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In general relativity, a gravitational wave has two polarization modes (tensor mode), but it could have

additional polarizations (scalar and vector modes) in the early stage of the Universe, where the general

relativity may not strictly hold and/or the effect of higher-dimensional gravity may become significant. In

this paper, we discuss how to detect extra-polarization modes of stochastic gravitational wave background

(GWB), and study the separability of each polarization using future space-based detectors such as BBO

and DECIGO. We specifically consider two plausible setups of the spacecraft constellations consisting of

two and four clusters, and estimate the sensitivity to each polarization mode of GWBs. We find that a

separate detection of each polarization mode is rather sensitive to the geometric configuration and distance

between clusters and that the clusters should be, in general, separated by an appropriate distance. This

seriously degrades the signal sensitivity; however, for suitable conditions, the space-based detector can

separately detect scalar, vector and tensor modes of GWBs with energy density as low as h20�gw � 10�15.
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I. INTRODUCTION

Incoherent superposition of gravitational waves pro-
duced by many unresolved sources or diffuse sources
forms a stochastic background of gravitational waves
(GWs), whose statistical properties contain valuable infor-
mation about the high-energy astrophysical phenomena
and the cosmic structure formation. In particular, with
the gravitational wave backgrounds (GWBs), we can di-
rectly probe the very early Universe beyond the last-
scattering surface of the cosmic microwave background.

Various mechanisms or scenarios have been proposed
for generation of cosmological GWBs in the early
Universe, via the inflation [1–4], cosmological phase tran-
sition [5–8], and reheating of the Universe [9–13] etc. An
important aspect of those scenarios is that general relativity
(GR) may not strictly hold in the high-energy regime of the
Universe, and the gravitational waves do not necessarily
satisfy the transverse and traceless conditions. This implies
that the number of polarization modes of a GW is more
than that of tensor modes (i.e., two polarization modes
called plus and cross modes), and it can have six modes
at most in the four-dimensional spacetime, including scalar
and vector modes [14,15]. In modified gravity theories
such as Brans-Dicke theory [16,17] and fðRÞ gravity
[18,19], such additional polarizations appear. (For more
rigorous treatment of the polarizations with the Newman-
Penrose formalism, see [20,21].) Further, there are several
attractive scenarios that we live in a three-dimensional
brane embedded in a higher-dimensional spacetime, such
as the Kaluza-Klein theory and the Dvali-Gabadadze-

Porrati (DGP) braneworld model [22]. In those models,
even the tensor modes satisfying the transverse and trace-
less conditions can have extra-polarization degrees, which
propagate in the extra-dimensional bulk spacetime. The
effects of higher-dimensional gravity are expected to be
significant at high-energy scales, and thus the cosmological
GWBs generated during such a stage may have additional
polarization modes, which can be viewed as the mixture of
scalar and vector polarizations in the projected three-
dimensional space. In these respects, the polarization
modes of GWBs provide additional information about
the physics of the early Universe, and thus a search for
extra-polarization modes is indispensable as a cosmologi-
cal test of GR. Note also that the polarization of GWB from
astrophysical origin can also be useful as a test of strong
gravity associated with astrophysical phenomena.
Currently, there is no observational evidence for GWBs,

and the constraints on the extra-polarization modes of
GWBs are almost nonexistent [23]. However, the observa-
tions of cosmic microwave background anisotropies are
currently consistent with the adiabatic density perturba-
tions plus negligible contribution of tensor GWB [25] and
no significant contributions of scalar and vector GWBs are
expected. Further, a search for stochastic GWBs by LIGO
[26] has given an upper limit on the energy density of
GWBs around �100 Hz, h2�gw & 3:6� 10�6, where

�gw is the energy density per logarithmic frequency bin

normalized by the critical density of the Universe, and the
present Hubble parameter normalized by H0 ¼
100h0 km sec�1 Mpc�1. This null detection is applied to
the constraints on the GWBs of extra-polarization modes
with correction by a factor of a few, depending on the
response of the GW detectors to each polarization mode.*atsushi.nishizawa@nao.ac.jp
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In this paper, we investigate how well we can separately
detect and measure the polarizations of a GWB using
space-based GW detectors. Previously, we have studied
the detection and separation of polarization modes of
GWB using a network of ground-based laser interferome-
ters (for a detection of GWB using the pulsar timing arrays,
see Ref. [27]). With the correlation signals obtained from
more than three advanced detectors, we found that scalar,
vector and tensor modes of GWBs can be separately de-
tected around the frequencies f� 100 Hz, and the sensi-
tivity to each polarization mode can reach
h20�gw ¼ 10�9 � 10�8. Extending the previous analysis

to those using space-based interferometers, we discuss a
direct detection of extra-polarization modes of low-
frequency GWBs at f ¼ 0:1� 1 Hz.

