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We present a relativistic formulation of noncommutative mechanics where the object of noncommu-

tativity ��� is considered as an independent quantity. Its canonical conjugate momentum is also

introduced so that it permits one to obtain an explicit form for the generators of the extended Poincaré

group in the noncommutative case. The theory, which is invariant under reparametrization, generalizes

recent nonrelativistic results. Free noncommutative bosonic particles satisfy an extended Klein-Gordon

equation depending on two parameters.
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I. INTRODUCTION

More than 60 years ago the first paper on space-time
noncommutativity was written by Snyder [1]. There, the
space-time coordinates1 x� have been promoted to opera-
tors x� satisfying the algebra

½x�;x�� ¼ ia2M��;

½M��;x�� ¼ iðx���� � x����Þ;
½M��;M��� ¼ iðM����� �M����� þM�����

�M�����Þ;

(1.1)

which is consistent with the identification x� ¼ aM4�,
MAB representing the generators of the group SOð1; 4Þ.
That work was not very successful in its original motiva-
tion, which was the introduction of a natural cutoff for
quantum field theories. However, in present times, space-
time noncommutativity has been a very studied subject,
associated with strings [2–4] and noncommutative field
theories (NCFT’s) [5]. In NCFT’s, usually the first of
relations (1.1) is written as

½x�;x�� ¼ i���; (1.2)

but in most situations, and contrary to what occurs in (1.1),
the object of noncommutativity ��� is considered as a
constant matrix, which implies in the violation of the
Lorentz symmetry [5]. A constant � is indeed a conse-
quence of the adopted theory. When strings have their end
points on D-branes, in the presence of a constant antisym-
metric tensor field background, this kind of canonical non-
commutativity effectively arises. It is possible, however, to
consider ��� as an independent operator [6], resulting in a
true Lorentz invariant theory. Reference [6] has some of its

consequences explored, for instance, in [7–11]. These last
works are based on some contraction of the algebra (1.1),
or equivalently, in the so-called Doplicher, Fredenhagen,
and Roberts (DFR) algebra [12], that assumes, besides
(1.2), the structure

½x�; ���� ¼ 0; ½���; ���� ¼ 0: (1.3)

An important point of the DFR algebra is that the Weyl
representation of noncommutative operators obeying (1.2)
and (1.3) keeps the usual form of the Moyal product, and
consequently the form of the usual NCFT’s, although the
fields have to be considered as depending not only on x�

but also on ���. The DFR algebra has been proposed based
on arguments coming from general relativity and quantum
mechanics. The construction of a noncommutative theory
which keeps Lorentz invariance is an important matter,
since there is no experimental evidence to assume
Lorentz symmetry violation [13].
In noncommutative quantum mechanics [14–32], as in

NCFT, a similar framework with constant � is usually
employed, leading also to the violation of the Lorentz
symmetry in the relativistic case or of the rotation symme-
try for nonrelativistic formulations. In some recent works
[33–36] one of the authors has explored some consequen-
ces of considering the object of noncommutativity as an
independent quantity, respectively, as an operator acting in
Hilbert space, in the quantum case [33–35], or as a phase
space coordinate, in the case of nonrelativistic classical
mechanics [36]. In both situations it was introduced as a
canonical conjugate momentum for �. It has been shown
that the nonrelativistic theories described by [33,36] are
related through the Dirac quantization procedure, once a
proper second class constraint structure is postulated. Both
theories are invariant under the action of SOðDÞ. The
relativistic quantum treatment has been presented in [34]
for bosons and in [35] for fermions. In another treatment
the second quantized model proposed in [37] is studied by
two of the present authors.
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In the present work we generalize the formalism appear-
ing in [36] (in its free limit) to the relativistic case, con-
structing in such a way a noncommutative relativistic
classical theory which, under quantization, furnishes the
theories presented in [34,37]. Our results are invariant
under the action of the Lorentz group SOð1; DÞ as well
as under some generalization of the Poincaré group, pre-
viously discussed in [34,35]. We also show that our formal-
ism is related to the one of Ref. [23], after eliminating some
auxiliary variables.

