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Instituto Superior Técnico, Departamento de Fı́sica, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
and Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
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It is shown that a nonminimal coupling between the scalar curvature and the matter Lagrangian density

may account for the accelerated expansion of the Universe and provide, through mimicking, for a viable

unification of dark energy and dark matter. An analytical exploration is first performed, and a numerical

study is then used to validate the obtained results. The encountered scenario allows for a better grasp of the

proposed mechanism, and sets up the discussion for improvements that can lead to a complete agreement

with the observational data.
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I. INTRODUCTION

Many modifications of theories of gravity are motivated
by one of the outstanding puzzles of modern cosmology:
the origin of the observed accelerated expansion of the
Universe. The most common approach to this issue relies
on the presence of a dominating dark energy component
(with �DE � 70%) [1], which might arise from several
competing candidates: a cosmological constant term in the
Einstein-Hilbert action, a scalar field, usually referred to as
quintessence [2], chameleon fields [3], or other alternatives
to general relativity (GR), such as the Cardassian model
with a modification of the Friedmann equation [4], brane-
world scenarios [5], or the generalized Chaplygin gas
unification of dark energy and dark matter [6].

Aiming at a description of this dark energy component,
several authors have put forward proposals based upon the
so-called fðRÞ models, where a modified action functional
exhibiting a nonlinear function of the scalar curvature R is
considered [7]. This is usually regarded as stemming from
a low-energy phenomenological approximation to some
higher energy fundamental theory; indeed, one-loop renor-
malization of GR requires the introduction of higher order
terms in the curvature in the Einstein-Hilbert action func-
tional, and other available invariants—such as contractions
of the Ricci or of the Riemann tensor—may also arise
when quantum corrections arising from string theory are
considered (see Ref. [8] for a thorough discussion). In a
cosmological context, these models usually rely on a de-
creasing fðRÞ function that, since the scalar curvature is
decreasing, deviates strongly from GR at late times—thus
producing the required accelerated expansion [9].

Aiming to further extend the fðRÞ theories, a model was
advanced exhibiting not only a nonlinear fðRÞ term in the
action functional, but also a nonminimal coupling between
the matter Lagrangian densityLm and the scalar curvature

[10]. The purpose of this work is to show that this latter
model may be used to account for the accelerated expan-
sion of the Universe without any explicit additional matter
component (e.g., scalar fields). By resorting to a previous
study where it was shown that this nonminimal gravita-
tional coupling with matter can mimic known dark matter
profiles (thus producing the reported flattening galaxy
rotation curves) [11], one concludes that the proposed
model yields, through its gravitational impact, a viable
unified scheme to mimic the presence of both dark energy
and dark matter.
This work is organized as follows: the nonminimal

gravitational coupling model is discussed in Sec. II; an
analytical work, establishing quantitative results related to
the accelerated expansion of the Universe, is discussed in
Sec. III; this discussion sets up the numerical calculation
that confirms the proposed scenario in Sec. IV. Finally, the
conclusions are presented in Sec. V.

II. THE MODEL

Following the discussion of the previous section, one
postulates the following action for the theory [10]:

S ¼
Z �

1

2
f1ðRÞ þ ½1þ �f2ðRÞ�Lm

� ffiffiffiffiffiffiffi�g
p

d4x; (1)

where fiðRÞ (with i ¼ 1, 2) are arbitrary functions of the
scalar curvature R, Lm is the Lagrangian density of matter
and g is the metric determinant. The contribution of the
nonminimal coupling of f2 is gauged through the coupling
constant �, which has dimensions ½�� ¼ ½f2��1. The stan-
dard Einstein-Hilbert action is recovered by taking f2 ¼ 0
and f1 ¼ 2�ðR� 2�Þ, where � ¼ c4=16�G and � is the
cosmological constant.
Variation with respect to the metric g�� yields the field

equations, here arranged as

ðF1 þ 2�F2LmÞR�� � 1
2f1g��

¼ ���ðF1 þ 2�F2LmÞ þ ð1þ �f2ÞT��; (2)
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where one defines��� ¼ r�r� � g��h for convenience,

and writes FiðRÞ � f0iðRÞ, omitting the argument. The
matter energy-momentum tensor is, as usual, defined by

T�� ¼ � 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmÞ

�g�� : (3)

By taking the trace of Eq. (2), one obtains

ðF1 þ 2�F2LmÞR� 2f1 ¼ �3hðF1 þ 2�F2LmÞ
þ ð1þ �f2ÞT: (4)

The Bianchi identities, r�G�� ¼ 0 imply the non-

(covariant) conservation law

r�T�� ¼ �F2

1þ �f2
ðg��Lm � T��Þr�R; (5)

which, in the context of an analogy between Eq. (1) and a
scalar-tensor theory, may be interpreted as due to an energy
exchange between matter and the scalar fields associated
with the model [1] for the nontrivial f1ðRÞ and f2ðRÞ terms
[12].

