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Ultrarelativistic collisions of black holes are ideal gedanken experiments to study the nonlinearities of

general relativity. In this paper we use semianalytical tools to better understand the nature of these

collisions and the emitted gravitational radiation. We explain many features of the energy spectra

extracted from numerical relativity simulations using two complementary semianalytical calculations.

In the first calculation we estimate the radiation by a ‘‘zero-frequency limit’’ analysis of the collision of

two point particles with finite impact parameter. In the second calculation we replace one of the black

holes by a point particle plunging with arbitrary energy and impact parameter into a Schwarzschild black

hole, and we explore the multipolar structure of the radiation paying particular attention to the near-

critical regime. We also use a geodesic analogy to provide qualitative estimates of the dependence of the

scattering threshold on the black hole spin and on the dimensionality of the spacetime.
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I. INTRODUCTION

Solving Einstein’s equations numerically is a highly
nontrivial task. After the recent breakthroughs in numerical
relativity (NR) [1–3], binary black hole (BH) mergers have
been routinely carried out by several groups worldwide. As
is often the case in physics, the results of numerical simu-
lations are best understood or interpreted by studying
simplified models that capture the main features of the
problem. In this paper we will argue that semianalytical
tools are particularly useful to gain insight into the fasci-
nating but complex problem of ultrarelativistic BH
collisions.

High-energy BH encounters are a difficult undertaking
in NR (see Refs. [4–7] for a discussion of ultrarelativistic
collisions in four dimensions, Refs. [8–11] for recent
progress on D-dimensional simulations, and Ref. [12] for
a review of the most outstanding questions in ultrarelativ-
istic BH collisions before the recent breakthroughs in NR).
Efficient adaptive mesh refinement and wave extraction
techniques are required because the problem involves vari-
ous scales: the BHs are ‘‘pancake-shaped’’ because of
Lorentz contraction, the large speeds involved in the col-
lision require large initial separations to define asymptotic
states, and high resolution is required to study the dynam-
ics of the final BH (if any) formed as a result of the merger.
Further difficulties arise from the spurious radiation
present in the initial data.

Despite their relatively limited accuracy, simulations of
ultrarelativistic BH collisions to date have provided defi-

nite predictions for nonspinning BHs in four dimensions
[4–7]. For example, these simulations show that, even in
the highly symmetric case of head-on collisions, as much
as�14� 3% of the energy of the system can be radiated in
gravitational waves [4,5]. They further demonstrate the
existence of three distinct regimes depending on the impact
parameter b: immediate mergers, nonprompt mergers, and
the scattering regime. These regimes are separated by two
special values of the impact parameter: the threshold of
immediate merger b� and the scattering threshold bscat.
Roughly speaking, for b < b� merger occurs within the
first encounter, whereas for b� < b< bscat it does not, but
sufficient energy is radiated to put the binary into a bound
state that eventually results in a merger. For the largest
initial center-of-mass velocities of v ¼ 0:94 studied to
date, as much as �35� 5% of the energy can be carried
away by gravitational radiation [5,6].
Close to the threshold of immediate merger, the binary

exhibits ‘‘zoom-whirl’’ behavior, an extreme version of
relativistic perihelion precession that can be precisely de-
fined and understood in the geodesic limit [13–17]. For
point particles orbiting BHs, zoom-whirl orbits are inti-
mately related to the existence of unstable spherical orbits
(unstable circular orbits at radii 3M � r � 6M in the
special case of Schwarzschild BHs). The very existence
of zoom-whirl orbits in comparable-mass BH encounters is
perhaps a strong hint that simple, semianalytical ap-
proaches (in this case, the study of point-particle geodesics
around BHs) can provide valuable insight into the general
solution of the problem.
NR simulations of ultrarelativistic BH collisions have

also provided information on the structure of the Fourier-*berti@phy.olemiss.edu
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domain energy spectra dErad=d!. An interesting feature of
the spectra of comparable-mass BH collisions is the pres-
ence of a nonvanishing zero-frequency limit (ZFL). For
head-on collisions, Fig. 1 shows that the energy spectrum is
roughly flat (independent of frequency) up to some cutoff
frequency, after which it decays exponentially (in this
figure and elsewhere in the paper we use geometrical units
G ¼ c ¼ 1). Grazing ultrarelativistic BH collisions also
lead to energy spectra with complex features, although this
was not discussed in Ref. [6] because of space limitations.
These complex spectra are discussed further in Sec. V of
the present work.

One of the motivations of this paper is to explore sim-
plified, analytical, and semianalytical descriptions of ultra-
relativistic BH mergers that provide qualitative (and
sometimes even quantitative) explanations of the main
features of these spectra [4]. In particular, we shall con-
centrate on the combination of the following two ap-
proaches: a linearized calculation in flat spacetime
pioneered by Weinberg and Smarr [18–21] and BH pertur-
bation theory [22–28]. We will refer to the Weinberg-
Smarr approach (which is valid for arbitrary velocities, as
long as the radiated energies are small) as the ‘‘ZFL
calculation,’’ because it provides a good approximation
of the emitted energy spectrum at low frequencies. The
ZFL calculation assumes an instantaneous collision in flat
spacetime, and in four dimensions it yields a flat spectrum
at all frequencies—precisely what one would expect from
the analogous problem in electromagnetism [29]. The ori-
gin of the exponential cutoff in the NR spectra can be

understood through the second approach, i.e. by computing
the radiation from point particles falling in a curved BH
spacetime [22–28]. These perturbative calculations show
that the radiation in a given multipole ‘‘shuts off’’ at the
real part of the lowest QNM frequency of the BH for the
multipole in question [30,31].
In this paper we address several questions related to the

puzzling behavior of ultrarelativistic BH collisions:
(1) We use geodesic calculations to explore the depen-

dence of the scattering threshold on BH spin and
dimensionality of the spacetime. This threshold de-
termines whether the two BHs will eventually merge
or not, and it is of fundamental importance to esti-
mate cross sections for BH production in high-
energy collisions [32]. Classical general relativity
in D dimensions should be adequate to determine
the cross section for BH production at trans-
Planckian collision energies and the fractions of
the collision energy and angular momentum lost in
gravitational radiation. This information will be of
paramount importance to improve the modeling of
microscopic BH production in event generators such
as TRUENOIR, CHARYBDIS2, CATFISH, or BLACKMAX

[33–36]. The event generators will then provide a
description of the corresponding evaporation phase,
which might be observed during LHC collisions.

(2) We reproduce the qualitative (and sometimes quan-
titative) features of the energy spectra by a ‘‘bare-
bones’’ approach, where we replace the colliding
BHs by two point particles and we estimate the
radiation by a ZFL calculation with finite impact
parameter. The generalization to finite impact pa-
rameter requires a specific model to bind the parti-
cles after the collision and guarantee energy-
momentum conservation [37], but our qualitative
conclusions should be roughly independent of the
details of the model.

(3) We gain insight into the details of the emitted ra-
diation (particularly in the near-critical regime) by a
perturbative study of the ultrarelativistic infall of
point particles with generic impact parameter into
a Schwarzschild BH.

The two-pronged analytical approach above provides a
better understanding of most of the main features of the
energy spectra. In particular, we reach the following con-
clusions:
(i) In both the extreme-mass ratio case and in

comparable-mass NR simulations, the ZFL is by
and large independent of the impact parameter b.

(ii) For a given multipolar index l, the slope of the
different m components at low frequencies is pro-
portional to b.

(iii) The exponential cutoff is related to the QNM fre-
quencies of the final BH.

(iv) Higher multipoles of the radiation become increas-
ingly important as the binary becomes ultrarelativ-
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FIG. 1 (color online). Energy spectrum for the dominant
(quadrupolar, i.e. l ¼ 2) component of the gravitational radiation
computed from NR simulations of the head-on collision of two
equal-mass BHs (from [4]). The collision speed in the center-of-
mass frame, � ¼ v=c, is indicated in the legend. The energy
spectrum is roughly flat (independent of frequency) up to the
quasinormal mode (QNM) frequencies (marked by vertical
lines), after which it decays exponentially. All quantities are
normalized to the Arnowitt-Deser-Misner (ADM) mass of the
system MADM.
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istic, leading from an exponential scaling of the form
e�aRl in the nonrelativistic limit to a scaling of the
form bR=l in the ultrarelativistic limit, where
ðaR; bRÞ are constants.

(v) The total radiation is proportional to the number of
orbits near the scattering threshold for nonrelativistic
infalls, but it is enormously enhanced (essentially by
a resonance with the QNM frequencies of the final
BH) when the collision is ultrarelativistic.

The plan of the paper is as follows. In Sec. II we
compute the critical impact parameter for geodesics in
four and higher dimensions. In Sec. III we explore a simple
toy model to estimate the radiation in the ZFL for colli-
sions with finite impact parameter. In Sec. IV we compute
the energy, angular momentum, and linear momentum
radiated by point particles falling into Schwarzschild
BHs in four dimensions with arbitrary energy. In Sec. V
we show how the ZFL and point-particle calculations shed
light on some features of NR simulations of ultrarelativistic
BH collisions. We conclude by pointing out possible ex-
tensions of our investigation. Appendix A gives some
technical details on the Sasaki-Nakamura formalism, and
Appendix B shows how the ZFL results can be decom-
posed in terms of spin-weighted spherical harmonics.

We work mostly in four spacetime dimensions with
signature ð�;þ;þ;þÞ [38], except for the discussion in
Sec. II C, where we explore higher-dimensional BHs.
Greek letters ð�; �; . . .Þ in index lists range over all space-
time indices. The Einstein summation convention is em-
ployed unless otherwise specified. Overhead dots stand for
partial differentiation with respect to the proper time �,
_E � @E=@�; OðAÞ stands for terms of order A.

II. SCATTERING THRESHOLD IN BLACK HOLE
SPACETIMES

One of the main ingredients to estimate BH production
rates in particle accelerators is the cross section for BH
production [32]. Several analytical approximations have
been used to estimate cross sections [12]. In this section we
explore a particularly simple approach. We compute the
critical impact parameter between plunge and scattering
for particles following geodesics in different BH metrics,
in order to estimate the qualitative dependence of the cross
section on BH spin and dimensionality. We begin with a
brief review of the scattering threshold in the
Schwarzschild background. Then we proceed to the com-
putation of the critical impact parameter in a four-
dimensional rotating (Kerr) background, and finally we
generalize the analysis to higher-dimensional rotating
(Myers-Perry) backgrounds.

A. Schwarzschild black holes

Geodesics in a Schwarzschild background are com-
pletely determined by their energy and (z component of)
orbital angular momentum per unit rest mass. It is useful to

replace the total energy ~E and the orbital angular momen-
tum ~Lz by the parameters E ¼ ~E=� and Lz ¼ ~Lz=�. Here
� is the particle’s rest mass and E is related to the velocity

v of the particle at infinity by E ¼ ð1� v2Þ�1=2. The
geodesic radial behavior is governed by the relation
ðdr=d�Þ2 ¼ E2 � Veffðr; LzÞ, where � is the proper time
and the effective potential for a Schwarzschild background
is Veff ¼ ð1þ L2

z=r
2Þf, with f � 1� 2M=r andM the BH

mass.
Geodesics can be classified according to how their en-

ergy compares to the maximum value of the effective
potential, which in this case is given by

Vmax
eff ¼ 1

54

�
L2
z

M2
þ 36þ

�
L2
z

M2
� 12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

ðL2
z=M

2Þ

s �
:

(1)

The scattering threshold is then defined by the condition
E2 ¼ Vmax

eff : unbound orbits with E2 > Vmax
eff are captured,

while those with E2 <Vmax
eff are scattered. Given some E,

the critical radius or impact parameter bcrit that defines the
scattering threshold is obtained by solving the condition
E2 ¼ Vmax

eff for Lz ¼ Lcrit, and then using the relation

bcrit ¼ LcritðE2 � 1Þ�1=2: (2)

Note that we mostly work in the point-particle approxima-
tion with no radiation reaction effects, so we adopt a
slightly different terminology from that of Ref. [6]: here
Lcrit denotes the critical angular momentum separating
plunging trajectories from scattering trajectories.
Ultrarelativistic collisions can be modeled by large-

energy geodesics. One can then show that a high-energy
orbit plunges when

L2
z

M2
<

L2
crit

M2
’ 27

ð1=E2Þ � 9� 1

E2
þOð1=E4Þ; (3)

where the last relation is valid in the limit E2 � 1. The
condition for scattering is Lz > Lcrit. One can also easily
show that all orbits plunge if L2

z < 12M2 when the particle
is at rest at infinity (E ¼ 1). If E> 1, scattering orbits exist
only if Lz > 4M.