As an introduction to the subject, we first present a brief
review of the ordinary free relativistic particle in Sec. II. In
Sec. III the algebraic structure for the noncommutative
case is derived, by using the Dirac theory for Hamil-
tonian constrained systems. The first class constraint that
generates the reparametrization transformations is intro-
duced in Sec. IV. The corresponding first order action
which generates the constraint structure is also presented
in that section, and its reparametrization invariance is
proved. In Sec. V we present some equivalent actions,
not explicitly depending on the momenta. We discuss
aspects related to the quantization of such a model, where
a generalized Klein-Gordon equation is derived, depending
on two parameters. Concluding remarks are left for
Sec. VI.

II. THE COMMUTATIVE RELATIVISTIC
PARTICLE

The commutative free relativistic particle can be de-
scribed by the first order action

S ¼
Z

d�LFO; (2.1)

where � is an arbitrary evolution parameter and2

LFO ¼ p � _x� �	: (2.2)

In (2.2), _x� ¼ dx�

d� , � is a Lagrange multiplier, and 	 is a

first class constraint expressing the mass shell condition

	 ¼ 1
2ðp2 þm2Þ ¼ 0: (2.3)

The equation of motion for p� is just _x� �p ¼ 0. If
that solution is reintroduced in (2.1) one obtains the einbein
form of the action, where

Le ¼ _x2

2�
� �

2
m2: (2.4)

Now the equation of motion for � gives

�2 ¼ � _x2

m2
(2.5)

and when this is introduced in Le, one gets the explicit

reparametrization invariant action
R
d�L0, where

L0 ¼ �m
_x2ffiffiffiffiffiffiffiffiffi
� _x2

p : (2.6)

All three actions are equivalent and are invariant under
reparametrization or redefinition of the evolution parame-
ter �. Let us consider in some detail the first order action.
Under the equal � Poisson bracket structure given by

fx�; p�g ¼ 

�
� ; (2.7)

the reparametrization invariance is generated by G ¼ �	,
where � ¼ �ð�Þ is an arbitrary infinitesimal parameter and
	 is given by (2.3). It is well known that the phase space
variables y are transformed according to


y ¼ fy;Gg; (2.8)

giving, in our case,


x� ¼ �p�; 
p� ¼ 0: (2.9)

As can be verified,


LFO ¼ p � 
 _x� 
�	 ¼ p � d

d�

x� 
�	

¼ �p � _pþ _�p2 � 
�	; (2.10)

and if 
� ¼ _�, 
LFO turns into a total derivative and the
variation of the action (2.1) vanishes if � vanishes in the
extremes. This is characteristic of the so-called covariant
systems [38]. Under quantization, the phase space varia-
bles become operators acting in Hilbert space, the brackets
(2.7) become commutators and this permits, for instance,
that in the coordinate representation, the momenta acquire
the usual derivative realization. In this situation, the con-
straint (2.3) acting over a state vector gives just the Klein-
Gordon equation

ðh�m2Þ�ðxÞ ¼ 0; (2.11)

which selects the physical states in Hilbert space. This
guarantees that a state represented by � is invariant under
a unitary gauge transformation generated by 	.

III. THE NONCOMMUTATIVE ALGEBRAIC
STRUCTURE

In this section, we present a relativist generalization of
the algebraic structure found in [34]. To achieve this goal,
it is introduced as a constrained Hamiltonian system living
in a phase space spanned by the quantities x�, Z�, and ���

and their conjugate momenta p�, K�, and ���. x
� repre-

sents the usual coordinates, as in Sec. II. ��� is the object
of noncommutativity which appears, as an operator, in
(1.2), and Z� represents auxiliary variables introduced in
order to properly implement space-time noncommutativ-
ity. After introducing the second class constraints neces-
sary to generate the adequate Dirac brackets, Z� and K�

can be eliminated from the final results, once the con-

2From this point, we adopt �; � ¼ 0; 1; 2; . . . ; D, with arbi-
trary D � 1. ��� ¼ diagð�1;þ1; . . . ;þ1Þ.
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straints can be used in a strong way. According to the
discussion above, the fundamental nonvanishing equal �
Poisson brackets involving all the phase space variables are
given by

fx�; p�g ¼ 

�
� ; f���; ��g ¼ 
��

�;

fZ�;K�g ¼ 
�
� ;

