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We give an explicit example of the embedding of a near-BPS low-energy ðUð1Þ �USpð2MÞÞ=Z2 gauge

theory into a high-energy theory with a simple gauge group and adjoint matter content. This system

possesses degenerate monopoles arising from the high-energy symmetry breaking as well as non-Abelian

vortices due to the symmetry breaking at low energies. These solitons of different codimensions are

related by the exact homotopy sequences.
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I. INTRODUCTION

Topological solitons are important in many areas of
physics, ranging from high-energy (elementary particle)
physics, condensed matter physics and string theory to
cosmology. In this paper, we shall focus on a system
possessing non-Abelian vortices and monopoles: a super-
symmetric gauge theory with a G ¼ USpð2MÞ gauge
group, which is broken to H ¼ Uð1Þ �USpð2M� 2Þ by
the vacuum expectation value (VEV) of an adjoint scalar
field. This breaking gives rise to regular non-Abelian
’t Hooft-Polyakov monopoles. According to Goddard-
Nuyts-Olive-Weinberg [1–4], the non-Abelian monopoles
transform according to the dual group of H, which in this
case is ~H ¼ Uð1Þ � SOð2M� 1Þ. Several difficulties in
the naı̈ve idea of non-Abelian monopoles have been known
for some time, i.e. the global H group suffering from a
topological obstruction and non-normalizable zero-modes
do not allow the standard quantization and construction of
theH multiplets of monopoles [5–9]. These problems arise
in the Coulomb phase of the theory.

As was done in a series of investigations [10,11] for
SUðNÞ gauge theories, we take one step further here and
break the remaining gauge symmetry completely at a much
lower mass scale. This can be realized by the introduction
of an N ¼ 2 breaking term in the superpotential, giving
rise to an effective Fayet-Iliopoulos term. In systems with
such a hierarchical gauge symmetry breaking, the homo-
topy group-maps relate the regular monopoles to the non-
Abelian vortices arising at low energies, allowing for a
better understanding of the concept of the non-Abelian
monopole itself. Also, this kind of system provides a
(dual) model of a non-Abelian color-confining supercon-
ductor, further motivating its study.

Besides the cases of SUðNÞ gauge theories extensively
studied in the last several years, this type of analysis has so
far been made only in the case of SOðNÞ gauge theories
[12], i.e., with a hierarchical breaking, SOðNÞ ! Uð1Þ �
SOðN � 2Þ ! 1. In the SOðNÞ systems the adjoint matter

in the high-energy system yields at low energies exactly the
right matter content—a system with light fundamental
matter, all charged with respect to a common Uð1Þ factor.
As gauge systems with hierarchical symmetry breaking

G ! H ! 1 and a color-flavor locked symmetry HCþF

have been constructed to date only for the SUðNÞ and
SOðNÞ gauge groups [10–12], one might wonder to which
extent our idea of defining non-Abelian monopoles
through better-understood non-Abelian vortices is general.
The central aim—and the result—of the present paper is to
construct explicitly an analogous system with the unitary
symplectic gauge group, strengthening further our belief
that this kind of approach is of quite a general validity.
Among the many remarkable developments which fol-

lowed the discovery of genuine non-Abelian vortices (vor-
tices with continuous non-Abelian moduli) in Refs. [10,13]
(for reviews, see [14,15]) is the moduli matrix formalism
[16,17] (see review [18]), first constructed for domain
walls. This formalism made it possible to uncover the
full moduli space of these non-Abelian vortices, first in
the UðNÞ � ðUð1Þ � SUðNÞÞ=ZN theories and subse-
quently in models with generic gauge groups [19].
Finally, in Ref. [20] an in-depth study of the non-Abelian
vortices, including the cases of the ðUð1Þ �USpð2MÞÞ=Z2

gauge group, has been carried out.
The system considered in this paper reduces at low

energies, as we shall show, to the ðUð1Þ �USpð2MÞÞ=Z2

models investigated in Ref. [20]; the properties of the
vortex moduli space found there then give detailed exact
information about the massive non-Abelian monopoles.