B. Kerr black holes

The radial motion of equatorial geodesics in a Kerr
background can also be described in terms of an effective
potential [39]. In this case, however, the potential for time-
like geodesics takes a more complicated form, which we
can parametrize as

Veff ¼
�
1þ L2

z

r2

�
fþ j

�1Lz

r3
þ j2

�
�2

r2
þ �3

r3

�
: (4)

The Kerr spin parameter a and the reduced spin parameter
j are related to the spin angular momentum J via J ¼
Ma ¼ jM2. As before, E and Lz stand for the energy and (z
component of) angular momentum per unit rest mass. For
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convenience, we have also defined the energy-dependent
‘‘spin-deformation’’ parameters

�1 � 4M2E; �2 �M2ð1�E2Þ; �3 ��2M3E2:

(5)

For fixed j, orbits with a turning point are identified by
pairs ðE; LzÞ for which Veff has a double root. The extrema
of the effective potential are defined by

dVeff

dr
¼ 2M

r2
þ 6ML2

z

r4
� 2L2

z

r3
� 3j�1Lz

r4

� j2
�
2�2

r3
þ 3�3

r4

�
¼ 0 (6)

and correspond to radii

r� ¼ L2
z

2M

�
1þ j2

�2

L2
z

�
� L2

z

2M

�
1� 12M2

L2
z

þ j
6M�1

L3
z

þ j2
�
2�2

L2
z

þ 6M�3

L4
z

�
þ j4

�2
2

L4
z

�
1=2

: (7)

The maximum of the effective potential is then equal to
Vmax
eff ¼ Veffðr ¼ r�Þ, which generalizes Eq. (1).

If we are given some values of ðE; jÞ, the critical impact
parameter bcrit can be obtained by solving E2 ¼ Vmax

eff for

Lcrit, and then using Eq. (2). Figure 2 plots this critical
impact parameter as a function of energy for different
values of the spin, where we have solved for bcrit numeri-
cally. Observe that bcrit asymptotes rapidly to a constant as
the energy approaches E� 2. For large, positive spins
(corotating case), the critical impact parameter asymptotes
to bcrit � 2:33M for E ¼ 2, while for large, negative spins
(counterrotating case) it asymptotes to bcrit � 7:62M. As
the spin is decreased, the critical impact parameter for
corotating geodesics increases, so that the smallest impact
parameter corresponds to maximally spinning BHs.

The above considerations suggest that an asymptotic
analysis might allow for a better analytical understanding
of the critical impact parameter in the ultrarelativistic
regime. Let us then define the perturbation parameters

1 � � � 1� j > 0; 1 � � � 1=E > 0: (8)

Performing an asymptotic expansion to second order in �,
the solution to E2 ¼ Vmax

eff becomes

Lcrit � 2

�
þ ffiffiffi

�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 2�2
p

�
þ �

2ð�2 � 1Þ
�ð�3 � 3Þ

þ �3=2
ð�2 � 1Þð3�4 þ 5Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 2�2
p

�ð�2 � 3Þ3 þOð�2Þ: (9)

Reexpanding this equation to second order in �, we find

bcrit
M

� 2þ ffiffiffi
6

p ffiffiffi
�

p þ 2

3
�þ 5

ffiffiffi
6

p
108

�3=2

þ
�
1þ

ffiffiffi
6

p
3

ffiffiffi
�

p � 1

9
�þ 5

ffiffiffi
6

p
324

�3=2
�
�2 þOð�2; �3Þ:

(10)

Equation (10) is formally a bivariate expansion, i.e. an
expansion in two independent perturbation parameters: �
and �. This expansion is a fractional Frobenius series, with
the regular limit bcrit ! 2 when � ! 0 and � ! 0. The
energy parameter contributes only to second order, while
the spin contributes at fractional leading order. A compari-
son of this estimate to the numerical solution of Fig. 2
shows good agreement: when j¼0:999 and E¼2 Eq. (10)
predicts bcrit � 2:335M, while the numerical result is
bnum ¼ 2:396M. Therefore the relative fractional error of
the asymptotic expansion (dominated by the neglected
relative E�3 terms) is approximately 2.6%.
In the ultrarelativistic limit (� ! 0), we can solve the

critical impact parameter equation exactly for arbitrary j to
find [39]

bcrit
M

¼ �jþ 6 cos

�
arccosð�jÞ

3

�
; (11)

or alternatively bcrit=M ¼ �jþ 3xþ 3=x, where x �
½�jþ ðj2 � 1Þ1=2�1=3. The asymptotic expansion is very
accurate in the ultrarelativistic limit: for example, for j ¼
0:999 this exact formula gives bcrit=M ¼ 2:078 129 87, to
be compared with bcrit=M� 2:078 129 92 from Eq. (10).

C. Myers-Perry black holes

We now generalize the above analysis to higher-
dimensional BHs, considering for illustration the Myers-
Perry solution with a single angular momentum direction
[40]. The metric of a D-dimensional Kerr BH with only
one nonzero angular momentum parameter is given in
Boyer-Lindquist-type coordinates by [40]
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FIG. 2 (color online). Critical impact parameter versus re-
duced energy E for different values of j in a Kerr background.
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ds2 ¼ ��� a2sin2#

�
dt2 � 2aðr2 þ a2 � �Þsin2#

�
dtd’

þ ðr2 þ a2Þ2 ��a2sin2#

�
sin2#d’2 þ �

�
dr2

þ �d#2 þ r2cos2#d�2
D�4; (12)

where

� ¼ r2 þ a2cos2#; (13)

� ¼ r2 þ a2 �M�r5�D; (14)

d�2
D�4 denotes the standard metric of the unit (D� 4)-

sphere, and M� is related to the BH mass. In fact, this
metric describes a rotating BH in an asymptotically flat
vacuum spacetime with mass M and angular momentum
J given by

M ¼ D� 2

16�
AðD�2ÞM�; J ¼ 1

8�
AðD�2ÞM�a; (15)

where AðD�2Þ is the area of a unit (D� 2)-sphere:

AðD�2Þ ¼ 2�ðD�1Þ=2

�½ðD� 1Þ=2� : (16)

Timelike equatorial geodesics depend on the effective
potential

Veff ¼ r2E2 þ M�
rD�3

ðaE� LzÞ2 þ ða2E2 � L2
zÞ � 	1�D;

(17)

where D is the dimensionality of spacetime and �D ¼
r2 þ a2 �M�r5�D. For D ¼ 4, the quantity M� and the
mass of the BH are related via M� ¼ 2M. In higher
dimensions M� does not have units of length, but instead
½M�� ¼ ðlengthÞD�3. We also introduce a dimensionless
spin parameter

j ¼ a

ðM�=2Þ1=ðD�3Þ ; (18)

which reduces to the corresponding Kerr quantity for D ¼
4.

When D ¼ 5 we can carry out an asymptotic analysis
similar to the one presented in the previous subsection (see
also [41]). In the ultrarelativistic limit (E ! 1) we have

bðD¼5Þ
crit =

ffiffiffiffiffiffiffi
M�

p ¼ 2� j=
ffiffiffi
2

p
; (19)

which is to be contrasted with the four-dimensional result
presented in Eq. (11). This asymptotic analysis reveals that
in both four and five dimensions the overall effect of spin
for corotating geodesics is to reduce the critical impact
parameter, suggesting that the highest energy emission
occurs for maximally rotating BHs.

For dimensions higher than five, an asymptotic analysis
is more involved due to the higher inverse polynomial
order of the effective potential. However, a numerical

calculation is straightforward. In Fig. 3 we plot the dimen-

sionless impact parameter bcrit=ðM�=2Þ1=ðD�3Þ as a function
of j for different values of D. The calculations in Fig. 3
refer to E ¼ 10, but this is already a good approximation of
the asymptotic value of the impact parameter in the ultra-
relativistic region. Observe that as D increases, the mini-

mum in bcrit=ðM�=2Þ1=ðD�3Þ corresponds to smaller values
of j.
The ðv; jÞ phase space is explored in more detail in

Fig. 4, where we show contour plots of the dimensionless
impact parameter for both corotating and counterrotating
geodesics in different dimensions. Note that the smallest
critical impact parameter corresponds to corotating, ultra-
relativistic geodesics, but the BH must not necessarily be
maximally spinning when D> 5. For 6 � D � 10 the
critical impact parameter presents a local minimum bmin

crit

as a function of j, which is well described by the following
quadratic fit:

bmin
crit

�
M�
2

�ðð1Þ=ð3�DÞÞ ¼ 3:978� 0:679Dþ 0:033D2: (20)

This fit was constructed considering only spacetimes with
D � 10, so its extrapolation toD> 10 should be used with
caution.

III. THE ZFL IN GRAZING COLLISIONS

In this section we generalize the classic ZFL calcula-
tions for head-on collisions [20,21] to the case of collisions
with finite impact parameter. The initial configuration
consists of two point particles with massMk freely moving
toward each other with constant, positive velocity vk,

corresponding to boost factors Ek ¼ ð1� v2
kÞ�1=2 (k ¼ 1,

2). For convenience the axes are oriented such that the
initial motion is in the x direction (see Fig. 5). We assume
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FIG. 3 (color online). Critical impact parameter for E ¼ 10 as
a function of j for Myers-Perry BHs in different dimensions D.
The inset zooms along the y axis to show the local minima more
clearly.
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that at x ¼ 0 the particles ‘‘collide’’ with generic impact
parameter b and form a single final body (strictly speaking
this assumption is valid only for small impact parameters,

because we expect the bodies to scatter when b is large
enough). Since the collision is not head-on (and since the
energy loss is not included in the motion of point particles),
some confining force is necessary to bind the particles. In
fact, we show below that additional ‘‘stresses’’ are required
to guarantee energy conservation (cf. Ref. [37]).
Before the collision the particles have four-positions and

four-momenta given by

x
�
1 ¼ ðt; v1t; �1; 0Þ; x

�
2 ¼ ðt;�v2t;��2; 0Þ;

p�
1 ¼ E1M1ð1; v1; 0; 0Þ; p�

2 ¼ E2M2ð1;�v2; 0; 0Þ;
(21)

where �1 (� �2) is the projection of the position of particle
1 (2) along the y axis before the collision. If the system’s
center of mass is at y ¼ 0, the position of particle 2 before

3

4

4

5

5

7

7

7

7

10

10

10

10

15

15

1520
20

20
30

30
30

j

v

Critical impact parameter, D=4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5

10

15

20

25

30

1.75

2

2.25

2.5
2.5

3

3

3

4

4

4

4

5

5

5

5

7

7

7
7

10
10 10

j

v

Critical impact parameter, D=5

−1 −0.5 0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2

3

4

5

6

7

8

9

10

2

2

2.25

2.
25

2.5

2.5

2.
5

3

3

3

3

4

4

4

4
5

5
5

5

7
7 7 7

10 10 10

j

v

Critical impact parameter, D=6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2

3

4

5

6

7

8

9

10

1.752

2

2

2.25

2.25

2.
25

2.5

2.5

2.5

2.
53

3

3

3

4

4
4

4

5

5 5
5

7 7 7 7
10 10 10

j

v

Critical impact parameter, D=7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2

3

4

5

6

7

8

9

10

FIG. 4 (color online). Contour plots of the critical impact parameter in the ðv; jÞ plane for corotating orbits (j > 0) and counter-
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FIG. 5. The system before and after the collision. �1 is defined
in Eq. (22).
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the collision can also be written as y ¼ �ðb� �1Þ � ��2,
where b is the impact parameter.

At t ¼ 0 the particles become constrained to move as if
they were attached to an infinitesimally thin, massless rod
of length b. This fictional rod is an idealization, but it is
necessary to guarantee energy-momentum conservation.
For t > 0 the particles remain attached to the rod, so that
(in the center-of-momentum frame) they rotate around the
origin at fixed separation b. Using primes to denote final
states, the four-positions and four-momenta after the col-
lision are

ðx�1 Þ0 ¼ ðt; �1S; �1C; 0Þ;
ðx�2 Þ0 ¼ ðt;��2S;��2C; 0Þ;
ðp�

1 Þ0 ¼ E1M1ð1; �1�C;��1�S; 0Þ;
ðp�

2 Þ0 ¼ E2M2ð1;��2�C; �2�S; 0Þ;
where S � sinð�tÞ, C � cosð�tÞ.

A few relations can be derived between ð�1; �2Þ and
ðv1; v2Þ due to the constraints we imposed. The require-
ment that the system’s center of mass is at y ¼ 0 implies

�1 ¼ bE2M2

E1M1 þ E2M2

: (22)

In the center-of-momentum frame we also have

E1M1v1 ¼ E2M2v2: (23)

For an instantaneous collision the energy-momentum
tensor of the system is given by

T��ðx; tÞ ¼ X2
k¼1

p
�
k p

�
k

EkMk

	3ðx� xkðtÞÞ�ð�tÞ

þ X2
k¼1

ðp�
k Þ0ðtÞðp�

k Þ0ðtÞ
EkMk

	3ðx� x0
kðtÞÞ�ðtÞ;

(24)

where the boldface denotes a three-vector, and the angular
momentum is

S3 ¼
Z
ðx1T20 � x2T10Þd3x

¼ �X2
k¼1

½�ð�tÞEkMkvk�k þ�ðtÞEkMk��2
k�: (25)

Angular momentum conservation implies that the rotation
frequency must be

� ¼ E1M1v1�1 þ E2M2v2�2

E1M1�
2
1 þ E2M2�

2
2

: (26)

If we naively take the stress-energy tensor of Eq. (24) to be
the full energy momentum of the system, we would find
that it is not covariantly conserved, i.e. r�T

�� ¼ 0 for

� ¼ t, z but r�T
�� � 0 for � ¼ x, y. In fact, one finds (in

the center-of-momentum frame)

r�T
�x ¼ �E1M1�1�

2S	ðx� �1SÞ	ðy� �1CÞ	ðzÞ�ðtÞ
þ E2M2�2�

2S	ðxþ �2SÞ	ðyþ �2CÞ	ðzÞ�ðtÞ;
r�T

�y ¼ �E1M1�1�
2C	ðx� �1SÞ	ðy� �1CÞ	ðzÞ�ðtÞ

þ E2M2�2�
2C	ðxþ �2SÞ	ðyþ �2CÞ	ðzÞ�ðtÞ:

Physically, this nonconservation of stress energy is due to
neglecting the energy momentum associated with the ficti-
tious rod that keeps the particles in circular orbit.
Energy-momentum conservation can be enforced by

adding an additional term for each particle that represents
this constraining force. The contribution of such forces to
the gravitational radiation emitted by a particle in circular
orbit was studied by Price and Sandberg [37]. By adding a
radial tension �kðrÞ for each particle and imposing that
r�T

�� ¼ 0 we get the following contributions to the

energy-momentum tensor:

Txx
tensðt;xÞ ¼ �S2	ðcos
Þ�ðtÞX2

k¼1

�kðrÞ	ð�þ�t��kÞ;

Tyy
tensðt;xÞ ¼ �C2	ðcos
Þ�ðtÞX2

k¼1

�kðrÞ	ð�þ�t��kÞ;

Txy
tensðt;xÞ ¼ �SC	ðcos
Þ�ðtÞX2

k¼1

�kðrÞ	ð�þ�t��kÞ;

where �1 ¼ �=2, �2 ¼ 3�=2, and

�kðrÞ ¼ Mk�k�
2�ð�k � rÞ

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�k�Þ2p ðk ¼ 1; 2Þ: (27)

Here r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, 
 is the polar angle measured

from the positive z axis, and� is the azimuthal angle in the
x-y plane measured from the x axis (see Fig. 5). The factor

½1� ð�k�Þ2��1=2 is just the boost factor for particle k in
circular motion with angular frequency �. The stresses
vanish for b ¼ 0, as one would expect.