Since a complete study of the joint effect of a nontrivial
f1ðRÞ and f2ðRÞ is too involved, one focuses the attention
on the latter, thus setting f1ðRÞ ¼ 2�R (discarding the
cosmological constant �); this reduces Eq. (2) to�

1þ �

�
F2Lm

�
R�� � 1

2
Rg��

¼ �

�
ðh�� � g��hÞðF2LmÞ þ 1

2�
ð1þ �f2ÞT��; (6)

and, taking the trace, the equivalent of Eq. (4),�
1� �

�
F2Lm

�
R ¼ 3

�

�
hðF2LmÞ � 1

2�
ð1þ �f2ÞT: (7)

III. ACCELERATED EXPANSION PHASE

A. Power-law expansion

One begins by rewriting Eq. (2) in a more natural way,

G�� ¼ 1

2�
ðTm

�� þ Tc
��Þ; (8)

so that, using Lm ¼ �� (see [13] for a discussion), one
defines

Tm
�� ¼ 2�

F1 � 2F2�
T��;

Tc
�� ¼ 2�

F1 � 2F2�
�

�
���ðF1 � 2F2�Þ

þ 1

2
ðf1 � F1RÞg�� þ F2�Rg�� þ f2T��

�
: (9)

One assumes that the matter content of the Universe is
described by a perfect fluid, endowed with an energy-
momentum tensor

T�� ¼ ð�þ pÞu�u� þ pg��: (10)

Resorting to the Friedmann-Robertson-Walker metric
given by the line element below,

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p þ d�2

�
: (11)

and considering the isotropy and homogeneity implied by
the cosmological principle, one writes the four-velocity as
u� ¼ ðu0; 0; 0; 0Þ. The normalization condition u�u

� ¼
�1 thus translates into u20 ¼ 1, and the energy-momentum

components reads

T00 ¼ �; Trr ¼ pgrr ¼ a2p: (12)

It is easy to check that, likewise T�� with the adopted

four-velocity, Tc
�� is also diagonal: one may write the

corresponding curvature ‘‘density’’ and ‘‘pressure,’’

�c ¼ Tc
00

¼ 2�

F1 � 2F2�

�
ðf2 � F2RÞ�� 1

2
ðf1 � F1RÞ

� 3H½ðF0
1 � 2F0

2�Þ _R� 2F2 _��
�
; (13)

pc ¼ Tc
rr

a2

¼ 2�

F1 � 2F2�

�
ðF0

1 � 2F0
2�Þð €Rþ 2H _RÞ

þ ðF00
1 � 2F00

2�Þ _R2 þ F2½�R� 2ð €�þ 2H _�Þ�
þ 1

2
ðf1 � F1RÞ � 4F0

2 _� _Rþf2p

�
: (14)

Defining the Hubble parameter H ¼ _a=a, leads to the
Friedmann equation

H2 þ k

a2
¼ 1

6�
ð�m þ �cÞ; (15)

and the Raychaudhuri equation

€a

a
¼ _H þH2 ¼ � 1

12�
½�m þ �c þ 3ðpm þ pcÞ�; (16)

the latter providing the condition for an accelerated expan-
sion of the Universe, �m þ �c þ 3ðpm þ pcÞ< 0.
Defining the deceleration parameter as

q ¼ � €aa

_a2
; (17)

one may combine the two preceding equations to obtain

q ¼ 1

2
þ 1

4�

pc

H2
: (18)

To provide an insight on the effect of the coupling with
matter, one may write the curvature pressure and density
pc and �c arising from two separate cases. On one hand, in
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the absence of matter, f2ðRÞ ¼ 0, one has

�c ¼ � 2�

F1

�
1

2
ðf1 � F1RÞ þ 3HF0

1
_R

�
;

pc ¼ 2�

F1

�
F0
1ð €Rþ 2H _RÞ þ F00

1
_R2 þ 1

2
ðf1 � F1RÞ

�
:

(19)

On the other hand, including matter, f2ðRÞ � 0, and setting
f1ðRÞ ¼ 2�R, leads to

�c ¼ �

�� F2�
½ðf2 � F2RÞ�þ 6HðF0

2� _Rþ F2 _�Þ�;

pc ¼ �

�� F2�
½�2F0

2�ð €Rþ 2H _RÞ � 2F00
2�

_R2

þ F2½�R� 2ð €�þ 2H _�Þ� � 4F0
2 _� _Rþf2p�: (20)

There is a clear difference between the expressions above:
the latter two explicitly depend upon the matter density and
pressure � and p, while the former two are a function of R
(and its derivatives) only. This, of course, stems from the
nonminimal coupling between matter and geometry, but
implies that one cannot simply neglect the contribution
from matter when solving the Friedmann and
Raychaudhuri equations. Indeed, in Ref. [9], this allows
for the determination of a relation between the evolution of
the scale factor aðtÞ and the exponent m present in the
nontrivial term f1ðRÞ ¼ R1ðR=R1Þm; in the present case,
although one can still assume that �m < �c, p < jpcj, the
density and pressure appear in the above definitions, so that
this does not translate directly into setting � ¼ p ¼ 0.

In order to solve Eqs. (15) and (16), one assumes a flat
k ¼ 0 scenario and inserts the Ansatz aðtÞ ¼ a0ðt=t0Þ� for
the evolution of the scale factor—physically interesting
since it gives rise to a constant deceleration parameter,
with �> 0 for an expanding Universe and �> 1 for
accelerated expansion. Thus,

H � _a

a
¼ �

t
;

R � 6

��
_a

a

�
2 þ €a

a

�
¼ 6ð _H þ 2H2Þ ¼ 6�

t2
ð2�� 1Þ;

q � � €aa

_a2
¼ 1

�
� 1:

(21)

Since one is interested in studying the effect of the
nonminimal coupling f2ðRÞ, one assumes that it dominates
any nontrivial addition to the usual linear curvature term:
thus, one can set for simplicity f1ðRÞ ¼ 2�R. However,
one should further elaborate on this approximation before
proceeding: first, it is clear that one is not directly compar-
ing the couplings f1 and f2, but the (dimensionally equal)
term in the action Eq. (1)—f1 and f2L. Hence, the as-
sumed dominance of the nonminimal coupling translates
into the inequality �f2ðRÞL> f1ðRÞ � R.