Currently, several space missions to detect GWs have
been proposed. Among these, the DECI-hertz Inter-
ferometer Gravitational-wave Observatory (DECIGO)
[28,29] and Big-Bang Observer (BBO) [30] (also see
[31] for updated information) will aim at detecting cosmo-
logical GWBs generated during the inflationary epoch as
the primary target. These orbit the Sun with a period of one
sidereal year, and constitute several clusters, each of which
consists of three spacecraft exchanging laser beams with
the others, as shown in Fig. 1. DECIGO plans to have the
arm-length 103 km, equipped with Fabry-Perot cavity in
each arm, while BBO will adopt the transponder type with
arm-length 104 km. The crucial difference between space-
and ground-based detectors is that practical design as well
as precise orbital configurations for space interferometers
are still under debate, and there are a number of options for
the detector configuration. Hence, in this paper, we will
examine several plausible setups and discuss under what
conditions we can separately measure the scalar, vector
and tensor polarizations of GWB.

This paper is organized as follows. In Sec. II, for nota-
tional convenience, we first present the definitions of GW
polarizations. Then, we discuss a methodology to sepa-
rately detect the polarization modes, based on the previous
analysis using the ground-based interferometers. In
Sec. III, we investigate the separability of the polarization

modes of the GWB in specific configurations of space-
based detectors, and calculate the detector sensitivities to
each polarization mode, especially focusing on DECIGO.
Sec. IV presents discussion on the low-frequency cutoff
due to the presence of astronomical confusion noise, and
the sensitivity to polarizations in the BBO case. Finally, the
paper is summarized in Sec. V.

II. FORMULATION

A. GW polarizations and detector response

We start by briefly reviewing the basic concepts of data
analysis of stochastic GWB search. First consider the
spacetime metric generated by a stochastic GWB in the

observed three-dimensional space. At a position ~X and
time t, it is expressed as

h ðt; ~XÞ ¼ X
p

Z
S2
d�̂

Z 1

�1
df~hpðf; �̂Þe2�ifðt��̂� ~X=cÞepð�̂Þ;

(1)

where c is the speed of light [32], f is frequency of a GW,

and �̂ is a unit vector pointed at the GW propagating

direction. The amplitude ~hpðf; �̂Þ represents the Fourier

transform of the GWamplitude for each polarization mode,
and the quantity ep is the polarization tensor. Including the

extra-polarization degrees of scalar and vector modes, we
have six polarization modes in three-dimensional space;
p ¼ þ, �, b, ‘, x, and y, which are called plus, cross,
breathing, longitudinal, vector-x, and vector-y modes, re-
spectively. Using the orthonormal vectors, m̂ and n̂, per-

pendicular to the direction vector �̂ (as shown in Fig. 2),
the polarization tensors are defined by [14,15]

eþ ¼ m̂ � m̂� n̂ � n̂; e� ¼ m̂ � n̂þ n̂ � m̂;

eb ¼ m̂ � m̂þ n̂ � n̂; e‘ ¼
ffiffiffi
2

p
�̂ � �̂;

ex ¼ m̂ � �̂þ �̂ � m̂; ey ¼ n̂ � �̂þ �̂ � n̂:

Each polarization mode is orthogonal to one another and is

normalized so that epije
ij
p0 ¼ 2�pp0 for p, p0 ¼ þ, �, b, ‘,

FIG. 1 (color online). A cluster of DECIGO. FIG. 2 (color online). Coordinate systems.
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x, and y. Note that the breathing and longitudinal modes do
not satisfy the traceless condition, in contrast to the ordi-
nary plus and cross polarization modes in GR. For the
universe with extra-dimensions, the number of polarization
modes generally can be more than six, but in the projected
three-dimensional space, GW can be viewed as a mixture
of scalar, vector and tensor modes mentioned above.

Next consider the response of the GW detector. The laser
interferometers measure the time variation of the space-
time metric as one-dimensional time-series data. In a
space-based interferometer, the gravitational-wave signal
is obtained by differentiating two link signals in Fig. 1
(three interferometer signals are obtained about a cluster.).
Denoting the signal strain measured by the interferometer I

(whose position is located at ~X) by hIðtÞ, the strain ampli-
tude of GW is expressed as

hIðt; ~XÞ ¼ DI:hðt; ~XÞ
¼ X

p

Z
S2
d�̂

Z 1

�1
df~hpðf; �̂Þ

� e2�ifðt��̂� ~X=cÞFp
I ðf; �̂Þ; (2)

where the quantity DI is the detector tensor, and the Fp
I is

the angular response function for each polarization mode.
They are, respectively, given by

Fp
I ð�̂Þ � DI:epð�̂Þ; (3)

D I � 1

2
½û � û� v̂ � v̂�; (4)

with the unit vectors û and v̂ being directed to each
detector arm. The expression of Eq. (4) is valid when the
arm-length of the detector, L, is much smaller than the
wavelength of observed GWs, �g, i.e., L � �g. For

DECIGO, the observable frequency range is around f�
1 Hz, which corresponds to �g ¼ 3� 105 km. Thus, with

the arm-length L ¼ 103 km, the so-called low-frequency
approximation is fully satisfied.