A. Equal-mass collisions

In this subsection we study the equal-mass case M=2 �
M1 ¼ M2, where M is the total mass, and v1 ¼ v2 ¼ v,
E1 ¼ E2 ¼ E. According to Eq. (26), after the collision the
particles are on a bound circular orbit with radius b=2 and
rotational frequency � ¼ 2v=b. The Fourier transform of
the energy-momentum tensor (24) yields
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T��ðk; !Þ ¼ p�
1 p

�
1

2�iE1M1ð!� v1kxÞ e
�ikyb=2

þ p
�
2 p

�
2

2�iE2M2ð!þ v2kxÞ e
ikyb=2

þ X2
k¼1

Z 1

�1
p0�
k ðtÞp0�

k ðtÞ
2�EkMk

expði!t� ik 	 x0
kðtÞÞ


�ðtÞdtþ 1

2�

Z
d4xT��

tensðx; tÞei!t�ik	x;

(28)

where d4x ¼ dxdydzdt and k is the wave vector:

kx ¼ ! sin� cos
; ky ¼ ! sin� sin
;

kz ¼ ! cos�:
(29)

We also have

ei!t�ik	x0
k
ðtÞ ¼ ei!t exp

�
i�k

!b

2
sin
 sinð�tþ�Þ

�
; (30)

where k ¼ 1, 2 is the particle index, �1 ¼ �1, and �2 ¼ 1.
If we set  ¼ �tþ� and 2�k ¼ �k!b sin
, the last
exponential can be written in terms of Bessel functions
of the first kind, using the Jacobi-Anger expansion [42]:

ei� sin ¼ Xn¼þ1

n¼�1
Jnð�Þein: (31)

For large n the Bessel functions satisfy [42]

Jnð�Þ � 1ffiffiffiffiffiffiffiffiffi
2�n

p
�
e�

2n

�
n
: (32)

A time integration introduces an additional factor of 1=n,
so the series converges rapidly for large jnj and we can
truncate it at some moderately large value of n ¼ N to get
an accurate approximation of the integral.1 Typically, N *
10 is sufficient for an accuracy of 1% or better.

The integration of the stresses proceeds in a similar way.
After integrating in 
 and �, the same Bessel function
expansion can be used for the time integration. The integral
of Bessel functions with respect to r can be evaluated using
the following identity [42]:

Z �

0
J�ðrÞdr ¼ 2

X1
k¼0

J�þ2kþ1ð�Þ; Reð�Þ>�1: (33)

1. Radiation spectrum

The energy per solid angle and per unit frequency emit-

ted in the direction k̂ ¼ k=! is [43]

d2E

d!d�
¼ 2!2

�
T��ðk; !ÞT�

��ðk; !Þ � 1

2
jT�

�ðk; !Þj2
�
;

(34)

where the asterisk stands for complex conjugation. The
energy can also be expressed in terms of the purely space-
like components of T��. The conservation equation for
T�� implies that k�T

��ðk; !Þ ¼ 0, so it is possible to write

T00 and T0i in terms of Tij:

T00ðk; !Þ ¼ k̂ik̂jTijðk; !Þ; (35)

T0iðk; !Þ ¼ �k̂jTijðk; !Þ: (36)

With these identities at hand, Eq. (34) can be written as

d2E

d!d�
¼ 2!2�ijlmðk̂ÞT�ijðk; !ÞTlmðk; !Þ; (37)

where following Ref. [43] we defined

�ijlmðk̂Þ ¼ 	il	jm � 2k̂jk̂m	il þ 1
2k̂ik̂jk̂lk̂m � 1

2	ij	lm

þ 1
2	ijk̂lk̂m þ 1

2	lmk̂ik̂j: (38)

In Fig. 6 we plot the energy spectrum for E ¼ 3 along

four different directions: k̂ ¼ ex, ey , ez, ðex þ ey þffiffiffi
2

p
ezÞ=2. For dimensional reasons, there is no need to fix

b as long as the energy is plotted as a function of!=�. All
spectra diverge when ! ¼ 2�, as expected of a rigid
symmetric body rotating with angular frequency �. For

k̂ ¼ ez the spectrum diverges only at ! ¼ 2� (see
Ref. [44] for a discussion of particles in circular orbit in
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FIG. 6 (color online). Energy per unit solid angle and per unit
frequency emitted in the directions k̂ ¼ ex, ey , ez, ðex þ ey þffiffiffi
2

p
ezÞ=2 by equal-mass binaries with E ¼ 3, as a function of

!=�.

1Actually, the series should be approximated by summing
from n ¼ n0 � N to n ¼ n0 þ N, where n0 is the value of n,
which maximizes the absolute value of the terms being summed.
After the integration, terms of the form 1=ð!� n�Þ appear. This
means that the largest contribution to the sum corresponds to
some n0 � 0. However, it can be checked that N � n0 for the
range of parameters considered here, so the sum can be taken in
a symmetric interval around 0.
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the Schwarzschild geometry), but in all other directions the
spectrum diverges at even multiples of the rotational fre-
quency �. The same qualitative features hold for higher
boost parameters.

2. Head-on collisions

Let us consider the b ¼ 0 limit, which corresponds to a
head-on collision and for which we can compare against
known results [20,21]. In this limit, the only nonvanishing
components of the energy-momentum tensor are

2�!Tttðk; !Þ ¼ iEM� iEM

1� v2sin2
cos2�
;

2�!Ttxðk; !Þ ¼ � iEMv2 sin
 cos�

1� v2sin2
cos2�
;

2�!Txxðk; !Þ ¼ � iEMv2

1� v2sin2
cos2�
:

The energy spectrum per unit solid angle is then given by

d2E

d!d�
¼ E2M2v4ðsin2
cos2�� 1Þ2

4�2ðv2sin2
cos2�� 1Þ2 : (39)

This agrees with previous results in the literature. Indeed,
after a trivial redefinition of angles, Eq. (39) is equal to
Eqs. (2.19) and (2.12) of Refs. [20,21], respectively. In
Refs. [20,21] the angular variable 
 is the angle between
the radiation direction and the momenta of the particles;
the substitution of their cos
 by sin
 cos� yields Eq. (39).
For ease of comparison with NR results [4,6], it is conve-
nient to expand the above expression in spin-weighted
spherical harmonics with spin weight s ¼ �2. Such an
expansion is discussed in Appendix B.

Recalling that ex corresponds to (
 ¼ �=2, � ¼ 0), ey
corresponds to (
 ¼ �=2,� ¼ �=2) and ez corresponds to

 ¼ 0 we get

d2E

d!d�
¼ 0 along ex; (40a)

d2E

d!d�
¼ E2M2v4

4�2
along ey ; ez: (40b)

The radiated momentum per unit frequency for this
head-on collision is found by the following integral over
a two-sphere at infinity, S1, centered on the coordinate
origin:

dPi

d!
¼

Z
S1

d2E

d!d�
nid�; (41)

where ni is a unit radial vector normal to S1. In the present
case we find that the radiated momentum vanishes, i.e.
dPi=d! ¼ 0, as one would expect.

3. Zero-frequency limit

For arbitrary impact parameters our results show that, in
the limit b! ! 0, the energy spectrum is independent of b
and given by Eq. (39). This is, of course, consistent with
the head-on results of Smarr [20] and Adler and Zeks [21].
Numerical calculations support this conclusion and reveal
additional details for small but nonzero frequencies. The
stress terms give the following contributions to the energy-
momentum tensor:

!Txx
tensðk; !Þj!¼0 ¼ !Tyy

tensðk; !Þj!¼0 ¼ � ib2EM�2

16�
;

!Txy
tensðk; !Þj!¼0 ¼ 0: (42)

For ! ¼ 0 the constraining forces provide a nonvanishing
contribution to the energy-momentum tensor. It is this
particular contribution that allows one to recover the ZFL
of the energy spectrum, Eq. (39), for any impact parameter.
This is one of the most intriguing results of this incursion
into the properties of the ZFL for collisions with nonzero
impact parameter.
The spectra for small frequencies along the directions

k̂ ¼ ey and k̂ ¼ ez are plotted in Fig. 7 for different values

of b=M. All spectra have the same ZFL, as discussed
above. Specializing Eq. (40b) to the case E ¼ 3 we get
d2E

d!d� j!¼0 ¼ 0:180 13M2 for ey , ez. This is in very good

agreement with the numerical results shown in Fig. 7.
For small but finite frequencies, we find that the slope of

the energy spectrum depends on direction. It is positive

(negative) for k̂ ¼ ey (ez), and it increases with b=M. An

expansion of the energy for small b! yields
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FIG. 7 (color online). Normalized energy spectrum per unit
solid angle emitted in the directions k̂ ¼ ey (thick lines) and

k̂ ¼ ez (thin lines) as a function of M! for several values of
b=M (as indicated in the legend) and E ¼ 3. As indicated by Eq.
(40) the ZFL for these two different directions is the same and
approximately equal to 0:180 13M2.
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d2E

d!d�
¼ E2M2v2

16�2ð1�v2sin2
cos2�Þ2
�
4v2ðsin2
cos2�� 1Þ2

� 1

6
½v2ð8v2 þ 3Þsin6
cos4�þ sin2
ðð8v2 þ 3Þ


 cos2�þ 12ðv2 þ 1ÞÞ� sin4
cos2�


 ð6v4 þ ð2v2 þ 3Þv2 cos2�þ 20v2 þ 3Þ
� 12�ðb!Þ2

�
þO½ðb!Þ3�: (43)

Thus, within our model the spectrum typically has qua-

dratic corrections, except along k̂ ¼ ex, in which case the
first nonvanishing contribution to the energy spectrum is of
order ðb!Þ4. In fact, we find

d2E

d!d�

��������k̂¼ex

¼ �E2M2ð3� 2v2Þ2
9216�2

ðb!Þ4 þO½ðb!Þ5�:
(44)

These analytical expressions are in good agreement with
the results shown in Fig. 7.

B. Extreme-mass ratio collisions

We now study collisions for � � M1 � M2 � M (the
qualitative features of the radiation for generic mass ratio
are very similar to the extreme-mass ratio case). The
energy spectrum can be computed in the center-of-
momentum frame. Since particle 2 is much heavier than
particle 1, particle 2 is practically at rest in this frame,
although we shall not neglect its motion when we compute
the energy-momentum tensor. Therefore, we let v1 � v �
v2 and E1 � E.

From Eqs. (22) and (26), the angular frequency and
position of particle 1 are given by

� ¼ E1�v1�1 þ E2Mv2�2

E1��1 þ E2M�2

; �1 ¼ bE2M

E1�þ E2M
:

(45)

Once again we must add the stresses needed to constrain
the particles in their orbits, in order to have a conserved
energy-momentum tensor.

1. Radiation spectrum

We compute the radiated energy using Eq. (34) or
Eq. (37). We expand the energy-momentum tensor in
powers of �=M and compute the energy keeping only
leading-order contributions in �=M. A calculation of the
radiation for E ¼ 3 (in the center-of-momentum frame)
along several different directions yields the spectra shown
in Fig. 8.

The extreme-mass ratio configuration loses the angular
symmetry of the equal-mass case. Therefore, the spectra

now diverge for all multiples of� for k̂ ¼ ex, k̂ ¼ ey . The

behavior is similar for other directions. For k̂ ¼ ez, the

spectrum diverges only for ! ¼ 2�, in agreement with
Poisson’s findings for particles in circular orbit around BHs
[44].