The above serves to show that any results obtained with
the framework here considered are also crucially depen-
dent on the Lagrangian density L chosen to describe the

matter content of the Universe. As has been discussed in
Ref. [13], this is not a trivial step, as the particular form for
L appears directly in the modified Einstein field equa-
tions—contrary to GR, where only the related energy-
momentum tensor arises.
One could also assume that the matter content of the

Universe is described by an alternate form, such as a scalar
field with dynamics driven by a suitable potential. Thus,
depending on the characteristics of the latter, the influence
of the nonminimal coupling term �f2ðRÞL could become
negligible. However, one stresses that the choice adopted
here stems from the cosmological principle, i.e., matter is
described as a perfect fluid.
As already stated, the purpose of this study is to specifi-

cally address the novel phenomenology that arises from the
nonminimal gravitational coupling f2ðRÞ, focusing on its
application to the issue of the accelerated expansion of the
Universe. This said, one can envisage a wider scenario
where both terms play a role in driving the dynamics of
the Universe: f1 and �f2L could acquire similar magni-
tudes, or experience alternate dominance over each other.
Within the context of this work, this interplay would

translate into a transient scenario where the Universe
would not remain forever in its current state of accelerated
expansion, but could change to a more pronounced regime,
decelerate or even start to contract. These possibilities
remain speculative, but open interesting perspectives for
future research.
Most proposals exhibiting a period of transient acceler-

ated expansion of the Universe usually do not rely on a
single scalar field quintessence model, but resort to two
scalar fields: by doing this, they avoid the necessity of
devising a convolute form for the potential driving a single
scalar field, but rely instead on the dynamics of these two
antagonists [14].
These models may arise from a fundamental particle

physics theory such as string theory, [15], N ¼ 2 super-
gravity coupled with matter in higher dimensions [16] or
braneworld constructs [17]. As mentioned before, string
theory is often invoked as a possible origin of fðRÞ theories
[8], while the coupling of supergravity with matter could
perhaps induce the nonminimal coupling f2ðRÞ at low
energies.
Also, recall that the model described by action Eq. (1) is

equivalent to a multi-scalar-tensor model with two appro-
priately defined scalar fields; hence, a suitable definition of
the couplings f1 and f2 could establish the equivalence
between the current proposal and existing models relying
on two scalar fields to enforce a period of transient accel-
erated expansion of the Universe.
Given the assumed power-law expansion aðtÞ / t�, the

nonminimal gravitational coupling is assumed to have the
form f2ðRÞ ¼ ðR=R2Þn—prompting for the search of the
relation between the exponents n and �, as well as the
physical meaning of the coupling strength R2 (see
Sec. III B).
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Furthermore, one requires some foreknowledge of the
evolution of the matter density � and pressure p; one may
assume that it is modeled as a dust distribution with p ¼ 0,
and looks at Eq. (5) for the evolution of �. Luckily,
although the non-(covariant) conservation of the energy-
momentum tensor is perhaps the most striking fundamental
implication of the model studied here, the introduction of
the adopted energy-momentum for a perfect fluid and the
Lagrangian density Lm ¼ �� yields a vanishing right-
hand side for Eq. (5).

Following the standard interpretation, one can state that
the expansion of the Universe remains adiabatic, with no
direct transfer of energy between matter and ‘‘curvature’’
component expressed in Eq. (20). The � ¼ 0 component of
Eq. (5) reads

_�þ 3H� ¼ 0 ! �ðtÞ ¼ �0

�
a0
aðtÞ

�
3 ¼ �0

�
t0
t

�
3�
: (22)

With the above law for �ðtÞ and the expressions for
f2ðRÞ and aðtÞ, the curvature density �c and pressure pc

read

�c ¼ 6��0�

�
�

1� 2�þ nð5�þ 2n� 3Þ
nð tt0Þ2�0 � ð tt0Þ3�ð tt2Þ2n½6�ð2�� 1Þ�1�n�

�
;

(23)

and

pc ¼ 2��0n

�
�

2þ 4n2 � �ð2þ 3�Þ þ nð8�� 6Þ
nð tt0Þ2�0 � ð tt0Þ3�ð tt2Þ2n½6�ð2�� 1Þ�1�n�

�
;

(24)

defining t2 � R�1=2
2 , for simplicity.

In what follows, one assumes alternatively that the
denominator of the curvature pressure and density is domi-
nated by either F2� or the constant �; for simplicity, the
regime F2� > � is dubbed the ‘‘þ regime,’’ with the
converse leading to the ‘‘� regime.’’ Actually, one sees
that

F2� ¼ n

�
R

R2

�
n �

R
¼ n½6�ð2�� 1Þ�n�1�0

t2n2 t3�0
t2ðn�1Þþ3�

;

(25)

thus scaling as t2�2n�3�.