B. Cross-correlation analysis

Throughout the paper, we assume that stochastic GWB
is (i) isotropic, (ii) stationary, (iii) Gaussian, and (iv) has no
intrinsic correlation between polarization modes. (If this is
not the case, see [34–43] for discussions on the detection of
GWBs in the presence of anisotropies and non-
Gaussianity, respectively.) Adopting these assumptions,
all the statistical properties of the GWB are characterized
by the power spectral density:

h~h	pðf; �̂Þ~hp0 ðf0; �̂0Þi ¼ �ðf� f0Þ 1

4�
�2ð�̂; �̂0Þ

� �pp0
1

2
Sph ðjfjÞ; (5)

where �2ð�̂; �̂0Þ � �ð���0Þ�ðcos�� cos�0Þ, and h� � �i

denotes the ensemble average. The function SphðfÞ is the

one-sided power spectral density for each polarization
mode.
Conventionally, the amplitude of GWB for each polar-

ization is also characterized by an energy density per
logarithmic frequency bin, normalized by the critical en-
ergy density of the Universe:

�p
gwðfÞ � 1

�c

d�p
gw

d lnf
¼

�
2�2

3H2
0

�
f3SphðfÞ; (6)

where �c ¼ 3H2
0=8�G and H0 is the Hubble constant. In

the second equality, we used the relation between �gwðfÞ
and ShðfÞ given by [44,45]. Then, we define the GWB
energy density in tensor, vector, and scalar polarization
modes as

�T
gw � �þ

gw þ��
gw; �V

gw � �x
gw þ�y

gw;

�S
gw � �b

gw þ�‘
gw ¼ �b

gwð1þ �Þ:

The subscripts T, V, and S stand for tensor, vector, and
scalar, respectively. Hereafter, we assume �þ

gw ¼ ��
gw for

the tensor mode and�x
gw ¼ �y

gw for the vector mode. This

assumption is valid for a stochastic GWB generated in
most cosmological scenarios [46]. For the scalar mode,
we introduce a model-dependent new parameter, �ðfÞ �
�‘

gwðfÞ=�b
gwðfÞ.

In order to discriminate a stochastic GWB from random
detector noise, one needs to cross-correlate between detec-
tor signals [45,51,52]. Let us consider the outputs of a
detector, sðtÞ ¼ hðtÞ þ nðtÞ, where hðtÞ and nðtÞ are the
GW signal and the noise of a detector. In general, the
amplitude of GWB is thought to be much smaller than
that of detector noise. Cross-correlation signal Y between
two detectors is given by

Y �
Z Tobs=2

�Tobs=2
dt

Z Tobs=2

�Tobs=2
dt0sIðtÞsJðt0ÞQðt� t0Þ;



Z 1

�1
df

Z 1

�1
df0�Tðf� f0Þ~s	I ðfÞ~sJðf0Þ ~Qðf0Þ; (7)

where Tobs is observation time, ~sIðfÞ, ~sJðfÞ and ~QðfÞ are
the Fourier transforms of sIðtÞ, sJðtÞ and Qðt� t0Þ, respec-
tively. Qðt� t0Þ is a filter function, which will be later
adjusted to maximize the signal-to-noise ratio (SNR) of
the correlation signal. The function �TðfÞ is defined by

�TðfÞ �
Z Tobs=2

�Tobs=2
dte�2�ift ¼ sinð�fTobsÞ

�f
:

Taking the ensemble average over the expression (7),
and substituting Eqs. (5) and (6) into this, we obtain a GW
signal in a correlation analysis between I-th and J-th
detectors,
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� � hYi
¼

Z 1

�1
df

Z 1

�1
df0�Tðf� f0Þh~h	I ðfÞ~hJðf0Þi ~Qðf0Þ:

¼ 3H2
0

20�2
Tobssin

2	
Z 1

�1
dfjfj�3 ~QðfÞ½�T

gwðfÞ
T
IJðfÞ

þ�V
gwðfÞ
V

IJðfÞ þ �ðfÞ�S
gwðfÞ
S

IJðfÞ�;

�ðfÞ � 1

3

�
1þ 2�ðfÞ
1þ �ðfÞ

�
: (8)

The parameter � takes the value in the range 1=3 � � �
2=3 and characterizes the ratio of the energy in the longi-
tudinal mode to the breathing mode. The sensitivity to the
GWB can be governed by the so-called overlap reduction
functions [45,51,52], which represents how much of the
correlation of the GW signal between detectors can be
preserved. The overlap reduction function for each polar-
ization is defined by [53]


M
IJðfÞ �

1

sin2	

Z
S2

d�̂

4�
e2�if�̂�� ~X=cRM

IJ;

RT
IJð�̂Þ � 5

2
ðFþ

I F
þ
J þ F�

I F
�
J Þ;

RV
IJð�̂Þ � 5

2
ðFx

IF
x
J þ Fy

IF
y
JÞ;

RS
IJð�̂Þ � 15

1þ 2�
ðFb

I F
b
J þ �F‘

IF
‘
JÞ;

(9)

which are normalized to unity in the limit f ! 0. The

subscript M denotes M ¼ T, V, S, and the quantity � ~X

is the separation vector defined by � ~X � ~XI � ~XJ. Note
that the prefactor, sin2	 ¼ 1� ðû � v̂Þ2, in Eq. (9) comes
from the nonorthogonal detector arms. For an equilateral
triangle configuration of the spacecraft constellation in
Fig. 1, we have sin2	 ¼ 3=4.