(3.1)

where 
��
� ¼ 


�

�

� � 

�
�
�

. The second class con-

straints �a ¼ 0, a ¼ 1; . . . ; 2Dþ 2, appearing in [34],
are here generalized to

�� ¼ Z� � 1
2�

��p�; �� ¼ K� � p�; (3.2)

with the associated constraint matrix

ð�abÞ ¼ f��;��g f��;��g
f��;��g f��;��g

� �
¼ 0 ���

���� 0

� �

(3.3)

with inverse

ð��1
ab Þ ¼

0 ����

��� 0

� �
: (3.4)

Now the Dirac brackets between any two phase space
functions A and B are given by [38]

fA; BgD ¼ fA; Bg � fA;�ag��1
ab f�b; Bg: (3.5)

As one can verify, the algebraic structure above permits
one to derive the Dirac brackets

fx�; p�gD ¼ 

�
� ; fx�; x�gD ¼ ���;

fp�; p�gD ¼ 0; f���; ��gD ¼ 
��
�;

f���; ��gD ¼ 0; f���; ��gD ¼ 0;

fx�; ��gD ¼ 0; fx�; ��gD ¼ �1
2


��
�p�;

fp�; �
�gD ¼ 0; fp�;��gD ¼ 0;

(3.6)

involving the physical variables x�, p�, �
��, and���. The

brackets listed above generalize the algebra found in
Refs. [33,34]. It is also interesting to display the remaining
Dirac brackets where the auxiliary variables Z� and K�

appear as

fZ�;K�gD ¼ 0; fZ�; Z�gD ¼ 0;

fK�;K�gD ¼ 0; fZ�; x�gD ¼ �1
2�

��;

fK�; x
�gD ¼ �
�

�; fZ�; p�gD ¼ 0;

fK�; p�gD ¼ 0; fZ�; ��gD ¼ 0;

fZ�;��gD ¼ 1
2


��
�p�; fK�; ��gD ¼ 0;

fK�;��gD ¼ 0:

(3.7)

As in the nonrelativistic case, the shifted coordinate

X� ¼ x� þ 1
2�

��p� (3.8)

also plays a fundamental role. As can be verified,

fX�; X�gD ¼ 0; fX�; p�gD ¼ 

�
� ;

fX�; x�gD ¼ 1
2�

��; fX�; ��gD ¼ 0;

fX�;��gD ¼ 0; fX�; Z�gD ¼ �1
2�

��;

fX�;K�gD ¼ 
�
� ;

(3.9)

and so the generator of the Lorentz group

M�� ¼ X�p� � X�p� � �����
� þ �����

� (3.10)

actually closes in the SOð1; DÞ algebra, with the use of the
Dirac brackets given above. Actually

fM��;M�gD ¼ ���M� � ���M� � ��M��

þ ��M��: (3.11)

From a different point of view, a similar structure has been
postulated in [39].
The Lorentz transformation of any phase space function

A is generated by the action of M��. Actually, a general-
ized Poincaré transformation can be introduced through the
action of the generator [34]

G ¼ 1
2!��M

�� � a�p� þ 1
2b

����� (3.12)

by defining


A ¼ �fA;GgD; (3.13)

which defines the action of the generalized Poincaré group
P 0 with generators M��, p�, and ���. Specifically one

arrives at


x� ¼!�
�x

�þ a� þ 1
2b

��p�;


X� ¼!�
�X

� þa�;


p� ¼!�
�p�;


��� ¼!�
�

� þ!�
�

� þb��;


��� ¼!�
�� þ!�

��;


M�� ¼!�
M

� þ!�
M

�þ a�p� �a�p� þb��
�

þ b���
:

(3.14)

The defining brackets of P 0 are those in (3.11) and
supplemented by the following brackets:

fM��;��gD ¼�����������������þ�����;

fp�;p�gD ¼ 0; f���;pgD ¼ 0; f���;��gD ¼ 0:

(3.15)

We see that the generalized Poincaré group P 0 is a semi-
direct product of the Lorentz group generated by M’s act-
ing on the Dþ 1þ 1