1. The þ regime: F2� > �

Clearly, both the curvature pressure pc as well as the
density �c experience two separate time evolutions, sig-
naled by the relevance of F2ðRÞ� on the denominator of
Eq. (20).

One first attempts to solve the Friedmann and
Raychaudhuri Eqs. (15) and (16) in the regime F2� > �,

so that the curvature pressure and density are given ap-
proximately by

�c ¼ 6��

t2

�
1� 2�

n
þ 5�þ 2n� 3

�
;

pc ¼ 2�

t2
½2þ 4n2 � �ð2þ 3�Þ þ nð8�� 6Þ�:

(26)

Inserting this into the Friedmann Eq. (15) leads to � ¼
�þ � ð1� nÞ=2, which trivially satisfies the
Raychaudhuri Eq. (16). The condition for an expanding
Universe �þ > 0 yields the constraint n < 1.
Replacing onto Eq. (25) leads to F2� / t�þ ; since �þ >

0, one concludes that, once the inequality F2� > � sets in,
the left-hand side increases with time: the þ regime, once
attained, remains valid.

2. The � regime: F2� < �

The analysis of regime F2� < � is slightly lengthier,
since the value of �0 appears explicitly in the approximated
expressions for curvature density and pressure, as can be
seen below:

�c ¼ �6�0�
1� 2�þ nð5�þ 2n� 3Þ
ð tt0Þ3�ð tt2Þ2n½6�ð2�� 1Þ�1�n

;

pc ¼ �2�0n
2þ 4n2 � �ð2þ 3�Þ þ nð8�� 6Þ

ð tt0Þ3�ð tt2Þ2n½6�ð2�� 1Þ�1�n
:

(27)

Since the left-hand side of the Friedmann Eq. (15) falls as
t�2, the exponent � can be directly obtained from the
expression for the curvature density,

3�þ 2n ¼ 2 ! � ¼ ��ðnÞ � 2
3ð1� nÞ: (28)

Inserting this back into the Friedmann equation yields the
value for the initial density,

�0 ¼ 8

3

�
3

4

�
nð1� nÞð1� 5nþ 4n2Þ�n

�
t0
t2

�
2n �

t20
: (29)

As before, the above expressions trivially satisfy the
Raychaudhuri Eq. (16). The condition for an expanding
Universe �� > 0 also leads to the upper bound n < 1.
Since 3�� ¼ 2ð1� nÞ, Eq. (25) indicates that F2� is

constant. Therefore, one concludes that if the � regime is
attained, it is also permanent.

3. Regime validity

In the previous paragraphs, one has concluded that there
are two possible regimes where the effect of the nonmini-
mal coupling f2 is dominant, corresponding to the positive
or negative sign of F2�� �. Furthermore, it was shown
that the þ regime leads to an increasing F2� term, so that
the corresponding inequality F2� > � becomes even
stronger; likewise, the � regime yields a constant F2�
term, so that F2� remains smaller than �.
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If there are no possible transitions between the two
regimes, there is still the issue of the onset of the domi-
nance of the nonminimal coupling, that is, the condition
f2ðRÞ> 1. Since one adopts the power-law form f2ðRÞ ¼
ðR=R2Þn and the scalar curvature R decreases and one aims
for a late-time dominance leading to the currently observed
accelerated expansion, one concludes that the exponent n
must be negative.

This requirement for a negative exponent is, in essence,
analogous to the one found in a previous study concerning
a mimicking mechanism for dark matter [11]: in that work,
an inverse power law was required so that the effects of the
nonminimal coupling become dominant at large distances,
thus leading to the flattening of the rotation curves of
galaxies. Conversely, the application of the considered
model to astrophysical objects with high densities (such
as the Sun [18]) leads one to the consideration of a linear
coupling f2ðRÞ / R.

Since R ¼ 6�ð2�� 1Þ=t2, it is clear that the nonmini-

mal coupling dominates after a transition time T ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�ð2�� 1Þp

t2 (when R< R2); considering that � is of
order unity (� ¼ 2=3 for the matter dominated phase), this
translates into T � t2. Thus, the issue of evaluating the sign
of F2�� � simplifies to the direct evaluation of this
quantity at T ¼ t2. To do this, one requires the parameters
t0 and �0 specifying the evolution of the matter density: it
suffices to consider the WMAP7 value t0 ¼ 13:73Gy and
�0 ¼ �m�crit, with�m � 0:3 the relative matter density in
the Universe and �crit ¼ 3H2

0=8�G� 10�26 kg=m3 its

critical density, from Ref. [19]; replacing � ¼ 1=ð16�GÞ
yields �0t

2
0=�� 0:1, thus

1

�
jF2�jt¼t2 ¼ n½6�ð2�� 1Þ�n�1 �0t

2
0

�

�
t0
t2

�
3��2

’ 0:1n	n�1ð4n2 � 5nþ 1Þn�1

�
t0
t2

�
3��2

;

(30)

where 	 signals the alternative regimes, 	 ¼ 1 for the þ
regime or 	 ¼ 4=3 for the � regime.

