�ð!� xÞ� þ ½~�d
q; �cc �q��ðx; z; vÞ � {gTd

���ðz� xÞ�ðv� xÞ�h{ �q�x{q�!i
�
:

(A16)

Defining the Fourier transform for the vertex functions (all
momenta incoming):

�ðx; y; zÞ ¼
Z

}k1}k2}k3ð2
Þ4�ðk1 þ k2 þ k3Þ
� e�{k1�x�{k2�y�{k3�z�ðk1; k2; k3Þ; (A17)

one can write the Slavnov-Taylor identity in momentum
space (dropping the dirac and fundamental color indices
for convenience)

k03�
d
�qq�ðk1; k2; k3Þ

¼ {
k3i
~k23
�a

�qqAiðk1; k2; k3Þ�ad
�cc ð�k3Þ

þ ��qqðk1Þ½~�d
�q; �ccqðk1 þ q0; k3 � q0; k2Þ þ {gTd�

þ ½~�d
q; �cc �qðk2 þ q0; k3 � q0; k1Þ � {gTd���qqð�k2Þ:

(A18)

In the above, k1 þ k2 þ k3 ¼ 0, ��cc is the proper ghost
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two-point function and q0 is the (arbitrary) energy injection scale that arises from the time dependence of the Gauss-BRST
transform. One can see the strong similarities of this expression with the Yang-Mills case [29]. In momentum space, the
kernels can be written

~�d
�q; �ccqðp1; p2; p3Þ ¼ {gTa

Z
}!Wab

�cc ð!ÞW �qqðp1 �!Þ½�bd
�cc �qqð!;p2; p1 �!;p3Þ � �bdc

�cc
ð!;p2;�p2 �!ÞWce

�ðp2 þ!Þ

� �e
�qq�ðp1 �!;p3; p2 þ!Þ�;

~�d
q; �cc �qðp1; p2; p3Þ ¼

Z
}!½�bdc

�cc
ð!;p2;�p2 �!ÞWce

�ðp2 þ!Þ�e

�qq�ðp3; p1 �!;p2 þ!Þ � �bd
�cc �qqð!;p2; p3; p1 �!Þ�

�Wab
�cc ð!ÞW �qqð!� p1Þ{gTa; (A19)

where the indices 
, �, refer to the gluonic field types � or ~A (with the associated spatial index). Just as in the Yang-Mills
case, the above Slavnov-Taylor identity, Eq. (A18), in conjunction with the kernels can be solved in principle to give the
temporal quark-gluon vertex ��qq� in terms of purely spatial, ghost, or quark propagators and proper functions. The identity
is trivially satisfied at tree level (using the Feynman rules of Ref. [28]) and can be verified at one-loop perturbatively (it is a
purely technical exercise, so not suitable for presentation here).
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