In Eq. (9), the angular integral is analytically performed
prior to specifying the detector location and orientation
[53]. The result is expressed as


M
IJðfÞ ¼

1

sin2	
½�M

1 ð�ÞDij
I D

J
ij þ �M

2 ð�ÞDi
I;kD

kj
J d̂id̂j

þ �M
3 ð�ÞDij

I D
k‘
J d̂id̂jd̂kd̂‘�; (10)

with unit vector d̂i defined by d̂i � � ~X=j� ~Xj. The sum-
mation is taken over each component of the subscripts i, j,
k, ‘. In the above, frequency dependence of the overlap
reduction function is incorporated into the coefficients,
�M
1 , �

M
2 , and �M

3 , which sensitively depend on each polar-

ization mode. We have

�T
1

�T
2

�T
3

0
B@

1
CA ¼ 1

14

28 �40 2
0 120 �20
0 0 35

0
@

1
A j0

j2
j4

0
@

1
A;

for tensor mode,

�V
1

�V
2

�V
3

0
B@

1
CA ¼ 2

7

7 5 �2
0 �15 20
0 0 �35

0
@

1
A j0

j2
j4

0
@

1
A;

for vector mode, and

�S
1

�S
2

�S
3

0
B@

1
CA ¼ 1

7

14 20 6
0 �60 �60
0 0 105

0
@

1
A j0

j2
j4

0
@

1
A;

for scalar mode. Here, jnð�Þ is the spherical Bessel func-
tion with its argument given by

�ðfÞ � 2�fD

c
; D � j� ~Xj: (11)

These expressions are very useful to obtain a simple ex-
pression for the overlap reduction function in specific
detector configurations below.
Let us now consider the noise part in the cross-

correlation analysis. As long as the intrinsic noise correla-
tion between two detectors is absent, the ensemble average
of cross-correlation quantity Y in Eq. (7) is dominated by
the GW signals. This is true even in the weak signal limit,
h � n. However, the variance of Y is dominated by the
detector noises. We obtain


2 � hY2i � hYi2 
 hY2i



Z 1

�1
df

Z 1

�1
df0 ~QðfÞ ~Q	ðf0Þh~n	I ðfÞ~nIðf0Þi

� h~nJðfÞ~n	Jðf0Þi


 Tobs

4

Z 1

�1
dfPIðjfjÞPJðjfjÞj ~QðfÞj2; (12)

where the one-sided power spectrum density of the detec-
tor noise, PIðfÞ, is defined by

h~n	I ðfÞ~nJðf0Þi �
1

2
�ðf� f0Þ�IJPIðjfjÞ:

For DECIGO, the analytical fit of the noise power spec-
trum is obtained for a single interferometer. Assuming that
the detector noise is idealistically limited by the sum of
quantum noises, i.e., shot noise, Pshot, and radiation-
pressure (acceleration) noise, Pacc, we have [54]:

PðfÞ ¼ PaccðfÞ þ PshotðfÞ
PaccðfÞ ¼ 6:31� 10�51

�
f

1 Hz

��4
Hz�1;

PshotðfÞ ¼ 1:88� 10�48 þ 5:88� 10�50

�
f

1 Hz

�
2
Hz�1:

In Fig. 3, the noise power spectrum of DECIGO is plotted

as the strain amplitude, S1=2h .

From Eqs. (8) and (12), the SNR in the correlation
analysis between two detectors is simply given by SNR ¼
�=
. In the absence of extra-polarization degrees (i.e.,
only the tensor modes exit), two-detector correlation is
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sufficient to detect GWB, and the optimal choice of the

filter function ~QðfÞ is easy to derive [45]. On the other
hand, in the presence of multiple polarization modes, we
need more than three detectors in order to separately detect
each polarization mode. The optimal SNR combining mul-
tiple detectors is not simply given by the sum of �=
, and
thus the choice of filter function is rather nontrivial. We
will discuss this issue in the next section.

C. Signal-to-noise ratio

In principle, three polarization modes, i.e., scalar, vector
and tensor, can be separately detected by linearly combin-
ing more than three independent correlation signals. In our
previous paper [53], we considered the situation that only
the three correlation signals are available. We then pre-
sented the formula for the optimal SNR. Here, we consider
the optimal SNR combining an arbitrarily large number,
Npair, of correlation signals. Such a generalized formula

has been derived for the cases with two polarizations (i.e.,
circularly polarized and unpolarized modes of tensor GWs)
by Seto and Taruya [47]. Based on this, in Appendix B, the
extension of the formula to the three-polarization case is
presented. Combining Npair correlation signals, the result-

ant optimal SNR for separately detecting scalar, vector and
tensor GWBs becomes (see Eq. (B13))