2. Head-on collisions

For extreme-mass ratio head-on collisions (b ¼ 0) we
find

d2E

d!d�
¼ E2�2v4ðsin2
cos2�� 1Þ2

4�2ðv sin
 cos�� 1Þ2 : (46)

This expression coincides, as it should, with Eq. (2.17) of
Smarr [20], once we take into account the different con-
vention on angles by an appropriate redefinition of angular
variables [cf. the discussion following Eq. (39)]. For ease
of comparison with perturbative results of point particles in
BH spacetimes, in Appendix B we compute analytically
the multipolar decomposition of this ZFL result in spin-
weighted spherical harmonics.
By computing the radiated momentum using Eq. (41) we

find that it vanishes along the y and z axes, and that along
the x axis it is given by

dPx

d!
¼ �2E2½vð15� 13v2Þ � 3ðv4 � 6v2 þ 5Þarctanhv�

3�v2
:

(47)

This result is in good agreement with the linear momentum
radiated by point particles falling into Schwarzschild BHs,
as we will see in Sec. IVD.

3. Zero-frequency limit

Let us now consider the ZFL for generic values of the
impact parameter. As b! ! 0 we find once again that the
energy spectrum is independent of the impact parameter
(as it was for the equal-mass collisions of Sec. III A). The
leading-order expression of the energy in powers of �=M
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FIG. 8 (color online). Normalized energy spectrum per solid
angle emitted in the directions k̂ ¼ ex, ey , ez, ðex þ ey þffiffiffi
2

p
ezÞ=2 as a function of !=� in the extreme-mass ratio case.
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is given by Eq. (46), reproducing Smarr’s result for head-
on collisions. Including higher powers of b! we get

d2E

d!d�
¼ E2�2v2

4�2ðv sin
 cos�� 1Þ2
�
v2ðsin2
cos2�� 1Þ2

� 1

192
½ð�4vð2v2 þ 3Þsin3
ðcos2
þ 3Þ cos3�

þ 8sin2
 cos2�ðð3� 10v2Þ cos2
� 6v2 þ 9Þ
þ v sin
 cos�ðð372� 8v2Þ cos2

þ ð6v2 þ 9Þ cos4
þ 2v2 þ 387Þ þ 8ð2v2 � 21Þ

 cos2
þ ð20v2 � 6Þ cos4
� 6ð6v2 þ 35Þ�

 ðb!Þ2

�
þO½ðb!Þ3�: (48)

As in the equal-mass case, here too the radiation is sup-
pressed along the x axis, where the leading contribution is
of order ðb!Þ4:

d2E

d!d�

��������k̂¼ex

¼ E2�2ð3� 2vðvþ 3ÞÞ2
576�2

ðb!Þ4

þO½ðb!Þ5�: (49)

C. Generality of the model

The most important result of our ZFL calculation for
collisions with generic impact parameter is perhaps that the
ZFL itself is independent of the impact parameter. One of
the limitations of the present calculation is that the model-
ing of the collision is rather ad hoc, especially in the
specification of the nature of the constraining forces. It is
natural to ask how the results would change if the con-
straining forces were modeled differently. For example, in
our toy model the final system consists of two particles
bound in a circular orbit, so the radiation spectrum shows
peaks typical of the radiation produced by rotating bodies.
There is a chance that the divergence at harmonics of the
rotational frequency of the final system could contaminate
the low-frequency behavior of the spectrum.

To investigate this possibility, instead of considering the
collision of two point particles, we studied a point particle
colliding with a special extended matter distribution: spe-
cifically, we considered an infinitely thin, slowly rotating,
uniform disk. For brevity we do not report details of this
calculation here. Our main finding is that, if the disk is
initially slowly rotating (so that after the collision the
system is at rest), the ZFL is the same as in the case of
two colliding particles. This is by no means a proof that the
ZFL is completely independent of the way one models the
system. It is, however, a hint that (as physical intuition
would suggest) the ZFL should depend only on the asymp-
totic momenta of the colliding particles.

IV. ULTRARELATIVISTIC INFALL OF POINT
PARTICLES

The formalism discussed in Sec. III is a flat-space ap-
proximation valid for the low-frequency part of the energy
spectrum and of the gravitational waveforms. In this sec-
tion we compute the radiation from the linearized field
equations in the curved background of a Schwarzschild
BH. This is an accurate description at all frequencies in the
limit where one of the binary components is much more
massive than the other.
There is extensive literature on the gravitational radia-

tion emitted by particles following geodesics in BH back-
grounds (see [45] and Appendix C of [46] for summaries).
Here we present an incomplete overview of this literature.
Davis et al. first studied the radiation emitted by particles
falling radially from rest into a Schwarzschild BH [47] and
the synchrotron radiation emitted by particles in circular
orbits [48] (see also [49] and Detweiler’s contribution to
Ref. [50]). Oohara and Nakamura computed the energy,
angular momentum, and linear momentum radiated by
particles falling from rest with generic angular momentum
into Schwarzschild BHs [51,52]. This work was later gen-
eralized to particles on scattering orbits in Schwarzschild,
starting either from rest [53] or with finite energy at infinity
[54]. Radial infalls into a nonrotating BH with finite energy
were considered in Refs. [22–24], and the ultrarelativistic
limit was compared with Smarr’s ZFL in Refs. [25–27] (in
four dimensions) and [28] (in dimensions D � 4). Oohara,
Kojima, and Nakamura studied orbits plunging [51,55–57]
and scattering [58] from rest in the case of rotating (Kerr)
BHs. More recent studies focused on the threshold of
immediate merger using the geodesic analogy [13–16].
Perhaps because of the limited astrophysical relevance

of infalls with finite energy at infinity, to our knowledge
there is no detailed study of the radiation emitted by point
particles falling with generic energy and impact parameter
into Schwarzschild BHs. One purpose of this section is to
fill this surprising gap in the literature. A complementary
study of scattering orbits with generic energy can be found
in Ref. [54]. The generalization of this study to particles
falling with arbitrary energy and impact parameter into
Kerr BHs is in preparation.
The radiation can be determined from the knowledge of

the Sasaki-Nakamura wave function Xlm, which (in the
frequency domain) can be written in the form

d2Xlm

dr2�
þ

�
!2 � �

r5
ðlðlþ 1Þr� 6MÞ

�
Xlm ¼ Slm: (50)

Here ðl; mÞ are (tensor) spherical harmonic indices result-
ing from a separation of the angular variables, ! is the
Fourier frequency of the perturbation, and� � rðr� 2MÞ.
The boundary conditions dictate that we should have out-
going waves at infinity and ingoing waves at the BH
horizon:
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Xlm ¼
�
Xin
lme

�i!r� ; r� ! �1;
Xout
lm ei!r� ; r� ! þ1:

(51)

The source term Slm in the Sasaki-Nakamura equation (50)
is determined by the point-particle trajectory. Without loss
of generality we assume the trajectory to be an ‘‘equato-
rial’’ (
 ¼ �=2) timelike geodesic in the Schwarzschild
background, parametrized by

R2 _R2 ¼ R2ðE2 � 1Þ � fðRÞL2
z þ 2MR; (52)

R2 _� ¼ Lz; fðRÞ _T ¼ E; (53)

where fðRÞ ¼ 1� 2M=R and dots stand for derivatives
with respect to proper time �. As usual we denote by Lz

the orbital angular momentum of the particle along the z
axis and by E the particle’s energy at infinity per unit mass
�, so E ¼ 1 corresponds to an infall from rest. We remind
the reader that the impact parameter b is related to Lz by

b � Lz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p
. The geodesic equations can be inte-

grated numerically for chosen values of E and Lz. For Lz >
Lcrit ¼ LcritðEÞ (see Sec. II A) the particle does not plunge,
but rather scatters to infinity. We restrict our discussion to
the case L < Lcrit. Examples of plunging orbits for E ¼ 3
and different angular momenta (i.e., different impact pa-
rameters) are shown in Fig. 9.

Given a particle trajectory, the numerical calculation of
the gravitational radiation emitted by the system involves
the solution of Eq. (50), which can be obtained by the
standard Green’s function technique (more details on the
formalism can be found in Appendix A). Omitting for
simplicity the indices ðl; mÞ, we first define two indepen-

dent solutions Xð0Þ
in and Xð0Þ

out with boundary conditions:

Xð0Þ
in ¼

�
e�i!r� ; r� ! �1;

Aoute
i!r� þ Aine

�i!r� ; r� ! þ1:
(54a)

Xð0Þ
out ¼

�
Boute

i!r� þ Bine
�i!r� ; r� ! �1;

ei!r� ; r� ! þ1:
(54b)

Then the solution of the inhomogeneous Sasaki-
Nakamura equation (50) is given by

Xlm ¼ 1

W

�
Xð0Þ
in

Z 1

r�
SlmX

ð0Þ
outdr� þ Xð0Þ

out

Z r�

�1
SlmX

ð0Þ
in dr�

�
;

(55)

where W � 2i!Ain is the Wronskian. Asymptotically for
r� ! 1 the amplitude of the wave function is

Xout
lm ¼ 1

W

Z 1

�1
SlmX

ð0Þ
in dr�: (56)

Then the radiated energy, angular momentum, and linear
momentum are given by the multipolar sums

Erad ¼
Z 1

0
d!

X
lm

dElm

d!
; (57)

Jrad ¼
Z 1

0
d!

X
lm

m

!

dElm

d!
; (58)

Px þ iPy ¼
Z 1

0
d!16!2

X
lm

½qlmXout
l;m

�Xout
l;mþ1

þ plmðXout
l;m

�Xout
lþ1;mþ1 � �Xout

l;�mX
out
lþ1;�m�1Þ�;

(59)

with

dElm

d!
¼ 16!2jXout

lm j2;

plm ¼
�ðlþ 3Þðl� 1Þðlþmþ 2Þðlþmþ 1Þ

ð2lþ 3Þð2lþ 1Þðlþ 1Þ2
�
1=2

;

qlm ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl�mÞðlþmþ 1Þp
lðlþ 1Þ :

(60)

Note that the radiated momentum in the z direction Pz ¼ 0
by symmetry. Details on the derivation of the source term
and asymptotic expansions of the wave functions that are
necessary to improve the numerical accuracy of the
Wronskian are given in Appendix A.
We integrate all differential equations in C++ using the

adaptive step-size integrator STEPPERDOPR5 [59].
Schematically, the integration consists of the following
steps: (i) integrate the first independent solution of the
homogeneous Sasaki-Nakamura (SN) equation (50) with
the boundary conditions (54a) from rh ¼ 2Mð1þ 	rÞ out-
wards (typically we choose 	r ¼ 10�4); (ii) integrate the
second independent solution of the homogeneous equation

with boundary conditions (54b) from r1 ¼ rð0Þ1 =! in-

wards, where typically we choose rð0Þ1 ¼ 4
 104;

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
x/M

-4

-3

-2

-1

0

1

2

3

4

5

6

y/
M

r=2M
0.0
0.2
0.75
0.9
0.9999

FIG. 9 (color online). Trajectories for different values of
Lz=Lcrit (as indicated in the legend) and E ¼ 3. The black circle
of radius 2 marks the location of the horizon.
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(iii) compute the Wronskian at the large but finite radius

rð0Þ1 , using Eq. (A29) for increased accuracy; (iv) integrate
the geodesics with given orbital parameters and at the same
time compute the source term using Eqs. (A20) and (A23);

(v) output the ‘‘in’’ solution Xð0Þ
in and the source term Slm on

a grid of n ¼ 1:6
 105 colocation points, and use a Gauss-

Legendre spectral integrator [59] to compute the convolu-
tion of the homogeneous solutions with the source term
entering the expression for the outgoing amplitude Xout

lm ,

Eq. (56); (vi) sum over multipoles to get the total radiated
energy (57), the angular momentum (58), and the linear
momentum in the x and y directions (59).
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FIG. 10 (color online). Spectra for l ¼ m ¼ 2; . . . ; 6 for nonrelativistic infalls (E ¼ 1, left column) and kinetic-energy dominated
infalls (E ¼ 3, right column). The top row refers to a radial infall, and the middle (bottom) row to an infall with L=Lcrit ¼ 0:9
(L=Lcrit ¼ 0:9999).
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In the remainder of this section we summarize the results
obtained by this procedure.

A. Point-particle spectra

We performed an extensive set of simulations, selecting
seven values of the normalized particle energies (E ¼ 1,
1.5, 3, 5, 10, 20, 100). For each value of E we considered
nine different particle angular momenta (Lz=Lcrit ¼ 0, 0.2,
0.5, 0.75, 0.9, 0.95, 0.99, 0.999, 0.9999), for a total of 63
different configurations. We also ran a few more cases to
validate our code against the results of Ref. [51]. Our
results are in good visual agreement with their plots. For
each of the 63 simulations we computed all multipolar
components of the radiation up to l ¼ lmax ¼ 6 for 10�2 �
! � 1:5 in steps of 	! ¼ 10�2; in a few selected cases we
ran the code up to l ¼ lmax ¼ 8 to check the convergence
of the results against truncation of the multipolar sum. We
also verified that for head-on collisions with E> 1 our
results are in agreement (within three decimal places) with
Table II of Ref. [24].

For each value of l, most of the radiation is typically
emitted in the l ¼ m component. In Fig. 10 we show the
l ¼ m component of the energy spectra for particles falling
from rest (E ¼ 1) and for kinetic-energy dominated infalls
(E ¼ 3). In each of these two cases we plot the spectra for
three selected values of the angular momentum: Lz=Lcrit ¼
0 (a head-on infall), Lz=Lcrit ¼ 0:9, and Lz=Lcrit ¼ 0:9999
(a near-critical infall). The particle trajectories correspond-
ing to these values of Lz are shown in Fig. 9 for E ¼ 3.