2DðD� 1Þ dimensional commutative

subgroup given by p’s and �’s.
The form of transformations (3.14) guarantees the

Poincaré invariance of the theory. This is only possible
because of the introduction of the canonical pair ���, ���

as independent phase space variables, which permits the
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existence of an object like M�� in (3.10). We observe that
P 0 has 4 Casimir invariants which have been discussed in
Ref. [34]. Also it is important to notice that (3.14) closes in
an algebra, i.e., for two independent infinitesimal trans-
formations 
1 and 
2, we see that ½
1; 
2�A ¼ 
3A, with
parameter composition rules given by

!
�
3 � ¼ !

�
1 �!

�
2 � �!

�
2 �!

�
1 �;

a
�
3 ¼ !

�
1 �a

�
2 �!

�
2 �a

�
1 ;

b
��
3 ¼ !

�
1 b

�
2 �!

�
2 b

�
1 �!�

1 b
�
2 þ!�

2 b
�
1 :

(3.16)

IV. THE FIRST ORDER ACTION

The structure presented in the last section is almost
identical to that found in Ref. [36], replacing spatial in-
dices by space-time indices, and 
’s by �’s in convenient
places. Other points can be more subtle.

Usually relativistic classical systems as relativistic par-
ticles, strings, or branes are invariant under reparametriza-
tion. This is associated with two related facts [38]: there are
M first class constraints that generate the reparametrization
when the parameter space has dimension M, and the asso-
ciated canonical Hamiltonian usually vanishes. This is just
the case treated in Sec. II, where M ¼ 1. For the free
noncommutative relativistic particle, this is also the case.
So, it is necessary to introduce some first class constraint.
A first candidate to be the desired constraint is the one
given by the mass shell condition (2.3), since it has vanish-
ing Poisson brackets with the second class constraints (3.2)
and represents a suitable physical condition. One of the
consequences of adopting (2.3) as the reparametrization
generator is that only the physical coordinate x� trans-
forms, among all the phase space variables. Actually,
accordingly to the prescription (2.8), G has vanishing
Poisson brackets with all the remaining phase space vari-
ables. The reparametrization invariance is just the invari-
ance of the action under the redefinition of �, and there is
no apparent reason to explain such an asymmetric behavior
between the ordinary coordinates and the tensor ones,
given by the objects of noncommutativity.

It is tempting to add to 	 a term like 1
2�

2, but not only its

dimension is L�4, when the dimension of 	 is L�2, as it is
not first class, in the sense that it has nonvanishing Poisson
brackets with ��, as defined in (3.2) [by construction any
quantity has vanishing Dirac brackets with the second class
constraints, as can be verified from (3.5)]. A related quan-
tity, however, is first class:

	0 ¼ 1
2½�2 þ K��

��p� þ 1
4ðK2p2 � ðK � pÞ2Þ�: (4.1)

Its form has been achieved by inspection. In the above
expression internal products are implicitly understood. On
the second class constraint surface, however, 	0 � 1

2�
2. As

can be verified,

f	0;��g ¼ 0; f	0;��g ¼ 0: (4.2)

In a broad sense, the bracket structure is generated by the
second class constraints and the dynamics is generated by
the first class constraint, for covariant systems. By consid-
ering the quantum systems which appear in [34,37], it is
possible to write the desired first class constraint as

� ¼ 1

�2
	0 þ 	; (4.3)

which, with (3.2), completes the set of constraints. In (4.3),
	 is given by (2.3) and 	0 by (4.1). � is a parameter with
length dimension, as the Plank’s length.
After these points, it is possible, also in the present case,

to construct an action that generates all the algebraic
structure displayed above. It is written as in (2.1), but now

LFO ¼ p � _xþ K � _Zþ � � _�� �a�
a � ��: (4.4)

Constraints (3.2) and (4.3) are generated as secondary
constraints associated with the conservation of the trivial
ones that express that the canonical momenta conjugate to
the Lagrange multipliers vanish identically. It is not neces-
sary to display this procedure here since it is quite trivial.
We observe that in the commutative limit where ��� and
��� vanish, Z� and K� � p� also vanish due to (3.2) and