SNRM ¼ 9H2
0

40�2

�
2
Z 1

0
df

ð�M
gwðfÞÞ2 detFðfÞ
f6FMðfÞ

�
1=2

; (13)

F ðfÞ ¼
FTT FTV FTS

FTV FVV FVS

FTS FVS FSS

0
@

1
A;

FMM0 ðfÞ ¼ X
i

Z Tobs

0
dt


M
i ðt; fÞ
M0

i ðt; fÞ
N iðfÞ ;

(14)

where M and M0 denote polarization modes, M, M0 ¼ T,
V, S. The quantityFM is the determinant of the submatrix,
which is constructed by removing the M’s elements from

F. The subscript i indicates a pair of detectors (e.g., i ¼
ðI; JÞ for pair of I- and J-th detectors), and N iðfÞ is
defined as, say, N 12ðfÞ � P1ðfÞP2ðfÞ. In what follows,
for simplicity, we consider the case that all interferometers
have the same noise spectrum, i.e., PIðfÞ ¼ PðfÞ.
The expression (13) is a rather general formula for the

optimal SNR in the sense that the stationary configuration
of GW detectors is not strictly assumed. The configuration
of space-based interferometers gradually changes in time
due to the orbital motion of the spacecraft. In the formula
(13), the effect of such gradual change is incorporated into
the explicit time dependence of the overlap reduction
function, which will be important later in Sec. III B. Note
that for stationary detector configuration, the time integral
in Eq. (14) simply reduces to the factor Tobs, which gives

rise to the well-known result that SNR / T1=2
obs . Further, if

we consider the combination of three detectors (Npair ¼ 3),

the above SNR can be reduced to Eq. (53) in Ref. [53]
except for the prefactor sin2	 ¼ 3=4 or (B11) in this paper.
The expression (13) is one of the most important results

of this paper. Provided the location and orientation of GW
detectors, the SNR is quantitatively evaluated. Before
doing so, it is important to note that a separate detection
of three polarization modes is possible only when the
quantity detF becomes nonvanishing. As we explain in
detail below, this implies that the configuration of space-
based detectors must satisfy both conditions:
(i) The detectors have to be separated by at least the

distance of a typical wavelength of the observed
GWs, e.g., 3� 105 km for a GW with frequency
f ¼ 1 Hz.

(ii) Detector pairs are not geometrically degenerate, e.g.,
three detectors located at the vertices of a nonequi-
lateral triangle. If one of the two conditions fails, the
SNR is expected to be significantly degraded.

For intuitive explanation of the above two conditions, let
us consider the three-detector (three correlation-signal)
case [53]. (This does not lose generality because one can
verify that the SNR with an arbitrary number of detectors
can be reduced to a weighted sum of the SNR with a three-
detector subset.) In the case, the condition detF � 0 cor-
responds to det� � 0 where

� ðfÞ �

T
12 
V

12 
S
12


T
23 
V

23 
S
23


T
31 
V

31 
S
31

0
B@

1
CA:

The condition (i) comes from nondegeneracy of the com-
ponents in a column of �, e.g., 
T

12 � 
V
12 � 
S

12. As we

will see explicitly in Sec. III, for a closer detector pair
(� ! 0), there is no difference in the overlap reduction
functions for each polarization mode, since the spherical
Bessel functions, j2 and j4, vanish. On the other hand, for a
detector pair with �� 1, j2 and j4 are of the same order as
j0 and result in differences between the overlap reduction
functions. The condition (ii) comes from nondegeneracy of

FIG. 3. DECIGO noise curve.
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the components in a row of�, e.g., 
T
12 � 
T

23 � 
T
31. This

condition implies that a noncolinear configuration of three
detectors is preferred.

III. SENSITIVITY TO POLARIZATION MODES

We are in a position to discuss how well one can sepa-
rately detect scalar, vector and tensor GWBs. In this sec-
tion, we specifically consider the two setups of detector
configuration, and estimate the detectability for each po-
larization mode. First, we consider the four-cluster con-
figuration with coplanar orbits (case I). This is the
prototypical configuration proposed at an early phase of
the conceptual design of DECIGO [29]. We then move to a
discussion of two-cluster configuration, in which the orbits
of two clusters are slightly inclined in relation to one
another (case II). In the calculations below, the energy
spectrum of GWBs �M

gwðfÞ is assumed to be a flat spec-

trum, i.e., �M
gw ¼ const. In computing the SNR below, we

do not consider the single-cluster correlation. This is be-
cause correlation signals from a single cluster are not
sensitive enough to GWB at low frequencies, as discussed
in Appendix A.