Not surprisingly, ultrarelativistic infalls radiate much
more energy for a given value ofLz=Lcrit. It is also apparent
from Fig. 10 that the energy output increases (and higher
multipoles become relatively more important) as Lz=Lcrit

grows at fixed particle energy E. For kinetic-energy domi-
nated infalls the energy spectrum approaches a nonzero
constant as M! ! 0. The spectrum is flat for small fre-
quencies in the head-on limit [25–28], but the slope of the
spectrum for M! � 1 is nonzero when the infall is non-
radial. In all cases the energy spectrum decays exponen-
tially at frequencies !>!l

QNM, where !l
QNM is the

fundamental Schwarzschild QNM frequency for the given
multipole [30,31].

It is instructive to look at the multipolar structure of the
radiation as we vary m for fixed l. Figure 11 shows spectra
for the dominant quadrupolar component (l ¼ 2) and all
allowed values of m (jmj � l) for nonrelativistic infalls
(E ¼ 1) and kinetic-energy dominated infalls (E ¼ 3) with
Lz=Lcrit ¼ 0, 0.9, 0.9999. In the head-on case the ðlþ
mÞ-odd components vanish, and components with the
same jmj are exactly equal to each other because of sym-
metry. When Lz � 0 the particle motion breaks this degen-
eracy: the odd-m components are no longer zero, but they
are still suppressed in the ZFL. The l ¼ m (l ¼ �m)
components of the spectrum emerge from the ZFL with a
positive (negative) slope, respectively. For large energies

this slope is independent of the particle energy and pro-
portional to the impact parameter, in qualitative agreement
with the predictions of the toy model of Sec. III.
For intermediate frequencies, the ZFL model of Sec. III

would predict a resonance in the spectrum at the rotational
frequency of the rod and a 1=ð!�!0Þ dependence near
resonance. The perturbative spectra (as well as the NR
spectra shown in Sec. V below) are instead characterized
by an exponential decay for frequencies larger than the
fundamental QNM frequency of the given multipole. This
difference can be attributed to the fundamentally different
nature of the final state. In the toy model the final state
consists of two particles attached to a massless rod, with
rotation frequency determined by angular momentum con-
servation (and an ad hoc functional form of the stresses). In
NR simulation and point-particle infalls, the post-plunge
dynamics is dominated by the QNMs of the final BH.
The m-even components all tend to the ZFL as M! !

0, while the m-odd components are suppressed in the same
limit. The dominant (l ¼ m) components of the spectra
have a maximum corresponding to the QNM frequency
and decay (roughly) exponentially for !>!l

QNM. In

agreement with the toy model discussed in Sec. III, our
perturbative results indicate that the ZFL of the spectra
depends very weakly on the impact parameter, which (we
recall again) is related to Lz by Eq. (2). This is shown very
clearly in Table I.
A close inspection of the right panels of Fig. 11 shows

that the ZFL of the spectrum for m ¼ 0 is not the same as
for m ¼ �2. In fact, since the ZFL is almost independent
of Lz, one can use the head-on results to predict the relative
ratio between modes withm ¼ 0 and jmj ¼ 2. In the head-
on case, in a frame where the z axis is aligned with the
collision axis, only m ¼ 0 modes would contribute to the
radiation. Once we rotate this ‘‘natural’’ coordinate system
to the reference frame used in this paper, where a radial
infall occurs along the x axis (see Fig. 9), for small Lz the
spectrum for (say) m ¼ 2 will be related to the spectrum
for m ¼ 0 by [60]

lim
!!0

dE22=d!

dE20=d!
¼ 3

2
: (61)

Our results for both equal-mass (see Fig. 19 below) and
extreme-mass ratio head-on collisions (Fig. 11) are in very
good agreement with this prediction.
The energy spectra with Lz=Lcrit ¼ 0:9, 0.9999 display

secondary peaks, which are related to the orbital motion of
the particle. Radiation of orbital nature becomes more and
more important as Lz grows. Indeed, the nature of the
spectra changes quite significantly as Lz=Lcrit ! 1. In
Fig. 12 we show the l ¼ m ¼ 2 component of the spectrum
for infalls from rest as we fine-tune the angular momentum
to the critical value for a plunge: a very distinctive ‘‘bump’’
appears at a frequency that is slightly lower than the QNM
frequency, significantly enhancing the radiated energy. The
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location of this bump corresponds to (twice) the orbital
frequency of the particle at the marginally bound orbit, i.e.
! ¼ 2�mb ¼ ð4MÞ�1. For infalls from rest, a particle with
L ¼ Lcrit will orbit around the marginally bound circular
geodesic. The reason for this local maximum in the spec-
trum is that when Lz ! Lcrit the particle orbits a large
number of times close to the circular marginally bound
orbit at r ¼ 4M.

Gravitational radiation significantly affects near-critical
geodesics for purely kinematical reasons. As Lz=Lcrit ! 1
the particle circles an infinite number of times around the
marginally bound circular orbit with radius r ¼ rmb, taking
an infinite amount of proper time to reach the horizon. The
proximity of the orbit to criticality is conveniently de-
scribed by a small dimensionless parameter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mω

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

µ-2
dE

/d
ω

m=2, m=-2
m=0

E=1, Lz=0
l=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mω

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

µ-2
dE

/d
ω

m=2, m=-2
m=0

E=3, Lz=0
l=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mω

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

µ-2
dE

/d
ω

m=2
m=1
m=0
m=-1
m=-2

E=1, Lz=0.9Lcrit
l=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mω

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

µ-2
dE

/d
ω

m=2
m=1
m=0
m=-1
m=-2

E=3, Lz=0.9Lcrit
l=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mω

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

µ-2
dE

/d
ω

m=2
m=1
m=0
m=-1
m=-2

E=1, Lz=0.9999Lcrit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mω

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

µ-2
dE

/d
ω

m=2
m=1
m=0
m=-1
m=-2

E=3, Lz=0.9999Lcrit

FIG. 11 (color online). Spectra for l ¼ 2 and jmj � l for nonrelativistic infalls (E ¼ 1, left column) and kinetic-energy dominated
infalls (E ¼ 3, right column). The top row refers to a radial infall, and the bottom row to an infall with L=Lcrit ¼ 0:9.
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	 � 1� Lz

Lcrit

: (62)

As 	 ! 0 the particle hovers at a circular geodesic N ’
�ð�crit _tcrit logðk	ÞÞ=ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2V 00

eff

q
Þ times before plunging

[61]. In our case Veff denotes the Schwarzschild effective
radial potential, so that r5V 00

eff ¼ �24ML2 þ 6rL2 �
4Mr2; the angular velocity � � d�=dt, dots stand for
derivatives with respect to proper time, and k is a constant.
All quantities are evaluated at the critical circular geodesic
with L ¼ Lcrit and radius r ¼ rcrit. When E ¼ 1 this cir-
cular geodesic corresponds to the marginally bound orbit,
located at rmb ¼ 4M, M�mb ¼ 8�1, and

N �� 1

�
ffiffiffi
2

p log	: (63)

In the ultrarelativistic limit E ! 1 the critical circular
geodesic is located at the light ring rcrit ¼ 3M, the corre-

sponding orbital frequency M�crit ¼ ð3 ffiffiffi
3

p Þ�1, and

N �� 1

2�
logð2	Þ: (64)

The orbital frequency at the light ring is intimately
related with the eikonal (long-wavelength) approximation
of the fundamental QNM frequency of a BH [41,62–64].
This implies that ultrarelativistic infalls with a near-critical
impact parameter are in a sense the most natural and
efficient process to resonantly excite the dynamics of a
BH. The proper oscillation modes of a Schwarzschild BH
cannot be excited by particles on stable circular orbits (i.e.
particles with orbital radii r > 6M in Schwarzschild coor-
dinates), but near-critical ultrarelativistic infalls are such
that the orbital bump visible in Fig. 12 moves just slightly
to the right to overlap with the ‘‘knee’’ due to quasinormal
ringing. So ultrarelativistic infalls have just the right orbi-
tal frequency to excite BH oscillations. Resonant
gravitational-wave scattering explains the huge increase
in radiated energy that can be observed in the bottom right
panels of Figs. 10 and 11 (see also [65–67]). Since QNMs
are essentially perturbations of circular orbits at the light
ring, we can expect that these conclusions will still apply to
Kerr and even Kerr-Newman BHs [63,64].
For near-critical orbits, the bottom panels of Fig. 11

show that the peak in the (l ¼ 2, m ¼ 2) component is
located at twice the frequency corresponding to the peak in
the (l ¼ 2, m ¼ 1) component. The source term for a
particle in circular orbit with frequency � typically con-
tains a term proportional to 	ð!�m�Þ; this lends further
support to the ‘‘orbital’’ nature of the radiation enhance-
ment. In fact, the inset of Fig. 12 shows that the total
radiated energy in the limit Lz ! Lcrit scales logarithmi-
cally with 	, and hence linearly with the number of orbits
N, as expected for orbital radiation in the nonresonant case.
In fact, in the next subsection we will show that our
numerics are in quantitative agreement with the energy
output of a particle in circular orbit at the marginally bound
geodesic.

B. Energy distribution

We now turn our attention to the total integrated energy.
To simplify the discussion we start by revisiting and ex-
tending the analysis of infalls from rest (E ¼ 1) first car-
ried out by Oohara and Nakamura [51]. This reanalysis is
useful both as a code check and as a way to stress some
important characteristics of the radiation in the near-
critical limit Lz=Lcrit ! 1. Then we generalize our findings
to infalls with arbitrary energy.

1. Infall from rest (E ¼ 1)

Any numerical calculation is necessarily limited to a
finite number of multipoles. In this paper we computed
multipolar components of the radiation up to l ¼ lmax ¼ 6,
but to get the total radiated energy, angular momentum,
and linear momentum we should in principle compute the
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FIG. 12 (color online). Infall from rest: spectra for l ¼ m ¼ 2
as Lz=Lcrit ! 1. In the inset: logarithmic divergence of the total
radiated energy in the same limit.

TABLE I. The numerically computed ZFL of the spectrum for
different values of E is compared to the analytical prediction
from a multipolar decomposition of the ZFL formula (39),
explained in Appendix B. The agreement is remarkable.

1
ð�EÞ2 dE

rad
20 =d!j!¼0

Lz=Lcrit E ¼ 1:5 E ¼ 3 E ¼ 10 E ¼ 100

0.000 0.0160 0.0481 0.0644 0.0663

0.500 0.0160 0.0480 0.0643 0.0662

0.750 0.0159 0.0480 0.0642 0.0662

0.900 0.0159 0.0480 0.0642 0.0661

0.950 0.0159 0.0479 0.0641 0.0661

0.990 0.0159 0.0479 0.0641 0.0661

0.999 0.0159 0.0479 0.0641 0.0661

ZFL: 0.0158 0.0481 0.0644 0.0663
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infinite sums of Eqs. (57)–(59). This requires fitting the
numerical results for l � lmax by some analytical formula
and extrapolating this formula to estimate the contribution
from multipoles with l > lmax. For infalls from rest, our
results are consistent with the functional dependence pro-
posed by Oohara and Nakamura [51]:

M

�2 E
rad
l ¼ aEe

�bEl: (65)

A fit of the data yields the coefficients listed in Table II.
The fitting coefficients listed in the first row are obtained
by fitting all data (2 � l � 6). The lowest multipole l ¼ 2
is usually an outlier in this fit. As a rough check of the
accuracy of the extrapolation, we repeat the fit considering
only numerical data with 3 � l � 6; this yields the coef-
ficients listed in the second row. The difference between
the total energies obtained by these two procedures can be
seen as a very rough estimate of the error involved in the
extrapolation. It is quite clear from the table that this error
increases as Lz=Lcrit ! 1. This is, of course, a lower limit
on the overall error in the computed energy, because it does
not take into account numerical errors in the data, system-
atic errors coming from the (somewhat arbitrary) choice of
the fitting function, and inaccuracies in the fit itself. In any
event, our fits are in good (but not perfect) agreement with
the entries in Table I of Oohara and Nakamura [51].
Oohara and Nakamura do not specify the range in l used
for their fits, so it is hard to say if the slight difference in
fitting coefficients is due to small differences in the nu-
merics or to the fitting procedure itself.

A fit to our perturbative results close to the critical
angular momentum for capture yields

M

�2 E
rad ¼ �0:0375� 0:172 log	; (66)

where 	 was defined in Eq. (62).
The analysis of the previous section reveals that close to

the critical value of the angular momentum (i.e. as 	 ! 0)
the total radiated energy Erad should scale as

M

�2 E
rad ’ kþ EN¼1N; (67)

where EN¼1 is the energy radiated in one revolution close
to the circular marginally bound geodesic, and k is an
undetermined constant. Early calculations by Detweiler
[49,50] (that we confirmed using a FORTRAN code dis-
cussed, for example, in Ref. [68]) show that M

�2 EN¼1 ’
0:65 for circular orbits with rcrit ¼ 4M in Schwarzschild.
Using Eq. (63) one gets the independent estimate

M

�2 E
rad ’ k� 0:15 log	; (68)

which is in good agreement with the fit of Eq. (66).