From Eq. (21), one recalls that an accelerated expansion
of the Universe q ¼ ��1 � 1< 0 implies that �> 1.
Hence, 3�� 2> 1 and the right-hand side of the above
expression increases with an earlier onset of the nonmini-
mal coupling dominance (that is, a smaller value of t2)—
eventually leading to the condition F2�=� > 1 that marks
theþ regime. More rigorously, one can see that there is an
interplay between the two terms of Eq. (30): the term
0:1n½4ð4n2 � 5nþ 1Þ=3�n�1 is smaller (in absolute value)
than approximately 5:6� 10�3 in the domain n < 1; how-
ever, since the accelerated expansion has already begun,
t2 < t0 and �> 1, thus leading to ðt0=t2Þ3��2 > 1.

The issue is settled by resorting to observational data in
order to fix the accelerated expansion onset time tE � t2.
This may be written in terms of the redshift zE marking the

change of sign of the deceleration parameter q, through�
t0
tE

�
3�2� �

�
t0
t2

�
3��2 ¼

�
a0
aðt2Þ

�
3�2=� ¼ ð1þ zEÞ3�2=�:

(31)

Taking the best-fit value zE � 0:36 [20] and inserting
into Eq. (30), together with the expressions for 	 and
��ðnÞ, �þðnÞ, yields

1

�
F2� ¼ 0:1nð4n2 � 5nþ 1Þn�1

�
� ð1:36Þð1þ3nÞ=ðn�1Þ; F2� > �
ð1:36Þ3n=ðn�1Þð4=3Þðn�1Þ; F2� < �

: (32)

The two curves above are depicted in Fig. 1, for negative
exponent n: clearly, both are (in absolute value) always
below unity, so that the condition F2� > � is inconsistent,
while the converse is valid for all n. Hence, one concludes
that the� regime F2� < � is followed by the system once
the nonminimal coupling becomes dominant.

B. Discussion

The previous section has allowed one to conclude that
the effect of the nonminimal coupling leads to an evolution
obeying condition F2� < �, so that the scale factor scales
with a power law aðtÞ / t�ðnÞ, with �ðnÞ ¼ ��ðnÞ �
2ð1� nÞ=3. The assumption of accelerated expansion q <
0 ! �> 1 (more stringent than the previously assumed
�> 1, where no acceleration is required) leads to the
stronger constraint n <�1=2. One may resort to the ex-
pression for the deceleration parameter in Eq. (21) and
write instead

n ¼ 1� 3

2ð1þ qÞ ! q ¼ �1þ 3

2ð1� nÞ : (33)

Clearly, as n ! �1, one gets q ! �1: this is the expected
value if one assumes that the effect of the nonminimal
coupling mimics the �CDM scenario, thus replicating a

2.0 1.5 1.0 0.5
n

0.007

0.006

0.005

0.004

0.003

0.002

0.001

F2

FIG. 1. Value of F2�=� [Eq. (32)], assuming that F2� > �
(black) or F2� < � (gray).
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cosmological constant (although that implies an exponen-
tial evolution of the scale factor, not a power-law one).

One may easily evaluate the effective equation of state
(EOS) parameter w, as given by relation pc ¼ w�c; ma-
nipulating the Friedmann Eq. (15) together with Eq. (18)
yields the well-known relation

q ¼ 1þ 3w

2
! w ¼ 2q� 1

3
¼ n

1� n
: (34)

Since the exponent n is negative, one concludes that the
effective EOS parameter of the mimicked dark energy
obeys �1<w< 0, thus fulfilling the weak, dominant,
and null energy conditions (for an extended discussion,
see Ref. [21]).

As stated in Ref. [11], one may assume that the non-
minimal coupling comprises several contributions, with a
power law referring to the dominant term (possibly of a
Laurent series of a more evolved form) in a particular
context. Hence, it is not required that the exponents n of
cosmological relevance play a part in astrophysical con-
texts, and vice-versa.

This said, the applicability of the model here considered
to the puzzle of the flattening of the rotation curves of
galaxies was studied in a previous work [11]; in particular,
it was found that the Navarro-Frenk-White and isothermal
dark matter profiles can be derived from power-law non-
minimal couplings with exponents nNFW ¼ �1=3 and
nIS ¼ �1, respectively.

Notice that the constraint n <�1=2 rules out a cosmo-

logically relevant nonminimal coupling f2ðRÞ ¼
ðR=R3Þ�1=3: this is in agreement with the results obtained
in Ref. [11], where it was shown that the characteristic
length scale r3 ¼ 1=

ffiffiffiffiffiffi
R3

p
is much smaller than the relevant

Hubble radius rH.
Conversely, a simple inverse coupling f2ðRÞ ¼ R1=R is

allowed and yields an asymptotic deceleration parameter
q ¼ �1=4. From Ref. [20], one finds that this value lies
still within the 2
 interval for the present value of qðtÞ;
however, in Ref. [11] it was found that, although such
inverse coupling could play a cosmological role, it is not
a dominant one (that is, the characteristic length scale r1 ¼
1=

ffiffiffiffiffiffi
R1

p
& rH).

Hence, one assumes that the n ¼ �1 scenario does not
correspond to the observed cosmological dynamics, and an
even smaller value of the exponent n is required (thus
leading to a larger value of jqj): a fully consistent model
would require that the cosmologically relevant coupling
(characterized by an exponent nC) does not disturb the dark
matter mimicking scenario already obtained with the
aforementioned exponents nNFW ¼ �1=3 and nIS ¼ �1.
This shall be the object of a future study, as it is clearly
outside the scope of the present work.