II. USpð2MÞ THEORY WITH MATTER IN THE
FUNDAMENTAL REPRESENTATION

Let us first briefly review the superpotential for Nf

fundamental hypermultiplets in the USpð2MÞ gauge the-
ory withN ¼ 2 extended supersymmetry in 3þ 1 dimen-
sions

ffiffiffi
2

p XNf

i¼1

~qia�
abqib; (1)*gudnason@df.unipi.it

†konishi@df.unipi.it

PHYSICAL REVIEW D 81, 105007 (2010)

1550-7998=2010=81(10)=105007(5) 105007-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.105007


where i denotes the flavor index and a, b ¼ 1; . . . ; 2M
denote the color indices. Because of the pseudoreal nature
of USp matter fields, we can by a change of basis

qi ¼ 1ffiffiffi
2

p ðQi þ iQNfþiÞ; ~qi ¼ 1ffiffiffi
2

p ðQi � iQNfþiÞ;
(2)

write the superpotential as

1ffiffiffi
2

p X2Nf

i¼1

Qi
a�

abQi
b; (3)

where we have used the fact that �ab ¼ �ba is symmetric
and we use a notation where the color indices are raised
and lowered with the invariant rank-two tensor of
USpð2MÞ

JT ¼ �J; JyJ ¼ 12M; (4)

which we choose to be the skew-diagonal matrix as usual.
The (global) flavor symmetry which the theory at hand
possesses is Oð2NfÞ. The mass term is

X2Nf

i;j¼1

mij

2
Qi

aJ
abQj

b; (5)

where mij ¼ m̂iJij is antisymmetric. The flavor symmetry

is now Oð2NfÞ \USpð2NfÞ �UðNfÞ.

III. USpð2MÞ THEORY WITH MATTER IN THE
ADJOINT REPRESENTATION

To construct a system with a hierarchical gauge symme-
try breaking as explained in the Introduction we use the
matter fields (squarks) in the adjoint representation rather
than in the fundamental representation. As in the previous
case we start with the matter fields in the basis

ffiffiffi
2

p XNf

i¼1

Trf~qi½�; qi�g; (6)

while by the change of basis (2) we obtain

W Adj;Yukawa ¼ iffiffiffi
2

p X2Nf

i;j¼1

Jij TrfQi½�; Qj�g

¼ i
ffiffiffi
2

p X2Nf

i;j¼1

Jij TrfQi�Qjg; (7)

with JT ¼ �J, JyJ ¼ 12Nf
being the rank-two invariant

tensor of USpð2NfÞ [21], whereas the mass term is now

X2Nf

i;j¼1

mij

2
TrfQiQjg; (8)

and needs to be symmetric in order not to vanish. We shall
choose mij ¼ m̂i

~Jij, where ~J is the symmetric invariant

tensor of SOð2NfÞ
~J T ¼ ~J; ~Jy~J ¼ 12Nf

; (9)

where we again use the skew-diagonal basis. The global
flavor symmetry of our system is thus USpð2NfÞ \
Oð2NfÞ �UðNfÞ.

IV. N ¼ 1 DEFORMATION

Finally, we will add a soft supersymmetry breaking term
as �Tr�2 to the adjoint theory and hence we have the
superpotential

W Adj ¼ i
ffiffiffi
2

p X2Nf

i;j¼1

Jij TrfQi�Qjg þ X2Nf

i;j¼1

mij

2
TrfQiQjg

þ�

2
Trf�2g; (10)

which gives rise to the following vacuum equations

Jij½Qj;�� þ iffiffiffi
2

p mijQ
j ¼ 0; i ¼ 1; . . . ; 2Nf; (11)

Jij½Qi;Qj� þ i
ffiffiffi
2

p
�� ¼ 0; (12)

(repeated indices are summed over) together with the
D-term conditions.
First a word on what we expect. From group theory we

know that the adjoint representation of USpð2MÞ splits as
[22]

USpð2MÞ � SUð2Þ �USpð2M� 2Þ;
Adj ¼ ðAdj;1Þ þ ð1;AdjÞ þ ðh;hÞ;

(13)

(M> 1). Actually, we are interested only in the Uð1Þ
subgroup of SUð2Þ so the relevant decomposition reads

USpð2MÞ � Uð1Þ �USpð2M� 2Þ;
Adj ¼ 3ð0;1Þ þ ð0;AdjÞ þ ð1;hÞ þ ð�1;hÞ:

(14)

We require the system to be such that only the fields in the
fundamental representation in the low-energy USpð2M�
2Þ remain light, other fields with no Uð1Þ charges all
becoming massive, with a mass of the order OðmÞ.
Furthermore, only one set of fundamentals will remain
light, either the one with positive Uð1Þ charge or the one
with negative charge in Eq. (14).
We choose the VEVof � as

h�i ¼ � diagðm; 0; . . . ; 0|fflfflffl{zfflfflffl}
M�1

;�m; 0; . . . ; 0|fflfflffl{zfflfflffl}
M�1

Þ � ��0; (15)

and the mass parameters as

mij ¼ �i
ffiffiffi
2

p
m~Jij; � ¼ �i

ffiffiffi
2

p
�; (16)

where again ~J ¼ ~JT is the invariant tensor of SOð2NfÞ. In
order to have a separation of scales in the hierarchical
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gauge symmetry breaking, we take m � �. � ¼ � is the
sign that will select which fundamental fields will become
light, with positive or negative Uð1Þ charge, respectively.
Accordingly, we make an ansatz QNfþi ¼ ðQiÞy, which
solves the D-flatness conditions. This ansatz together
with the masses taken as in Eq. (16) reduces the vacuum
equations to