2. Ultrarelativistic infall

For ultrarelativistic collisions the scaling with l is not
exponential, as illustrated in Fig. 13. In fact, we find that a
power law of the form

MErad
l

ð�EÞ2 ¼ cEl
�dE (69)

describes well our numerical results, where cE and dE are
constants. A least-squares fit yields the values of cE, dE,
and the total radiated energy Erad listed in Table III.
For Lz ¼ 0 and large E we get Erad=ð�EÞ2 ¼ 0:26, in

agreement with the results of Refs. [25,28]. Close to the
critical angular momentum (Lz ! Lcrit) the fit yields El �
1=l. As explained in Sec. IVB, in the limit E ! 1 the
radiation is dominated by energy emitted at the light ring
(the marginally bound circular geodesic located at r ¼
3M). Our fit is perfectly consistent with the classic study
of synchrotron radiation by Davis et al. [48], who found
precisely a 1=l dependence for the multipolar dependence
of the radiation emitted by a particle orbiting at the circular
null geodesic.
For Lz=Lcrit < 0:95 we get the following fits for the total

radiated energy as a function of the angular momentum
(see Fig. 14):

MErad

ð�EÞ2 ¼ 0:0685 exp

�
3:241

�
Lz

Lcrit

�
4
�
; ðE ¼ 1:5Þ;

MErad

ð�EÞ2 ¼ 0:145 exp

�
2:778

�
Lz

Lcrit

�
4
�
; ðE ¼ 3Þ;

MErad

ð�EÞ2 ¼ 0:294 exp

�
2:176

�
Lz

Lcrit

�
4
�
; ðE ¼ 100Þ:

(70)

TABLE II. Fitting coefficients in Eqs. (65) and (72). For each
value of Lz=Lcrit the first line refers to a fit including all multi-
poles, the second line to a fit dropping the l ¼ 2 multipole. A
number such as 1:042ð�2Þ means 1:042
 10�2.

Lz=Lcrit aE bE M=�2Erad aJ bJ 1=�2Jrad

0.000 0.45 1.99 1:04ð�2Þ 0.00 0.00 0.00

0.38 1.95 1:04ð�2Þ 0.00 0.00 0.00

0.200 0.30 1.66 1:46ð�2Þ 1.71 1.66 8:20ð�2Þ
0.23 1.61 1:46ð�2Þ 1.29 1.61 8:21ð�2Þ

0.500 0.31 1.18 4:50ð�2Þ 2.51 1.24 3:22ð�1Þ
0.24 1.13 4:50ð�2Þ 1.75 1.16 3:23ð�1Þ

0.750 0.47 0.92 1:32ð�1Þ 3.60 0.96 8:98ð�1Þ
0.37 0.87 2:32ð�1Þ 2.58 0.90 8:99ð�1Þ

0.900 0.76 0.79 2:92ð�1Þ 5.59 0.83 1.94

0.61 0.75 2:93ð�1Þ 4.14 0.77 1.95

0.950 1.02 0.76 4:27ð�1Þ 7.53 0.80 2.85

0.82 0.72 4:28ð�1Þ 5.63 0.75 2.86

0.990 1.76 0.77 7:30ð�1Þ 13.09 0.80 4.99

1.36 0.72 7:32ð�1Þ 9.68 0.74 5.01
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These results should be compared with the fit of the energy
computed from NR simulations of equal-mass BHs [6]:

Erad

M2
ADM

¼ 0:0195exp

�
2:632

�
Lz

Lcrit

�
4
�
; ðE¼ 1:5Þ: (71)

In the fit to NR results (which have a numerical error of
about 5%) the radiated energy is normalized to MADM and
we estimate Lz=Lcrit to be given by b=bcrit [6].
Unfortunately, close to Lcrit it is extremely difficult to get
accurate estimates for Erad, because higher multipoles
make an important contribution to the total radiation.

C. Angular momentum

1. Infall from rest (E ¼ 1)

Let us consider the angular momentum carried by the
radiation. For slow motion, the multipolar decomposition

of the radiated angular momentum is consistent with the
exponential dependence

1

�2 J
rad
l ¼ aJe

�bJl; (72)

where the coefficients aJ and bJ are given in Table II.
As shown in Fig. 15, our results for infalls from rest are

consistent with Oohara and Nakamura’s [51] suggestion
that for 0:25 & Lz=Lcrit & 0:99 the radiated angular mo-
mentum should obey the approximate relation

MErad

Jrad
 ð0:15� 0:01Þ: (73)

However, this approximate proportionality relation must
break down as Lz ! Lcrit, because for a particle in circular
motion Erad=Jrad ’ ðM�scatÞ [49,69]. For example, for
E ¼ 1 we should find that Erad=Jrad ! 1=8 ¼ 0:125, and
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FIG. 13 (color online). Multipolar energy distribution for El=E
2 for E ¼ 1 (left) and E ¼ 100 (right). For large E the radiated energy

scales like E2, not like �2. Higher multipoles contribute (relatively) more when E is large. The scaling with l is well approximated by
an exponential for collisions from rest and by a power law for relativistic collisions.

TABLE III. Fitting coefficients in Eq. (69). For each value of Lz=Lcrit the first line refers to a fit keeping all multipoles, the second
line to a fit dropping the l ¼ 2 multipole.

E ¼ 1:5 E ¼ 3 E ¼ 10 E ¼ 100
Lz=Lcrit cE dE

M
ð�EÞ2 E

rad cE dE
M

ð�EÞ2 E
rad cE dE

M
ð�EÞ2 E

rad cE dE
M

ð�EÞ2 E
rad

0.000 1.75 5.51 0.035 6:80ð�1Þ 3.10 0.12 3:99ð�1Þ 2.06 0.24 3:67ð�1Þ 1.92 0.27

6.82 6.39 0.035 1.11 3.41 0.12 4:16ð�1Þ 2.08 0.24 3:56ð�1Þ 1.90 0.27

0.200 1.26 4.96 0.041 6:71ð�1Þ 3.01 0.13 4:09ð�1Þ 2.04 0.25 3:78ð�1Þ 1.90 0.28

3.74 5.66 0.041 1.06 3.31 0.13 4:28ð�1Þ 2.07 0.25 3:69ð�1Þ 1.89 0.28

0.500 7:24ð�1Þ 3.50 0.086 6:61ð�1Þ 2.60 0.20 4:86ð�1Þ 1.93 0.35 4:52ð�1Þ 1.83 0.38

1.26 3.86 0.086 9:08ð�1Þ 2.81 0.19 5:11ð�1Þ 1.97 0.34 4:53ð�1Þ 1.83 0.38

0.750 7:38ð�1Þ 2.56 0.23 7:50ð�1Þ 2.13 0.40 6:55ð�1Þ 1.77 0.61 6:06ð�1Þ 1.70 0.64

1.01 2.76 0.23 8:90ð�1Þ 2.24 0.39 6:82ð�1Þ 1.79 0.60 6:06ð�1Þ 1.70 0.64

0.900 0.91 2.02 0.57 8:86ð�1Þ 1.76 0.84 8:42ð�1Þ 1.58 1.14 7:95ð�1Þ 1.55 1.13

1.16 2.17 0.54 9:94ð�1Þ 1.83 0.81 8:85ð�1Þ 1.61 1.11 8:08ð�1Þ 1.56 1.12

0.950 1.10 1.80 0.96 1.00 1.56 1.41 9:75ð�1Þ 1.45 1.80 9:33ð�1Þ 1.43 1.77

1.41 1.96 0.90 1.12 1.63 1.33 1.04 1.49 1.71 9:75ð�1Þ 1.46 1.71

0.990 1.81 1.62 2.22 1.41 1.27 4.48 1.36 1.20 5.76 1.32 1.20 5.77

2.42 1.81 1.97 1.62 1.36 3.74 1.51 1.27 4.78 1.45 1.26 4.86
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as E ! 1we expect that Erad=Jrad ! 1=ð3 ffiffiffi
3

p Þ ’ 0:192 45.
Quite remarkably, and despite the sizable uncertainties in
extrapolating our numerical results to get the total radiated
energy and angular momentum, Fig. 15 is consistent with
these predictions.

2. Ultrarelativistic infall

The total radiated angular momentum for generic infall
energies and its multipolar decomposition are shown in
Figs. 16 and 17. For collisions with generic impact parame-
ter, we find that the angular momentum emitted in a given
multipole l has a power-law dependence of the form

Jradl

ð�EÞ2 ¼ cJl
�dJ ; (74)

where cJ and dJ are constants. The values of cJ, of dJ, and
of the total radiated angular momentum Jrad obtained by
extrapolation are listed in Table IV. The angular momen-
tum emitted in each multipole l � lmax is shown in Fig. 17.
Using Eq. (74) we can extrapolate to get the total radiated
angular momentum. Figure 15 shows that the ratio
Jrad=ðMEradÞ for kinetic-energy dominated infalls is only
(roughly) constant in the intermediate regime 0:5 &
Lz=Lcrit & 0:95. The following expressions provide good
fits to the extrapolated values:

Jrad

ð�EÞ2 ¼ 0:0142

�
1� exp

�
3:170

Lz

Lcrit

��
2
; ðE ¼ 1:5Þ;

Jrad

ð�EÞ2 ¼ 0:0676

�
1� exp

�
2:585

Lz

Lcrit

��
2
; ðE ¼ 3Þ;

Jrad

ð�EÞ2 ¼ 0:42

�
1� exp

�
1:836

Lz

Lcrit

��
2
; ðE ¼ 100Þ:

(75)

These fits can be compared with the corresponding fit from
NR simulations of equal-mass BHs [6], which yields
(within a numerical error of about 5%)

Jrad

M2
ADM

¼ 0:0024

�
1� exp

�
2:928

Lz

Lcrit

��
2
; ðE¼ 1:5Þ:

(76)

D. Linear momentum

Representative spectra of the radiated linear momentum
are shown in Fig. 18. To illustrate how different multipoles
contribute in building up the total linear momentum, and
also to ‘‘visually’’ test the convergence of the sum in
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FIG. 15 (color online). Ratio MErad=Jrad for different values
of E. The meaning of filled and empty symbols is the same as in
Fig. 14. Oohara and Nakamura [51] find that this ratio is ’
0:15� 0:01 for 1 & Lz & 3:9 when E ¼ 1 and Lcrit ¼ 4, but we
expect that Erad=Jrad ’ ðM�scatÞ as Lz=Lcrit ! 1 (see text).
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FIG. 16 (color online). Total radiated angular momentum (ob-
tained by extrapolation) as a function of Lz=Lcrit. The meaning
of filled and empty symbols is the same as in Fig. 14.
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FIG. 14 (color online). Total energy radiated M=ð�EÞ2Erad

rescaled by the particle energy squared, as a function of
Lz=Lcrit. In extrapolating for l > 6, the fitting coefficients in
Eqs. (65) and (69) were obtained either including (empty sym-
bols) or excluding (filled symbols) the l ¼ 2 data. The difference
is visible only in the limit Lz=Lcrit ! 1.

SEMIANALYTICAL ESTIMATES OF SCATTERING . . . PHYSICAL REVIEW D 81, 104048 (2010)

104048-19



Eq. (59), we plot in different line styles the spectra ob-
tained by summing over the lowest lmax multipoles with
lmax ¼ 2; . . . ; 6. Strictly speaking, if we sum Eq. (59) up to
lmax ¼ 6, the last term of the sum will be inconsistent
because it involves amplitudes such as Xlþ1;mþ1, which

we have not computed and we set to zero for lack of a
better alternative. Note that this ‘‘multipolar coupling’’
does not occur in the calculation of the energy and angular
momentum. The inconsistent truncation means that we
should only consider these plots as representative of the
real convergence properties of the sum for lmax � 5.
Furthermore, the spectrum obtained when we truncate at
lmax ¼ 6 cannot be trusted in fitting numerical results to
extrapolate the sum to infinity. For this reason (and also for
the highly oscillatory buildup of linear momentum that is

evident from Fig. 18) the extrapolation of numerical results
to get the total radiated linear momentum is quite sensitive
to the relatively low number of multipoles that we are
using.

1. Infall from rest (E ¼ 1)

Despite these caveats, in the case of low-energy colli-
sions (and, in particular, for infalls from rest) the total
linear momentum converges reasonably fast with l.
Summing over 2 � l � 6 is typically enough to warrant
an accuracy of 10% or less in the total linear momentum.
Nevertheless we have used extrapolation, fitting our

numerical results by an exponential:

Plmax
¼ Prad � aPe

�bPlmax : (77)
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FIG. 17 (color online). Multipolar components of the radiated angular momentum Jl=E
2 for E ¼ 1 (left) and E ¼ 100 (right). For

large E the radiated angular momentum scales like ð�EÞ2. Higher multipoles contribute (relatively) more when E is large. The scaling
with l is logarithmic for collisions from rest, but it acquires corrections for relativistic collisions. By symmetry, no angular momentum
is radiated when Lz ¼ 0.

TABLE IV. Fitting coefficients in Eq. (74). For each value of Lz=Lcrit the first line refers to a fit keeping all multipoles, the second
line to a fit dropping the l ¼ 2 multipole.