� goes to 	. So (2.2) is recovered from (4.4).
Now, the reparametrization generator is assumed to be

�, and if one defines G ¼ ��, prescription (2.8) gives


x� ¼ �

�
p� þ 1

�2

�
����K� þ 1

2
ðK2p� � K � pK�Þ

��
;


p� ¼ 0;


��� ¼ �

�2

�
��� � 1

2
ðp�K� � p�K�Þ

�
;


��� ¼ 0;


Z� ¼ �

�2

�
���p� þ 1

2
ðp2K� � K � pp�Þ

�
;


K� ¼ 0:

(4.5)

It is not hard to verify that under (4.5)


LFO ¼ _�� � _�� 
��� 
�a�
a (4.6)

and so the first order action is invariant if 
�a ¼ 0 and

� ¼ _�, � vanishing in the extremes. In (4.6),

� ¼ p � 
xþ � � 
�þ K � 
Z; (4.7)

where 
x, 
�, and 
Z are given by (4.5).

V. SOME ADDITIONAL POINTS

In the previous section the first order action has been
used to derive the constraint structure necessary to generate
the Dirac brackets and the reparametrization transforma-
tions. As in the ordinary case, it is also possible here to
eliminate some of the variables in favor of the others, by
using for instance the second class constraints in a strong

AMORIM, ABREU, AND RAMÍREZ PHYSICAL REVIEW D 81, 105005 (2010)

105005-4



way. By starting from the first order Lagrangian (4.4), we
arrive at

L1 ¼ p � ð _xþ _ZÞ þ � � _�� �1 �
�
Z� 1

2
� � p

�

� �

�
1

�2
�2 þ p2 þm2

�
; (5.1)

if one uses the equation of motion for ��
2 , which is p� �

K� ¼ 0. We observe that the form of the first class con-
straint is also simplified due to symmetry. If we now use
the equation of motion for �1�, which is just Z� �
1
2 �

��p� ¼ 0, we arrive at

L2 ¼ p � _xþ � � _�� �

�
1

�2
�2 þ p2 þm2

�
þ 1

2
p � � � _p:

(5.2)

We observe that the last term in (5.2) has already appeared
in [23]. In Deriglazov’s treatment there is the introduction
of a factor of ��2 in the corresponding term in order to
introduce an additional gauge invariance which can be
fixed by imposing constant �’s. In those works there is
no term in � and any dynamics for the � sector, which is a
necessary ingredient to implement the quoted symmetry.
Also that symmetry is broken if any interaction is intro-
duced via minimal coupling procedures. As can be verified,
(5.2) can be the starting point for essentially the same
structure described in the last two sections.

An important point is that it is possible to quantize the
classical structure displayed so far. As a first step the phase
space variables yA are promoted to the operators yA acting
on some Hilbert space, and the Dirac quantization pre-
scription is consistently adopted, where

fyA; yBgD ! 1

i
½yA; yB�: (5.3)

As the canonical quantization is following the rule given
above, all the second class constraints can be taken in a
strong way. So, from (3.6) it follows the equal � commu-
tator structure

½x�;p�� ¼ i

�
� ; ½x�;x�� ¼ i���;

½p�;p�� ¼ 0; ½���; ��� ¼ i
��
�;

½���; ��� ¼ 0; ½���; ��� ¼ 0;

½x�; ��� ¼ 0; ½x�; ��� ¼ � i

2

��

�p�;

½p�; �
�� ¼ 0; ½p�; ��� ¼ 0;

(5.4)

and it is not necessary to consider the auxiliary variables
Z� and K�, since the constraints (3.2) are to be taken

strongly. By the same reason, 	’ in (4.1) reduces to 1
2�

2

and so, the first class constraint � reduces to the simpler
form

� ¼ 1

2

�
p2 þ 1

�2
�2 þm2

�
: (5.5)

For a theory that presents gauge degrees of freedom, the
physical states are selected by imposing that they have to
be annihilated by the first class constraints [38]. This fact
assures that a unitary gauge transformation, generated by
the first class constraints, keeps the physical states un-
changed, as it should be. This procedure is in the founda-
tions of several quantization procedures of gauge theories
[38]. In our case, if j�i represents a physical state in
Hilbert space, it must satisfy the condition�

p2 þ 1

�2
�2 þm2

�
j�i ¼ 0: (5.6)