IV. NUMERICAL RESULTS

In this section, a numerical evaluation of the solution to
Eq. (18) is performed, varying both the time scale t2 ¼
1=

ffiffiffiffiffiffi
R2

p
and the exponent n. This equation is chosen, instead

of the Friedmann Eq. (15) or Raychaudhury Eq. (16) for
three reasons: it best expresses the relation between a
negative pressure and an accelerated expansion; it requires
only the evaluation of pc, not �c; it allows for a direct
comparison with available data. The numerical results are
summarized and discussed below.
In the context of this work, a natural candidate for an

observable quantity is the evolution of the deceleration
parameter with the redshift; since the proposed model
offers a clear mechanism for the transition from the matter
dominated phase (characterized by q ¼ 1=2) to an accel-
erated expansion regime, one aims at comparing the solu-
tion to Eq. (18) with available qðzÞ evolution curves [20]
(see also Ref. [22]), which employ fitting functions exhib-
iting an asymptotic future behavior. It is useful to notice
that these studies indicate that the deceleration parameter
has not yet evolved completely to the permanent regime
q ! const; the best fit found for the present value of the
deceleration parameter q0 ranges from �0:76 to absolute
values larger than unity.
With these considerations in mind, one may qualita-

tively predict the impact of varying the model parameters
t2 and n: increasing the former shifts the transition time
tT / t2, i.e., decreases the transition redshift zE, defined by
qðzEÞ ¼ 0 and found to lie in the range 0:2< zE < 0:4.
From Eq. (33), decreasing the negative exponent n lowers
the asymptotic qðnÞ value for the deceleration parameter.
At first glance, it appears that the problem of finding

more suitable values for n and t2 is not too difficult, since
one may ‘‘guide’’ these quantities to match the reported
values for q0 and zE. However, the situation is somewhat
more evolved: aside from obtaining the desired qðzÞ profile
(roughly specified by these quantities), one must also
verify that the Hubble parameter H and the matter density

(or, equivalently, the scale factor aðtÞ / ��1=3) acquire
their present values. Furthermore, one should guarantee
that the time assigned at the present does not deviate
widely from t0, i.e., HðtnowÞ ’ H0, �ðtnowÞ ’ �0, with
tnow ’ t0.
This said, the prospect of obtaining a completely coher-

ent picture with only the postulated power-law nonminimal
coupling appears unattainable. For this reason, one should
clearly restate the purpose of this work: not to provide a
thorough matching to the observational scenario, but to
describe a possible mechanism through which a nonmini-
mal gravitational coupling might account for the key fea-
tures discussed: a transition from a matter dominated to a
Universe with an asymptotic accelerated expansion. For
this reason, two numerical studies were undertaken, as
detailed below.
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The validity of the þ regime was also ascertained, with
F2�=� found to lie below the 10�33 level. As can be seen in
Fig. 2, this quantity is decreasing, instead of being con-
stant, which does not contradict the finding of the previous
section, since condition F2� ¼ const was derived in the
context of a constant deceleration parameter, a regime that
has not been attained yet.

In Fig. 3, one compares the solutions qðzÞ to Eq. (18)
with the profile given by the fitting of the function

qðzÞ ¼ 1

2
þ q1zþ q2

ð1þ zÞ2 (35)

to the Sloan Digital Sky Survey and the WMAP7 [19]
combined data, with best-fit parameters q1 ¼ 1:47 and
q2 ¼ �1:46 [20] (Fig. 1 therein). The evolution of the
effective EOS parameter w, derived from Eq. (34), is
presented in Fig. 4. Both figures show the solutions flowing
to negative redshifts, thus showing the onset of the asymp-
totic regime.

A. First case

This first numerical exploration aims at obtaining the
evolution profile of the deceleration parameter qðzÞ, con-
strained by the requirement of matching the matter density
and the Hubble parameter, to their currently observed
values at a time tnow ¼ t0 (as can be seen in Figs. 5 and 6).

By varying the exponent n and the characteristic time-
scale t2, it was found that this is obtained for n ¼ �4 and
t2 ¼ t0=4. From Eqs. (33) and (34), one sees that the
exponent n ¼ �4 yields an asymptotic deceleration pa-
rameter qðn ¼ �4Þ ¼ �0:7 and an effective EOS parame-
ter wðn ¼ �4Þ ¼ �0:8.

From Fig. 3, one sees that the agreement withH0 and �0

is attained at the expense of a higher value for q0 ¼ �0:53
and the transition redshift zE ¼ 1. The solution qðzÞmisses
the indicated marks q0 � �0:76 and 0:2< zE < 0:4 and
falls mostly within the 3
 allowed region (except in the

vicinity of z ¼ 0:3); the region z < 2 falls within the 1

region.

B. Second case

The second attempt relaxes the above constraint, and
aims instead to obtain a transition redshift within the range
0:2< zE < 0:4, with most of the solution falling within the
1
 allowed region. This is obtained for n ¼ �10 and t2 ¼
t0=2. From Eqs. (33) and (34), this value for the exponent
yields an asymptotic deceleration parameter qðn ¼
�10Þ ¼ �0:86 and an effective EOS parameter wðn ¼
�10Þ ¼ �0:91.
Following the previous discussion, Fig. 3 shows the

converse trade-off: the transition redshift zE ¼ 0:36 is
obtained, and the solution qðzÞ closely approaches the
best-fit curve before it, z > zE; the current value for q0
falls within the 2
 region. However, both the Hubble

1.0 1.5 2.0 2.5 3.0
t t0

4. 10 33

3. 10 33

2. 10 33

1. 10 33

F2

FIG. 2. Numerical result for F2�=�, for the first case (n ¼ �4,
t2 ¼ t0=4, dashed) and the second case (n ¼ �10, t2 ¼ t0=2,
full).