E ¼ 1:5 E ¼ 3 E ¼ 10 E ¼ 100
Lz=Lcrit cJ dJ 1=ð�EÞ2Jrad cJ dJ 1=ð�EÞ2Jrad cJ dJ 1=ð�EÞ2Jrad cJ dJ 1=ð�EÞ2Jrad
0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.200 3.79 4.60 0.16 1.30 2.71 0.35 0.82 1.98 0.54 0.78 1.91 0.58

11.49 5.32 0.16 1.89 2.95 0.34 0.83 1.99 0.54 0.76 1.89 0.58

0.500 5.22 3.58 0.58 3.11 2.45 1.10 2.20 1.89 1.68 2.09 1.83 1.75

9.62 3.98 0.57 4.15 2.64 1.08 2.24 1.90 1.67 2.05 1.82 1.76

0.750 5.55 2.70 1.50 4.48 2.09 2.52 3.62 1.72 3.65 3.42 1.69 3.69

7.60 2.90 1.47 5.40 2.21 2.45 3.72 1.74 3.61 3.38 1.68 3.71

0.900 6.59 2.15 3.41 5.76 1.79 5.11 5.11 1.58 6.88 4.84 1.56 6.70

8.09 2.28 3.32 6.46 1.87 4.94 5.25 1.60 6.77 4.82 1.56 6.72

0.950 7.77 1.93 5.51 6.65 1.63 8.09 6.11 1.48 10.40 5.83 1.47 10.08

9.43 2.06 5.29 7.30 1.69 7.75 6.33 1.50 10.13 5.89 1.48 9.98

0.990 11.85 1.71 12.15 9.02 1.35 21.65 8.45 1.26 27.81 8.14 1.26 27.54

15.02 1.86 11.22 9.96 1.42 19.52 8.98 1.30 25.35 8.53 1.29 25.55
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The fitting coefficients and the total radiated momentum
obtained by extrapolation are listed in Table V.

2. Ultrarelativistic infall

Spectra of the linear momentum radiated by ultrarela-
tivistic infalls are shown in Fig. 18. For head-on collisions,

in the limit of large boosts the radiated momentum is well
described by

Prad ¼
�
0:11� 0:33

E1:37

� ð�EÞ2
M

; E ! 1: (78)
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FIG. 18 (color online). Spectra of the linear momentum radiated for infalls from rest (E ¼ 1) and ultrarelativistic infalls (E ¼ 100).
Different lines refer to different truncation choices in the sum of Eq. (59). In the head-on case (top row) the only nonzero component of
the linear momentum is Px; for L=Lcrit ¼ 0:9 (middle and bottom rows) both the Px and Py components are nonzero. To test

convergence we sum Eq. (59) up to different values of lmax, as indicated in the legend.
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For ultrarelativistic infalls the ZFL of the spectrum is
nonvanishing, and it depends very weakly on the impact
parameter (we observed a similar trend when studying the
ZFL of the spectrum of the radiated energy). The ZFL is
very well approximated by Smarr’s formula, Eq. (47). This
is shown quantitatively in Table VI.

We tried to fit our numerical results for high-energy and
generic impact parameters by a power law of the form

Plmax
¼ Prad � cPl

�dP
max . For the reasons explained above,

the errors associated with this extrapolation procedure
are significant, and we decided not to present the extrapo-
lated values of Prad.

Qualitatively, in the ultrarelativistic case the total radi-
ated linear momentum increases only mildly with the
impact parameter: we find a maximum increase of a factor
�3 relatively to the head-on case. This observation can be
used to give a rough estimate of the maximum recoil that
could result from gravitational-wave emission in the ultra-
relativistic collision of nonspinning BHs. If we take
�E=M ¼ 1=10, we get a recoil velocity of order v�
10�3 for head-on collisions, and a maximum of around
v� 3
 10�3 for grazing collisions. Restoring physical
units, this would correspond to recoils in the range
300–900 km=s. It will be interesting to verify these esti-
mates by NR simulations of ultrarelativistic, comparable-
mass BH binaries.

V. COMPARING DIFFERENTAPPROACHES

As discussed in Ref. [4] (see also Fig. 1), NR results for
the energy spectra from the high-energy, head-on collision
of two BHs are in very good agreement with the ZFL
predictions. Calculations of the radiation from point parti-
cles falling into nonrotating BHs are in quantitative agree-
ment with ZFL predictions in the extreme-mass ratio limit
(see, for instance, Table I), and in qualitative agreement
with NR calculations. In this section we present a more
extensive comparison between these different approaches.

A. Head-on collisions

For head-on collisions, the ZFL results of Sec. III are in
qualitative and quantitative agreement with point-particle
calculations. In particular, a multipolar decomposition of
ZFL calculations yields a flat energy spectrum for all
multipolar components (see Appendix B). Point-particle
calculations and NR simulations suggest that the cutoff
frequency for each multipole can be chosen to be the
lowest QNM frequency for the given multipole. A multi-
polar analysis is therefore important to introduce a more
natural and appealing cutoff frequency in the ZFL spec-
trum, in contrast with Smarr’s original, qualitative sugges-
tions [20].
In the eikonal limit, the real part of the fundamental

QNM frequency for the lth multipole !l
QNM is related to

the frequency M�c ¼ ð3 ffiffiffi
3

p Þ�1 of unstable circular null
geodesics [31,41]:

!l
QNM ¼ l�c: (79)

Combining this approximation (which is surprisingly good
even for low values of l) with ZFL calculations of the
energy spectrum at low frequencies, we can estimate the
total radiated energy as follows:

Erad �X1
l¼2

dEl

d!

��������!¼0

!l

QNM: (80)

At high energies the ZFL assumes a particularly simple
form. Using the multipolar decomposition results from
Appendix B we get, for the equal-mass case:

Erad ’ X
even l

4ðEMÞ2
�

ð2lþ 1Þðl� 2Þ!
ðlþ 2Þ! l�c

¼ 4 log2

3
ffiffiffi
3

p
�
EM ’ 0:1698EM: (81)

Here we used EM�c ¼ ð3 ffiffiffi
3

p Þ�1, since the final BH has
(approximately) mass EM. An extrapolation of results
from recent NR simulations [4] predicts Erad ’
ð0:14� 0:03ÞMADM, in remarkably good agreement with
this naive estimate.
As another example, let us consider the extreme-mass

ratio case in the high-energy limit. Using again results
from Appendix B we get

TABLE VI. The ZFL of the radiated linear momentum for
head-on collisions, compared with the analytical result (47).

1
ð�EÞ2 dP

rad=d!j!¼0

Lz=Lcrit E ¼ 1:5 E ¼ 3 E ¼ 5 E ¼ 10 E ¼ 100

0.00 0.0182 0.100 0.151 0.187 0.203

ZFL: 0.0180 0.0993 0.150 0.189 0.212

TABLE V. Fitting coefficients in Eq. (77). The first line refers
to a fit including all multipoles, the second line to a fit dropping
l ¼ 2.

Lz=Lcrit aP bP M=�2Prad

0.000 7:03ð�3Þ 2.00 8:33ð�4Þ
7:98ð�3Þ 2.05 8:33ð�4Þ

0.200 1:09ð�2Þ 1.56 2:41ð�3Þ
9:99ð�3Þ 1.53 2:42ð�3Þ

0.500 3:05ð�2Þ 1.13 1:16ð�2Þ
2:58ð�2Þ 1.06 1:16ð�2Þ

0.750 6:54ð�2Þ 0.84 3:37ð�2Þ
5:55ð�2Þ 0.78 3:39ð�2Þ

0.900 9:24ð�2Þ 0.67 5:75ð�2Þ
8:13ð�2Þ 0.61 5:81ð�2Þ

0.950 8:85ð�2Þ 0.58 6:20ð�2Þ
7:83ð�2Þ 0.52 6:30ð�2Þ

0.990 6:77ð�2Þ 0.72 4:96ð�2Þ
4:03ð�2Þ 0.48 5:16ð�2Þ
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Erad ’ X
l

4E2�2

�

ð2lþ 1Þðl� 2Þ!
ðlþ 2Þ! l�c

¼ 13

9
ffiffiffi
3

p
�

�2E2

M
’ 0:265

�2E2

M
: (82)

The extrapolation of point-particle results to E ! 1 (see
[25,28] and Table III) predicts Erad � 0:262�2E2=M [25],
again in remarkable agreement with our simple
approximation.

B. Collisions with finite impact parameter

Unfortunately, an extension of our head-on estimates to
the generic case of collisions with finite impact parameter
is not straightforward, because the energy spectrum is no
longer flat. However, several generic features are common
to the ZFL, point-particle, and full NR calculations.
Figure 19 illustrates our point. In the left panel we show
the energy spectra (rescaled by the total ADM mass) for
NR simulations of equal-mass BH collisions with E ¼ 1:5
and varying impact parameter. In the right panel we show
spectra for point particles falling into a Schwarzschild BH
of mass M with energy E ¼ 1:5 and different impact
parameters. The angular momentum of the particle nor-
malized by the critical angular momentum (which for E ¼
1:5 is Lcrit ’ 6:35M) is indicated in the legend. Strictly
speaking, these two plots can only be compared from a
qualitative point of view. In the equal-mass case the final
BH is spinning (in fact, for large impact parameters it is
rapidly spinning [6]), whereas our point-particle calcula-
tion considers nonspinning holes. Nevertheless, the spectra
show qualitative agreement. In particular, the ZFL is inde-
pendent of the impact parameter for both equal-mass and
extreme-mass ratio collisions. For point particles falling
into Schwarzschild BHs the cutoff frequency does not

depend on m, but early calculations of nonrelativistic
equatorial infalls into Kerr BHs [55–57] hint that this
degeneracy in the cutoff frequency should be lifted when
one considers the rotating case.
For small, but finite frequencies, we find that the spec-

trum of positive-m (negative-m) modes has positive (nega-
tive) slope as ! ! 0. The ZFL-inspired calculation for the
generic impact parameter of Sec. III taught us that while
the ZFL itself is a robust feature, the finite-frequency
behavior is not, and it strongly depends on the modeling
of constraining forces. Such arbitrariness is absent in the
point-particle calculation.
A fit to NR results for E ¼ 1:5 and l ¼ m ¼ 2 yields

1

M2

dE

d!
¼ 1

M2

dE

d!

��������!¼0
þ0:15

Lz

Lcrit

M!: (83)

In the point-particle limit, a fit of the l ¼ m ¼ 2 spectra
with E ¼ 1:5 yields

1

ð�EÞ2
dE

d!
¼ 1

ð�EÞ2
dE

d!

��������!¼0
þ0:65

Lz

Lcrit

M!: (84)

VI. OUTLOOK

In this paper we have used a combination of ZFL cal-
culations and perturbative techniques to study some of the
main features emerging from ongoing NR simulations of
ultrarelativistic BH collisions. Here we wish to point out
possible extensions of our analysis.
We are currently working on a perturbative analysis of

ultrarelativistic infalls with a generic impact parameter
into Kerr BHs (see [55–57] for studies of infalls from
rest). Another obvious generalization would be to extend
ZFL and point-particle calculations to higher-dimensional
spacetimes. A preliminary investigation of head-on, ultra-
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FIG. 19 (color online). Left: l ¼ m ¼ 2 component of the energy spectrum of the gravitational radiation emitted in the collision of
two equal-mass BHs having speed � ¼ v=c ’ 0:75 in the center-of-mass frame [4,6]. All quantities are normalized to the ADM mass
of the system MADM. Right: l ¼ m ¼ 2 component of the energy spectrum of the gravitational radiation emitted by point particles
falling into Schwarzschild BHs of mass M with energy E ¼ 1:5.
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relativistic infalls into D-dimensional (Schwarzschild-
Tangherlini) BHs can be found in Ref. [28]. It would be
interesting to extend that study to plunges with generic
energy and impact parameter, and eventually also to rotat-
ing (Myers-Perry) BHs.

As mentioned in the introduction, NR simulations have
provided evidence of the existence of two critical thresh-
olds, depending on the impact parameter b of the collision:
for b < b� (where b� is the threshold of immediate merger)
the BHs merge within the first encounter; for b� < b<
bscat (where bscat is the scattering threshold) the binary
does not merge immediately, but sufficient energy is radi-
ated to put the binary into a bound state that eventually
results in a merger; finally, for b > bscat the BHs scatter
producing bremsstrahlung radiation [6]. The emergence of
these two different thresholds b� and bscat can be explained
in terms of a gravitational radiation-induced splitting of the
scattering threshold. This splitting can be described in
terms of the so-called Melnikov function, which is well-
known from the theory of dynamical systems [70]. A de-
tailed analysis of this problem will be the topic of a future
publication.

In this paper we have not discussed the radiation emitted
by ultrarelativistic encounters leading to scattering, rather
than BH formation. Studies of gravitational bremsstrah-
lung started in the 1960s with the work by Peters [71], and
they employed several approximation schemes. Turner and
Will studied the gravitational radiation emitted as a result
of the scattering in a low-velocity (post-Newtonian) ap-
proximation [72–74]. D’Eath and collaborators developed
an elegant approximation to estimate the radiation in the
ultrarelativistic case [75–80]. Matzner and Nutku devel-
oped a ‘‘method of virtual quanta’’ analogous to the
Weizsäcker-Williams method of virtual quanta in electro-
magnetism, which is restricted to high-velocity, extreme-
mass ratio encounters [81]. The most complete study of
bremsstrahlung is perhaps a series of papers by Kovacs,
Thorne, and Crowley, who computed the radiation from
compact objects of arbitrary mass ratio flying past each
other at arbitrary velocities in the limit of large impact
parameter [82–85]. We refer the reader to Sec. VI of
Ref. [85] for a comprehensive review of methods of com-
puting gravitational bremsstrahlung radiation.

In the 1980s, various groups worked out the gravita-
tional radiation from particles scattering around BHs at
nonrelativistic and relativistic velocities [53,54] (see also
[45] for a review). It would be interesting to repeat their
perturbative calculations paying special attention to ultra-
relativistic scattering and to the near-critical behavior.
Moreover, a comparison of bremsstrahlung radiation as
computed in NR against all these different approximations
would be a very interesting topic for future work.