A. Case I: Four clusters

1. Configuration

Let us consider the detector configuration consisting of
four clusters shown in Fig. 4. Each cluster is inclined by
60 degrees from the orbital plane in order to close the orbit.
The guiding center of each cluster, i.e., the center-of-mass
of three spacecraft, follows a circular orbit around the Sun,
with the radius R0 ¼ 1 AU 
 1:5� 108 km and orbital
period of 1 yr. In the coordinate system ðX; Y; ZÞ shown
in Fig. 4, the position of the guiding center is given by

~XðtÞ ¼ ðR0 cos�ðtÞ; R0 sin�ðtÞ; 0Þ;
where the phase of the orbit is�ðtÞ ¼ !orbitt ¼ 2�ðt=1 yrÞ
for the clusters A and A0. The phases of the clusters B andC
are relatively shifted to � and�� from that of the clusters

A and A0, respectively. Thus, the distances between the

clusters, D � j� ~Xj, become DABð�Þ ¼ DACð�Þ ¼
2R0j sinð�=2Þj for the AB and AC link, and DBCð�Þ ¼
2R0j sin�j for the BC link.
In each cluster, the position of the spacecraft relative to

the guiding center is given by

~x iðtÞ ¼ RZ½��ðtÞ�RY½���RZ½�ðtÞ� ~xi;0; (15)

~x i;0 ¼ Lffiffiffi
3

p � ðcos
i; sin
i; 0Þ; (16)

with � ¼ �=3. The matrices RY and RZ are the rotation
matrices around Y and Z axes, respectively. The angle 
i

represents the orientation angle of the bisector of two arms
of each interferometer. Let the angle of the interferometer 1
be
1 ¼ 
0. The orientations of interferometer 2 and 3 in a
cluster are given by 
2 ¼ 
0 þ 2�=3 and 
3 ¼

0 þ 4�=3, respectively.
In the setup mentioned above, the angles � and 
0 are

apparently regarded as the free parameters. However, in an
optimal combination of detector signals, several examina-
tions reveal that the resultant SNR turns out to be insensi-
tive to any choice of 
0. We thus set 
0 ¼ 0, and treat the
separation angle � as the only free parameter. For sim-
plicity of the calculation below, the separation of the
detectors between different clusters is approximated as
the distance between the guiding centers of each cluster.
This treatment is validated as long as we are interested in
the low-frequency GWs satisfying �g � L. Then, the

detector configuration can become stationary, and no ex-
plicit time-dependence appears at the overlap reduction
functions in Eq. (13).

2. Overlap reduction functions

For each detector link of four-cluster configuration, the
overlap reduction function given by Eq. (10) is reduced to a
rather compact expression. For correlation signals of AB,
AC, BC links, the overlap reduction functions are, respec-
tively, written as


M
ABðf;�; 
A; 
B;�ABÞ

¼ 1

16
½�M

1 ð�AB; �=2Þ cos½2ð
A � 
BÞ�
��M

2 ð�AB; �=2Þ sin½2ð
A � 
BÞ�
þ�M

3 ð�AB; �=2Þ cos½2�� 2ð
A þ 
BÞ��; (17)


M
ACðf; �;
A; 
C;�ACÞ ¼ 
M

ABðf;��;
A; 
C;�ABÞ;
(18)

and
FIG. 4 (color online). Case I—Four clusters, A, A0, B, and C,
sharing the coplanar orbit, whose radius is 1 AU.
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M
BCðf; �;
B; 
C;�BCÞ

¼ 1

16
� ½�M

1 ð�BC; �Þ cos½2ð
B � 
CÞ�
þ�M

2 ð�BC; �Þ sin½2ð
B � 
CÞ�
þ�M

3 ð�BC; �Þ cos½2ð
B þ 
CÞ��: (19)

Note that the overlap reduction function for AA0 link
becomes 
M

AA0 ¼ 1, because of the mirror symmetry. As

for A0B and A0C links, the overlap reduction functions are
identical to those for AB and AC links. Here, the function
�M

i ð�;�Þ is defined by

�M
1;2ð�;�Þ � JMð�ÞU1;2ð�Þ;

�T
3 ð�;�Þ

�V
3 ð�;�Þ

�S
3ð�;�Þ

0
BB@

1
CCA � �9

� JTð�Þ
JVð�Þ
JSð�Þ

0
BB@

1
CCAsin4�

þ 5

14

�8j2ð�Þ � j4ð�Þ
4j2ð�Þ þ 4j4ð�Þ
8j2ð�Þ � 6j4ð�Þ

0
BB@

1
CCAsin2�

þ 5

9

j4ð�Þ
�4j4ð�Þ
6j4ð�Þ

0
BB@

1
CCA
�
:

U1ð�Þ � sin4�þ 8cos6�ð1þ cos2�Þ; (20)

U2ð�Þ � 2ð1þ cos2�Þð1þ cos2�þ 2cos4�Þ sin2�;
(21)

JTð�Þ � j0ð�Þ þ 5

7
j2ð�Þ þ 3

112
j4ð�Þ; (22)

JVð�Þ � j0ð�Þ � 5

14
j2ð�Þ � 3

28
j4ð�Þ; (23)

JSð�Þ � j0ð�Þ � 5

7
j2ð�Þ þ 9

56
j4ð�Þ: (24)

The subscript M stands for the polarization mode, T, V, S.
The angles 
A, 
B, and 
C are the orientation of the
interferometer in the clusters A, B, and C, respectively.
�AB, �AC, and �BC imply the dimensionless frequency �
defined in Eq. (11) for AB, AC, and BC links. Note that
from the expressions (17)–(19), the overlap reduction func-
tions are invariant under the transformation 
 !