0.5 0.5 1.0 1.5 2.0 2.5
z

1.0

0.8

0.6

0.4

0.2

w

FIG. 4. Evolution of the effective EOS parameter wðzÞ for the
first case (n ¼ �4, t2 ¼ t0=4, full) and the second case (n ¼
�10, t2 ¼ t0=2, dashed).

0.5 0.5 1.0 1.5
z

2.0

1.5

1.0

0.5

0.5

1.0

1.5

q

FIG. 3. Evolution of the deceleration parameter qðzÞ for the
first case (n ¼ �4, t2 ¼ t0=4, full) and the second case (n ¼
�10, t2 ¼ t0=2, dashed); from Ref. [20], 1
, 2
, and the 3

allowed regions are shaded, and the white line gives the best fit.
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parameter as well as the matter density deviate from their
present values, Hðt0Þ ¼ 0:78H0 and �ðt0Þ ¼ 1:6�0.

Alternatively, one may express this mismatch by deter-
mining the times at which these quantities attain their
present values: it is found that Hð0:7t0Þ ¼ H0 and
�ð1:2t0Þ ¼ �0. Clearly, this result does not amount to a
simple shift of tnow with respect to t0, and expresses the
aforementioned over determination of the observable
quantities with respect to the available model parameters
n and t2.

V. DE SITTER SOLUTION

In the previous sections it was assumed that the Universe
evolves toward an accelerated expansion phase due to a
power-law nonminimal gravitational coupling f2ðRÞ ¼
ðR=R2Þn, tailored from the assumed Ansatz for the scale
factor aðtÞ / t3�. The latter does not allow for a de Sitter
phase characterized by q ¼ �1, which corresponds to an
exponentially evolving scale factor aðtÞ ¼ a0 expðH0tÞ.
From Eq. (33) it is found that this regime is approached
in the limit n ! �1.

For completeness, one may instead investigate the par-
ticular form f2ðRÞ that gives rise to a de Sitter spacetime.
Since this yields a constant Hubble parameterH ¼ H0 and
scalar curvature R ¼ 12H2

0 , the curvature density and pres-

sure (Eqs. (13) and (14), respectively) take the form

�c ¼ ��

�� F2�
ðf2 � 30H2

0F2Þ;

pc ¼ ��

�� F2�
6H2

0F2:
(36)

To ascertain the form for the nongravitational coupling
f2ðRÞ, one inserts the above relations into Eq. (18), obtain-
ing

q ¼ 1

2
þ 1

4�

pc

H2
0

! �1 ¼ F2�

�� F2�
; (37)

which has no exact solution, hinting that no dependence
f2ðRÞ will yield the result q ¼ �1. Nevertheless, one may
proceed and consider that the above equation hints that the
nonminimal gravitational coupling f2ðRÞ must follow the
aforementioned ‘‘strong’’ þ regime, F2� > �.
It is trivial to argue that this regime cannot occur forever:

the de Sitter phase is characterized by a constant scalar
curvature vis-à-vis a constant F2ðRÞ; however, the matter
density � decreases monotonically, so that F2� also drops.
Hence, even if the condition F2� > � is verified at the
onset of the exponential expansion phase, it will eventually
be untenable.
One must also check either the Friedmann Eq. (15) or

the Raychaudhuri Eq. (16), for consistency. From Eq. (36),
one has

�c þ 3pc ¼ ��

�� F2�
ðf2 � 12H2

0F2Þ ’ �

�
12H2

0 �
f2
F2

�
;

(38)

considering the previous condition F2� > � for the þ
regime.
Hence, the Raychaudhuri equation becomes

1þ f2 ¼ 24F2H
2
0 ; (39)

which admits the solution

1þ f2ðRÞ ¼ K exp

�
R

R2

�
; (40)

defining R2 � 24H0 and with K an integration constant.
This is clearly a unphysical result, sinceK must be positive
(so to match the Einstein-Hilbert action when R � R2),
one obtains an increasing function f2ðRÞ of the scalar
curvature. This becomes less and less relevant as R de-
creases during the matter dominated phase, and the tran-
sition to the de Sitter phase never occurs—on the contrary,
the nonminimal coupling dominates at an early epoch.
For illustrative purposes, one entertains the following

possibility: is it feasible to ‘‘push the envelope’’ in order to
obtain a different form for f2ðRÞ, by reinterpreting Eq. (39)

1.0 1.5 2.0 2.5 3.0
t t0

1

1

2

3
c crit , pc crit

FIG. 6. Evolution of the curvature density �c (black) and
pressure pc (gray) for the first case (n ¼ �4, t2 ¼ t0=4, full)
and the second case (n ¼ �10, t2 ¼ t0=2, dashed).