Yet another semianalytical approach that we have not
considered in this paper, but that could certainly prove
useful as a diagnostic of NR codes in D dimensions, is
the close-limit approximation (see e.g. [86]). A detailed

quantitative understanding of gravitational radiation from
D-dimensional BH collisions will ultimately rely on the
development of NR in higher-dimensional spacetimes.
Various groups are making rapid progress in this direction
[8–11].
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APPENDIX A: THE SASAKI-NAKAMURA
FORMALISM

The gravitational radiation generated by point particles
in BH backgrounds is best described in the Sasaki-
Nakamura formalism [87–89]. Here we summarize the
equations describing the general infall of particles of rest
mass � with arbitrary energy (per unit rest mass) E. We
consider the metric of a nonrotating BH in Schwarzschild
coordinates:

ds2 ¼ �fðrÞdt2 þ fðrÞ�1dr2 þ r2ðd
2 þ sin2
d�2Þ;
(A1)

where fðrÞ � 1� 2M=r and M is the BH mass. In the
Teukolsky formalism the perturbation equations can be
reduced to a second-order differential equation for the
Newman-Penrose scalar c 4 with a source term TT . We
can expand c 4 as

c 4ðt; r;�Þ ¼ r�4
Z 1

�1
d!

X
lm

RlmðrÞ�2Ylmð�Þe�i!t;

(A2)

and similarly for TT . We denote by sYlmð
Þ the spin-s
weighted spherical harmonic, which can be expressed in
terms of the well-known (scalar) spherical harmonics [90].
For a point particle falling into a BH along a geodesic

the coordinates can be parametrized in terms of (say) the
radial location of the particle: ðt; r;�Þ ¼ ðTðRÞ; R;�ðRÞÞ.
The source term in Teukolsky’s equation is directly related
to the energy-momentum tensor T�� of the test particle of
mass �:
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T�� ¼ �

r2j _rj	ðt� TðRÞÞ	2ð���ðRÞÞ dx
�

d�

dx�

d�
; (A3)

where an overdot denotes d=d�. In particular,

TT � 4
Z

d�dt��6ðB0
2lm þ B�0

2lmÞe�im�
�2Ylmð
Þei!t;

(A4)

with

B0
2lm ¼ � 1

2
�9L�1½��4L0ð��3TnnÞ�

þ 1

2
ffiffiffi
2

p �9�2L�1½��2Jþð��1��4Tn �mÞ�; (A5)

B�0
2lm ¼ � 1

4
�9�2Jþ½��4Jþð��1T �m �mÞ�

þ 1

2
ffiffiffi
2

p �9�2Jþ½��2L�1ð��1��4Tn �mÞ�: (A6)

Here and below we generally omit the subscripts ðl; mÞ
to simplify the notation. We also define � � r2fðrÞ ¼
r2 � 2Mr, � ¼ �1=r, and introduce the differential op-
erators

L s ¼ @
 þ m

sin

þ s cot
; (A7)

J� ¼ @r � i
!

f
: (A8)

The quantities Tnn � T��n
�n�, Tn �m � T��n

� �m�, and

T �m �m � T�� �m� �m� are contractions of T�� with the

Kinnersley tetrad ‘‘legs’’

n� ¼ �1
2ðfðrÞ; 1; 0; 0Þ; (A9)

�m� ¼ � 1ffiffiffi
2

p
r
ð0; 0;�r2; ir2 sin
Þ; (A10)

and an overbar denotes complex conjugation. The explicit
expressions are

Tnn ¼ �

4r2
1

j _rj ðfðrÞ _tþ _rÞ2	ðt� TðRÞÞ	2ð���ðRÞÞ;

Tn �m ¼ �

2r2
1

j _rj
ir _�ffiffiffi
2

p ðfðrÞ _tþ _rÞ	ðt� TðRÞÞ	2ð���ðRÞÞ;

T �m �m ¼ ��

2

_�2

j _rj 	ðt� TðRÞÞ	2ð���ðRÞÞ:

It is convenient to move the delta functions out of the
operators by performing an integration by parts. To do
that, note that given two functions A and B

Z
d�ALsB ¼ �

Z
d�B

�
@
 � m

sin

� ðs� 1Þ cot


�
A;

� �BLþ
�ðs�1ÞA; (A11)

where we assumed that the integrals exist and we defined

Lþ
s ¼ @
 � m

sin

þ s cot
: (A12)

From the general properties of spin-weighted spherical
harmonics [90] we get

Lþ
1 L

þ
2 �2Ylm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð�þ 2Þp
0Ylm; (A13)

Lþ
2 �2Ylm ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl� 1Þ

p
�1Ylm; (A14)

where � � ðl� 1Þðlþ 2Þ. Introducing the operator Lþ �
d
dr�

þ i!, where the tortoise coordinate r� is defined by
dr�
dr ¼ r2

� , we can write TT ¼ T1 þ T2 þ T3, with

T1 � �2
Z

d�dtð�3L�1½��4L0ð��3TnnÞ�Þ

 ei!t�im�

�2Ylmð
Þ

¼ ��r2

2

e�im�þi!t

j _rj ðfðrÞ _tþ _rÞ2Lþ
1 L

þ
2 �2Ylmð
Þ;

¼ � �

2r2
�2ðV 0Þ2 _r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�þ 2Þ

p
ei!T�im�ðRÞ

0
�Ylmð
0Þ;

(A15)

T2 � 4
Z

d�
�2�3

2
ffiffiffi
2

p ei!t�im�
�2Ylmð
Þ


 ½L�1ð��2Jþð��1��4Tn �mÞÞ
þ Jþð��2L�1ð��1��4Tn �mÞÞ�

¼ �i�
ffiffiffiffi
�

p
�Lþðr2 _�V 0ei!T�im�Þ�1

�Ylmð
0Þ; (A16)

T3 � �
Z

d�ei!t�im��2Ylmð
Þ�2�3Jþð��4Jþð��1T �m �mÞÞ

¼ �

r
Lþ

�
r6

�
Lþ

�
�r

2 _r
_�2ei!T�im�

��
�2

�Ylmð
0Þ: (A17)

Here we introduced the advanced coordinate V � tþ r�
and we denoted radial derivatives with a prime (so V0 ¼
dV=dr).
In the SN formalism [87–89] one introduces a new wave

function XlmðrÞ related to the radial Teukolsky function of
Eq. (A2) via

Rlm ¼ �Lþ
�
r2

�
LþðrXlmÞ

�
: (A18)

The function Xlm satisfies the differential equation (50),
where the source term Slm is related to the Teukolsky
source TT by the relation

�Lþ
�
r2

�

�
Lþ

�
r5Slm
�

�
¼ �TT: (A19)

It is convenient to define a quantity
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Wlm ¼ r5

�
Slme

i!r� ; (A20)

which satisfies

d2Wlm

dr2
¼ � r2

�2
TTe

i!r� : (A21)

By using the equality

ei!r�LþðXlmðrÞei!TÞ ¼ @r� ðXlmðrÞei!VÞ; (A22)

we can write Wlm ¼ W1 þW2 þW3, where

d2W1

dr2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�þ 2Þ

p �

2
ðV 0Þ2 _rei!V�im’

0
�Ylmð
0Þ;

d2W2

dr2
¼ i�

ffiffiffiffi
�

p
@rðV 0r2 _�ei!V�im’Þ�1

�Ylmð
0Þ;
d2W3

dr2
¼ ��

r
@r

�
r4@r

�
r

2
_r�1 _�2ei!V�im’

��
�2

�Ylmð
0Þ:
(A23)

Given any function FðrÞ we have FðrÞV0ei!V ¼ 1=ði!Þ

½ðFei!VÞ0 � F0ei!V�. If we use this identity to integrate by
parts, rearrange terms, and set _r ¼ ��, these equations
reduce to Eqs. (A5)–(A8) in Ref. [51].

1. Calculation of the Wronskian

From a numerical perspective, the integration of Eq. (50)
is performed via a standard Green’s function solution. For
improved accuracy, in the numerical integrations we use

asymptotic expansions of the wave functions near the
horizon and near infinity. Close to r ¼ rþ ¼ 2M we set

y ¼ ðr�rþÞ
rþ

, make the ansatz

XlmðrÞ ¼ e�i!r�
�
1þ X1

k¼1

aky
k

�
; (A24)

and substitute into the differential equation (50). Noting
that f ¼ y� y2 þOðy3Þ we determine the leading-order
and next-to-leading-order coefficients to be

a1 ¼ �� 1

1� 4iM!
; a2 ¼ 3þ ð�� 1þ 8iM!Þa1

4ð1� 2iM!Þ :

(A25)

In the limit r ! 1 we have

Xlm � Bin
lme

i!r�
�
1þ X1

k¼1

ck
rk

�
þ Ain

lme
�i!r�

�
1þ X1

k¼1

dk
rk

�
:

(A26)

The lowest-order coefficients in the series are found to be

c1 ¼ ið�þ 2Þ
2!

; c2 ¼ ��ð�þ 2Þ þ 12iM!

8!2
; (A27)

d1 ¼ �c1; d2 ¼ 12iM!� �ð�þ 2Þ
8!2

: (A28)

One can invert these relations to get

Ain
lm ¼ �r

½ð2M� rÞð2c2 þ c1rÞ þ ir2ðc2 þ rðc1 þ rÞÞ!�XlmðrÞ � rðr� 2MÞ½c2 þ rðc1 þ rÞ�X0
lmðrÞ

ð2M� rÞ½c1d2 þ 2d2rþ ðd1 � c1Þr2 � c2ðd1 þ 2rÞ� þ 2r½c2 þ rðc1 þ rÞ�½d2 þ rðd1 þ rÞ�!ei!r� ;

Bin
lm ¼ ir

½ið2M� rÞð2d2 þ d1rÞ þ r2ðd2 þ rðd1 þ rÞÞ!�XlmðrÞ � irðr� 2MÞ½d2 þ rðd1 þ rÞ�X0
lmðrÞ

ð2M� rÞ½�c1d2 � 2d2rþ ðc1 � d1Þr2 þ c2ðd1 þ 2rÞ� þ 2ir½c2 þ rðc1 þ rÞ�½d2 þ rðd1 þ rÞ�!e�i!r� ;

(A29)

where a prime stands for a derivative with respect to r and
in our numerics all quantities are evaluated at large but
finite r (typically at r ¼ r1 ¼ rð0Þ1 =!, with rð0Þ1 ¼
4
 104). The Wronskian appearing in the Green’s func-
tion solution of the inhomogeneous equation can be eval-
uated from the relation W ¼ 2i!Ain

lm.

APPENDIX B: MULTIPOLAR DECOMPOSITION
OF ZFL SPECTRA

Herewe discuss the extraction of multipolar components
from the ZFL calculation. For consistency with the con-
ventions we used in NR simulations [4,6] and in the point-
particle infalls discussed in this paper, we assume that the
polarization states have an angular dependence that can be
decomposed in spin-weighted spherical harmonics: hþ �
ih
 �P

hlm�2Ylm. Then (using the completeness of spin-

weighted spherical harmonics) we can extract the multi-
polar content of the energy spectrum by equating

d2E

d!d�
¼

�X
lm

ffiffiffiffiffiffiffiffiffiffiffi
dElm

d!

s
�2Ylm

�
2
; (B1)

where dElm=d! are (as yet undetermined) functions of !.
From the orthonormality of spin-weighted spherical har-
monics we find

ffiffiffiffiffiffiffiffiffiffiffi
dElm

d!

s
¼

Z
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2E

d!d�

s
�2Ylm: (B2)

We now determine analytically the multipolar content of
the radiation in the simple case of ultrarelativistic head-on
collisions.
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1. Equal-mass collisions

If we assume that the collision occurs along the z axis,
the radiation will only contain m ¼ 0 modes. For equal-
mass, ultrarelativistic head-on collisions Eq. (39) implies

dEl0

d!
¼ 4E2M2

�

ð2lþ 1Þðl� 2Þ!
ðlþ 2Þ! ; l even;

¼ 0; l odd: (B3)

Odd multipoles do not contribute, as required by equatorial
symmetry. Summing over even multipoles we get
dE=d! ¼ E2M2=�, in agreement with Smarr’s
Eq. (2.20) when v ! c [20]. This expression assumes
that the collision occurs along the z axis, but the multipolar
components in a general (rotated) frame can be found
following the procedure discussed in Ref. [60].

2. Extreme-mass ratio collisions

From Eq. (46), for � � M1 � M2 � M we get

dEl0

d!
¼ 4E2�2

�

ð2lþ 1Þðl� 2Þ!
ðlþ 2Þ! : (B4)

Summing over multipoles we get dE=d! ¼ 4=ð3�ÞE2�2,
in agreement with Smarr’s Eq. (2.18) when v ! c [20].
We recall once more that Eq. (B4) is valid in a frame

where the collision occurs along the z axis, so only m ¼ 0
modes are present. The transformation to a general (ro-
tated) frame is explained in Ref. [60]. In the coordinate
system used to compute the radiation from point particles
falling into a Schwarzschild BH (Sec. IV), and focusing on
the dominant (l ¼ 2) components, we get

dE20

d!
¼ 5E2�2

24�
¼ 0:066 314 6E2�2; (B5)

dE22

d!
¼ 5E2�2

16�
¼ 0:099 471 8E2�2: (B6)

This is in excellent agreement with the point-particle re-
sults listed in Table I.
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