½�0; Q
i� þ �mQi ¼ 0; i ¼ 1; . . . ; Nf; (17)

XNf

i¼1

½Qi;Qiy� þ ���0 ¼ 0: (18)

The light fields are then seen to correspond to the nontrivial
eigenvectors of ½�0; 	� with eigenvalue ��m and they in
turn condense by Eq. (18). Without loss of generality, we
can choose the light fields to be the ones with positiveUð1Þ
charge and set � :¼ þ. Such eigenvectors are found to be
hiðxÞ where

Qi ¼ Qi
at

a ¼ hi�K
� þ hiM�1þ�L

�; (19)

where i ¼ 1; . . . ; Nf is the flavor index and a ¼
1; . . . ;Mð2Mþ 1Þ is the adjoint color index and finally
� ¼ 1; . . . ;M� 1 is half of the fundamental color index

for USpð2M� 2Þ. The matrices K, L 2 uspð2MÞC are

ðK�Þij ¼
1

2
ð�1þ�;i�

1;j � �Mþ1;i�
Mþ1þ�;jÞ; (20)

ðL�Þij ¼
1

2
ð�Mþ1þ�;i�

1;j þ �Mþ1;i�
1þ�;jÞ: (21)

If we instead wanted the fundamental fields with negative
Uð1Þ charge to be the light fields, we should set � :¼ � and
the eigenvectors would be

Qi ¼ Qi
at

a ¼ hi�ðK�ÞT þ hiM�1þ�ðL�ÞT: (22)

See the Appendix for details.
Calculating now explicitly the commutator, Eq. (18)

gives rise to the D-flatness conditions of the Uð1Þ �
USpð2M� 2Þ low-energy theory with fundamental matter
content. Let us make the following definition:

hi ¼ hi�
hiM�1þ�

� �
� ki�

‘i�

� �
; (23)

with k, ‘ being ðM� 1Þ-vectors of color and i is the flavor
index. Then, independently of the choice of the sign �,
(4� ) Eq. (18) reads

�hiyhi þ 4�m 0 0 0
0 A 0 By
0 0 hiyhi � 4�m 0
0 B 0 �AT

0
BBB@

1
CCCA ¼ 0;

(24)

from which the Abelian D-term constraint (in the low-
energy N ¼ 1 theory) is easily read off. Now for the

non-Abelian part, we find the form of the matrices A, B:

A � kikiy � ð‘i‘iyÞT; B � ‘ikiy þ ð‘ikiyÞT; (25)

where BT ¼ B is manifest. Using that

hihiy ¼ kikiy ki‘iy
‘ikiy ‘i‘iy

� �
; (26)

together with the explicit form of the generators

tn ¼ � �S

�y
S ��T

� �
; �y ¼ �; �T

S ¼ �S; (27)

we obtain

0 ¼ Trfhihiytng ¼ TrfA�g þ 1

2
TrfB�Sg þ 1

2
TrfBy�y

S g;
(28)

for all �, �S, which forces A ¼ B ¼ 0, where we have
used the fact that B is symmetric. Now as a check, we can
count the number of constraints of A ¼ B ¼ 0 yielding
M0ð2M0 þ 1Þ with M0 � M� 1, which indeed coincides
with the number of constraints in Eq. (28). Hence, using a

color-flavor matrix notation ðhhyÞ��0 ¼ h�
iðhyÞi�0 ¼

hihiy we can write the Eqs. (17) and (18) as

Tr fhhyg ¼ 4�m; (29)

Tr fhhytng ¼ 0; (30)

which are the D-term conditions appropriate for construct-
ing non-Abelian Bogomol’nyi-Prasad-Sommerfield (BPS)
vortices and tn 2 uspð2M� 2Þ and n ¼ 1; . . . ; ðM� 1Þ�
ð2ðM� 1Þ þ 1Þ and specifically for the fundamental rep-
resentation, as we intended. These vortices have already
been studied in the low-energy theory in Ref. [20]. A
comment is in store to emphasize the importance of iden-
tifying the ‘‘light mass’’ degrees of freedom in the sym-
metry breaking.
In order to have a vacuum that breaks completely the

local gauge symmetry, allowing at the same time for an
intact global color-flavor symmetry, we shall choose the
number of flavor multiplets to be Nf ¼ 2M� 2. Thus h is

a square matrix with the following VEV:

hhi ¼
ffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� 14

p 12M�2: (31)