þ n�=2 except for an overall sign. This is due to the
quadrupole nature of GWs.

In the four-cluster configuration, the detector separation
D is typically of the order of 1 AU. This means that the
overlap reduction function starts to oscillate, and rapidly
decay above the characteristic frequency, fc � c=ð2DÞ �
10�3 Hz. Examples of the overlap reduction function for
each polarization mode are shown in Fig. 5, where the
parameters of detector configuration are selected as 
A ¼

B ¼ 
C ¼ 0, and the results for � ¼ 30
, 90
, and 150


are plotted from top to bottom panels. At the frequency
f� 0:1 Hz, the amplitudes of overlap reduction function
are significantly dropped, but they show different oscilla-
tory behaviors for each polarization mode. The latter prop-
erty is essential for separately detecting the scalar, vector
and tensor GWBs. Note that the distance between BC link
becomes identical for top and bottom panels, and the over-
lap reduction functions for each polarization mode coin-
cide with each other.
In the present setup, the condition for separate detection

of each polarization mode can be understood more pre-
cisely from Eqs. (17)–(19). Consider the close detectors
with � � 1 and �< 1. The spherical Bessel functions are
approximated as

jnð�Þ 
 �n

ð2nþ 1Þ!! :

Further, we obtain U1ð�Þ ¼ 16þOð�2Þ and U2ð�Þ ¼
32�þOð�3Þ. Then, terms including j2 and j4 become
negligible, and we have


M
AB 
 j0ð�Þ½1þOð�Þ� cos½2ð
A � 
BÞ�;


M
BC 
 j0ð�Þ½1þOð�Þ� cos½2ð
B � 
CÞ�:

Clearly, the overlap reduction functions for all polarization
modes become degenerate, and reduce to an identical form
in the limit � ! 0. Therefore, the j2 and j4 terms play a
crucial role in breaking this degeneracy. These terms be-
come comparable to the j0 term only when � * 1, leading
to the condition D> �g. Hence, widely separated detec-

tors are essential for separately measuring each polariza-
tion mode of GWB. However, this generally conflicts with
the optimal detection of GWBs. The resultant sensitivity to
each polarization mode is thus significantly reduced, as
shown below.

3. Results

The optimal SNR for four-cluster configuration is calcu-
lated with, in total, 54 correlation signals (AA0, AB, AC,
A0B, A0C, BC�9 links ¼ 54). Setting the observation time
and detection threshold to Tobs ¼ 3 yr and SNR ¼ 5, we
estimate minimum detectable amplitude h20�gw (�h20�gw

for the scalar mode).
In Fig. 6, the resultant amplitude is plotted as function of

angle �. At �� 120
, the sensitivity degrades due to the
symmetry of the detector configuration. In other words, the
clusters, A, B, and C, are located at the apexes of an
equilateral triangle, and some of the correlation signals
are degenerated. As � approaches 0
 and 180
, the detec-
tor sensitivity reaches nearly maximum, because the clus-
ters A and B (or C), and B and C are close to the colocated
configuration. In practice, to keep a better angular resolu-
tion to point GW sources, two of four clusters have to be
located far from the starlike clusters [31,55]. Thus, the
optimal choice of the parameter � may be around ��
60
, which gives the detectable amplitude for each polar-
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ization mode as

h20�
T
gw ¼ 2:2� 10�14; h20�

V
gw ¼ 1:1� 10�14;

�h20�
S
gw ¼ 1:9� 10�14:

These results are compared with the optimal detection of
GWB without mode separation. For two clusters that are
colocated and coaligned like clusters A and A0, the sensi-

tivity reaches h20�gwj0 ¼ 7:1� 10�17. Thus, for a separate

detection of polarization modes, the sensitivity to GWB is
significantly degraded by more than 2 orders of magnitude.

B. Case II: Two clusters

1. Configuration

For better measurement of each polarization of GWB,
we consider an alternative setup shown in Fig. 7 originally

FIG. 5 (color online). Overlap reduction functions of the correlation between interferometers in cluster A and B (left panels) and
cluster B and C (right panels) in case I. The orientations of the interferometers are selected as 
A ¼ 
B ¼ 
C ¼ 0. Solid (red), dotted
(green), and dashed (blue) curves correspond to the tensor, vector, and scalar modes, respectively.
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proposed by Ref. [48] in order to detect a circularly polar-
ized component of tensor GWB. In this setup, the orbital
configuration of the one cluster is the same as cluster A in
case I, while the orbital plane of the other cluster B is
slightly tilted by the angle c around the Y axis. The
position of each spacecraft in cluster A is described by
Eqs. (15) and (16), with specific choice of the parameters,
� ¼ �=3, 
1 ¼ 0, 
2 ¼ 2�=3, and 
3 ¼ 4�=3. The orbit
of the guiding center of the cluster B, and the relative
positions of the spacecraft are, respectively, given by