1.0 1.5 2.0 2.5 3.0
t t0

40
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80

100

120

H km.s 1 Mpc

FIG. 5. Evolution of the Hubble parameter HðtÞ for the first
case (n ¼ �4, t2 ¼ t0=4, full) and the second case (n ¼ �10,
t2 ¼ t0=2, dashed).
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? One may assume that the simple de Sitter phase is not
actually enforced in nature, and the scalar curvature will
not be constant: one could perhaps replace the factor
24H2

0 ! 2R, thus recasting Eq. (39) as

1þ f2 ¼ 2RF2: (41)

However, this also yields an increasing solution 1þ
f2ðRÞ ¼ 	 ffiffiffiffiffiffiffiffiffiffiffiffi

R=R2

p
, with R2 a free parameter. Again, one

must select the positive, increasing solution, with the same
unphysical result.

Clearly, no amount of creativity can go against the
simple interpretation of Eq. (39): since 1þ f2 must be
positive, so should F2. Hence, no form for the nonminimal
gravitational coupling f2ðRÞ yields a de Sitter phase.

In order to close this section, one may resort to a simple
argument that corroborates this impossibility: the simplest
model that originates a de Sitter phase relies on the pres-
ence of a cosmological constant. Hence, one may naively
expect that the nonminimal gravitational coupling term
should behave as a constant, ð1þ f2ÞLm � const.

Recycling a previous point, one remarks that the con-
stant scalar curvature yields a constant term f2ðRÞ, so that
this mimicking of the cosmological constant would de-
mand a nonevolving Lagrangian density Lm! Neither the
adopted choiceLm ¼ �� or any of the classically equiva-
lent ‘‘on-shell’’ forms (i.e.,Lm ¼ p [13]) remain constant,
since the relevant thermodynamic quantities decrease as
the Universe expands.

VI. CONCLUSIONS

In this work, one has applied a model exhibiting a non-
minimal gravitational coupling with matter to the funda-
mental issue of the observed accelerated expansion of the
Universe. In order to do so, one first assumes a constant
deceleration parameter�1< q< 0: the related power-law
form aðtÞ / t� of the scale factor leads one to consider a
power-law nonminimal coupling f2ðRÞ ¼ ðR=R2Þ�n, so
that a negative exponent is required to drive the transition
away from the early matter dominated phase.

In the analytical study, one first derived the equivalent
form for the Friedmann and Raychaudhuri equations; since
an exact solution does not exist, the two competing regimes
F2� > � or F2� < � were discussed, and it was found that
the latter dominates throughout the evolution of the
Universe. The identification � ¼ 2ð1� nÞ=3 was thus ob-
tained, as well as the dependence of the deceleration
parameter q ¼ �1þ 3=½2ð1� nÞ� and the related effec-
tive EOS parameter w ¼ n=ð1� nÞ.

The obtained scenario was numerically tested through
the variation of the parameters n and R2. The available
evolution profiles for the deceleration parameter qðzÞ and
the effective EOS parameter wðzÞ were compared with the
obtained solutions, and it was found that a thorough fit of
these results is not fully compatible with the current values
for the Hubble parameter and the matter density.

However, the driving force behind the present effort is
not to yield a complete match with observations, but to
thoroughly explore the proposed mechanism leading to an
asymptotic accelerated expansion Universe. For this rea-
son, the simplifying assumptions of a linear form for the
pure curvature term f1ðRÞ ¼ 2�R was made, trading the
perceived loss of flexibility that a combined analysis of
nontrivial f1ðRÞ and f2ðRÞ might yield with the advantage
of deriving analytical results.
With this in mind, the present work should be regarded

as a first step toward a more complete description based on
the encompassing concept of modifying the Einstein-
Hilbert action, and in a similar way to what was performed
regarding the flattening of the galaxy rotation curves, a
future improvement would include the effect of a combi-
nation of power laws for f2ðRÞ. More ambitiously, one
could attempt to reverse engineer the exercise and read
the form for f1ðRÞ and f2ðRÞ from the observed evolution
profiles, using the latter as inputs, instead of targets.
Despite the above justification, one could consider that

the results that were used for comparison (based on
Ref. [20]) employ a fitting function that might be proven
inadequate. Indeed, the main qualitatively difference be-
tween these scenarios and the solutions obtained in this
work is that the latter present a much smoother transition
from the matter dominated to the accelerated expansion
phase: speculatively, one can state that perhaps the rela-
tively small number of well selected supernovae observa-
tions close to the recognized transition redshift zE � 0:3
might allow for a shallower qðzÞ transition.
A final remark is in order: earlier in the text, it was

suggested that the versatility of the proposed model natu-
rally accounts for the effects of the presence of the two
‘‘dark’’ components of the Universe: dark energy and dark
matter. Indeed, the possibility that different terms present
in the nonminimal coupling f2ðRÞ manifest themselves at
distinct scales, astrophysical or cosmological in nature,
does not require that the same exponent n and character-
istic scale Rn is shared between widely differing
phenomena.
In the present case, it was shown that the n ¼ �1 or n ¼

�3 exponents, which have been shown to account for the
observed flattening of the galaxy rotation curves, do not
have cosmological relevance—allowing for other values
for n to assume such role. Notwithstanding, it is interesting
to notice that the same EOS form arises both for dark
matter as well as for dark energy, given by the parameter
w ¼ n=ð1� nÞ.
This unification is also illustrated by the formulation of

the proposed model as a multi-scalar-tensor theory [12]: in
this context, an interesting target for future research lies in
the possibility of bridging the mechanism here described
with others encountered in the literature, namely, quintes-
sence models [2], chameleon fields [3] or, the aforemen-
tioned generalized Chaplygin gas unified model [6].
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