For completeness, let us write down the low-energy
effective action for the light fundamental fields:

L ¼ � 1

4g2
Fn
��F

n�� � 1

4e2
F0
��F

0�� þ TrðD�hÞðD�hÞy

� e2

2
jTrðhhyt0Þ � �j2 � g2

2
jTrðhhytnÞj2; (32)

where we have rescaled the fields h ! ffiffiffi
2

p
gh and � �

�m ! e�=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M� 2

p Þ and defined the Uð1Þ generator
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t0 � 12M�2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� 1

p ; (33)

and finally the index n ¼ 1; . . . ; ðM� 1Þð2ðM� 1Þ þ 1Þ.
Because of different renormalization effects of the sub-
groups after the gauge symmetry breaking, we use e to
denote the coupling forUð1Þ and g forUSpð2M� 2Þ. Note
that we have neglected higher-order terms in �=m, which
will give rise to non-BPS terms in the low-energy action for
vortices; hence as already mentioned it is a near-BPS
system.

As a final remark, let us note that in the strictly BPS limit
our low-energy system would have a large vortex-moduli
space including the so-called semilocal vortices [20]. The
latter do not have a definite transverse size, and would not
confine the monopole at their ends. However, our system
(with m � �) is almost, but not exactly, BPS. When small
non-BPS corrections arising from the high-energy gauge
symmetry breaking are taken into account, we expect the
vortex moduli, which are not related to the exact global
symmetry of the system, to disappear. This has been ex-
plicitly shown [23] in the case of the vortex moduli in the
SUðN þ 1Þ theory with Nf > N, spontaneously broken at

two scales, SUðN þ 1Þ ! UðNÞ ! 1.

V. CONCLUSION

Our system is characterized by the hierarchical gauge
symmetry breaking

G���!m H ���!2
ffiffiffiffiffi
�m

p
1: (34)

As all the fields in the underlying theory are in the adjoint
representation, we actually have G ¼ USpð2MÞ=Z2. The
(light) matter content of the low-energy theory shows also
that H ¼ ðUð1Þ �USpð2M� 2ÞÞ=Z2. Since �1ðGÞ ¼ Z2,
the exact homotopy sequence tells us that

�2ðG=HÞ � �1ðHÞ=Z2: (35)

the regular monopoles arising at the high-mass scale break-
ing are confined by the doubly-wound vortices of the low-
energy theory. The results of Ref. [20], which hold in a

vacuum with the color-flavor locked phase, indicate that
the minimal winding vortices of the low-energy Uð1Þ �
USpð2M� 2Þ system, which are stable in the full theory as
�1ðGÞ ¼ Z2, appear classified according to the spinor
representation of a dual (color-flavor) SOð2M� 1Þ sym-
metry group. The regular monopoles of our system, asso-
ciated with the doubly-wound vortices, are then predicted
to transform according to various representations including
the vector representation of the SOð2M� 1Þ group, remi-
niscent of the Goddard-Nuyts-Olive duality. These group-
theoretic features of our vortex-monopole complex are
under a careful scrutiny at present, and will be presented
elsewhere.
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APPENDIX

It is also possible, though more elaborate, to use the real
algebra uspð2MÞ instead of the complexified algebra

uspð2MÞC as we have utilized in the calculation.
However, it requires us to change the basis. Using the
definitions we already have made, we can write

Qi
at

a ¼ Hi
�	

� þ ~Hi
�~	

� þHi
M�1þ�


� þ ~Hi
M�1þ�

~
�;

with

	� � K� þ ðK�ÞT; ~	� � iK� � iðK�ÞT; (A1)


� � L� þ ðL�ÞT; ~
� � iL� � iðL�ÞT; (A2)

where 	, ~	, 
, ~
 2 uspð2MÞ. Now to obtain the eigenvec-
tors in this basis, we find the following linear combination

hi� ¼ 1ffiffiffi
2

p ðHi þ �i ~HiÞ: (A3)

We recognize hi� as
ffiffiffi
2

p
times the eigenvectors found in the

text and � again selects the Uð1Þ charge. Thus it is an
advantage to work directly with the complexified algebra.
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