Observe that this constraint condition does not represent
what would be obtained if we were describing a particle in

a space-time with Dþ 1þ DðDþ1Þ
2 dimensions. This is so

because p2 and �2 are independent Casimir invariants
[34]. This anticipates the fact that in this model the bosonic
particle is classified by two parameters and not by one,
given by the rest mass, as in the ordinary case.
As in the nonrelativistic case [33], it is necessary to

choose a basis for the Hilbert space associated with such
a system. Because of the noncommutativity between the
coordinate operators, their eigenvectors cannot form that
basis. Again the shifted coordinate operator

X � ¼ x� þ 1
2�

��p� (5.7)

plays a fundamental role. As one can verify,

½X�;X�� ¼ 0; ½X�;p�� ¼ i

�
� ; ½X�; ��� ¼ 0;

½X�; ��� ¼ 0; ½p�;p�� ¼ 0; ½���; ��� ¼ 0;

½���; ��� ¼ 0; ½���; ��� ¼ 

��
�: (5.8)

This permits one to adopt

M �� ¼ X�p� �X�p� � �����
� þ �����

� (5.9)

as the generators of the Lorentz group SOð1; DÞ, since it
closes in the appropriate algebra

½M��;M�� ¼ i���M� � i���M� � i��M��

þ i��M�� (5.10)

and generates the Lorentz transformations, as in Sec. III,
but now with the use of a commutator structure. The
eigenvectors of the shifted coordinate operator (5.7) also
can be used in the construction of a basis in Hilbert space.
Generalizing what has been done in [33], it is possible to
choose a coordinate basis jX0; �0i in such a way that

X �jX0; �0i ¼ X0�jX0; �0i; ���jX0; �0i ¼ �0��jX0; �0i;
(5.11)

and also for jX0; �0i, jp0; �0i, or jp0; �0i, satisfying usual
orthonormality and completeness relations. This quantum
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structure has been discussed with some detail in [34],
leading to a generalized Klein-Gordon equation, which
can also be derived from a Lagrangian formalism. The
complex version of this field theory has been (secondly)
quantized in [37], and it has been shown that the same
algebra represented by (3.16) can be derived via
Heisenberg relations.

VI. CONCLUSIONS

To close this work, we observe that it has been possible
to consistently treat the object of noncommutativity ��� as
a phase space coordinate, once its conjugate momentum is
also considered. The classical and the corresponding quan-
tum theory constructed are invariant under the action of the
extend Poincaré group P 0, and the results are very simple,
at least in the free case. The physical states are selected by
a condition that implies in a modified Klein-Gordon equa-
tion with an extended derivative operator, involving the
objects of noncommutativity. The second quantization of
this model has also been constructed and presents interest-
ing features [37].

Another point that must be considered is the introduc-
tion of interactions, for instance by using some minimal
coupling procedure with extended covariant derivatives.

This program follows a route that is not the usual one
found in NCFT’s. Contrary to what occurs here, the usual
formulations of NCFT’s do not introduce modifications in
the ordinary field theories, in the free case. As it is well
known [5], the only interaction terms capture noncommu-
tativity through Moyal products. These modifications seem
to be relevant because we expect that unusual geometrical
structures may arise at very high energies, and this new
physics probably should occur even for a free particle. We
comment that in string theory, however, an approach simi-
lar to the one found here could present drastic consequen-
ces. This is so not only because the dynamics associated
with �, � could not be disregarded but, more important,
because the counting of the bosonic degrees of freedom
would be different from the one appearing in ordinary
string theory. Here the idea is that if tensor operators are
included, as the objects of noncommutativity, the counting
of the string bosonic degrees of freedom is not Dþ 1 but

Dþ 1þ DðDþ1Þ
2 , due to the existence of ���. This implies

that in Dþ 1 ¼ 4, the number of bosonic degrees of free-
dom would be 10. So, in a supersymmetric scheme, the
string anomaly cancellation would occur just for Dþ 1 ¼
4. Related ideas appeared earlier in Ref. [40], without
involving noncommutativity.
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