~X BðtÞ ¼ RY½�c � ~XAðtÞ; ~xBðtÞ ¼ RY½�c � ~xAðtÞ:

Note that, seen at a certain moment t, the intercluster
correlation signals (the overlap reductions) between cluster
A and B are highly degenerate due to the geometrical
degeneracy in the interferometer location (e.g., 
T

A1B1 �

T
A1B2 � 
T

A1B3). So, the differences between the overlap

reduction functions are of the order of OðL2=D2Þ.
However, the degeneracy can be broken by utilizing the
orbital motion of the clusters. The advantage of this con-
figuration is that the distance between the clusters gradu-
ally changes with time, and the correlation signals
measured at the different times can be regarded as that of
a different detector pair with different location and sepa-
ration. As a result of closer detector separation, the sensi-
tivity to each polarization mode can become even better
compared to the four-cluster configuration.
As long as we consider the low-frequency GWs, the

detector separation is approximately described by
Dðc ; �Þ ¼ 2R0j sinðc =2Þ cos�j. Since � assigns a time
to an overlap reduction function, the inclination angle c is
the only free parameter. In what follows, instead of c , we
use the maximum separation of clusters, Dmax ¼
2R0j sinðc =2Þj, to characterize the results.

2. Overlap reduction function

Compared to the case I, the analytical expressions of
overlap reduction functions for two-cluster configuration
become much more complicated, but can be obtained from
Eq. (10). For a cross-correlation-signal of AB links, the
overlap reduction functions are


Mðf;�;c ;
A;
B;�Þ¼ 1

16
½�M

1 ð�;�;c Þcos½2ð
Aþ
BÞ�
þ�M

2 ð�;�;c Þsin½2ð
Aþ
BÞ
þ�M

3 ð�;�;c Þcos½2ð
A�
BÞ�
þ�M

4 ð�;�;c Þsin½2ð
A�
BÞ��;

where

�T
1;2

�V
1;2

�S
1;2

0
BB@

1
CCA � �

JT

JV

JS

0
BB@

1
CCAU1;2ð�Þsin4

�
c

2

�

� 45

56

�8j2 � j4

4j2 þ 4j4

8j2 � 6j4

0
BB@

1
CCAV1;2ð�Þsin2

�
c

2

�

� 45

16

j4

�4j4

6j4

0
BB@

1
CCA cos4�; (25)FIG. 7 (color online). Case II—Two clusters, A and B, whose

radius of the orbits is 1 AU. The orbital plane of the cluster B is
tilted by the angle c .

FIG. 6 (color online). Detectable h20�gw (�h20�gw for the
scalar mode) after the mode separation in case I.
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�T
3

�V
3

�S
3

0
BB@

1
CCA �

JT

JV

JS

0
BB@

1
CCAU3ð�Þsin4

�
c

2

�

� 8

2
6644

j0 þ 25
56 j2 � 3

448 j4

j0 � 25
112 j2 þ 3

112 j4

j0 � 25
56 j2 � 9

224 j4

0
BBB@

1
CCCA

þ 9

j0 þ 5
8 j2 þ 1

64 j4

j0 � 5
16 j2 � 1

16 j4

j0 � 5
8 j2 þ 3

32 j4

0
BBB@

1
CCCAsin2�

3
775sin2

�
c

2

�

þ 16

j0 þ 5
28 j2 � 37

1792 j4

j0 � 5
56 j2 þ 37

448 j4

j0 � 5
28 j2 � 111

896 j4

0
BBB@

1
CCCA; (26)

�T
4

�V
4

�S
4

0
BB@

1
CCA��16

ffiffiffi
3

p
sinc sin�

2
664

JT

JV

JS

0
BB@

1
CCA
�
1þ3

4
sin2�

�
sin2

�
c

2

�

�
j0þ 25

56j2� 3
448j4

j0� 25
112j2þ 3

112j4

j0� 25
56j2� 9

224j4

0
BBB@

1
CCCA
3
775; (27)

U3ð�Þ ¼ 97� 90cos2�þ 9cos4�;

V1ð�Þ ¼ 1þ 3cos2�� 8cos6�;

V2ð�Þ ¼ 2 sin2�cos2�ð1þ 2cos2�Þ:
The functions, U1, U2, JT , JV , and JS, are defined in
Eqs. (20)–(24), and the dimensionless frequency � is
defined by Eq. (11). The argument of the spherical
Bessel functions and �1;2;3;4 are omitted in the above

equations. Note also that the dimensionless quantity �
depends on not only � but also c .
The examples of the overlap reduction function for each

polarization mode are shown in Fig. 8, where the parame-

FIG. 8 (color online). Overlap reduction functions of the correlation between interferometers in cluster A and B (AB link) in case II.
The orientations of the interferometers are selected as 
A ¼ 
B ¼ 0. The tilt of the orbit is fixed to Dmax=L ¼ 103. Solid (red), dotted
(green), and dashed (blue) curves correspond to the tensor, vector, and scalar modes, respectively.
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ters of the detector configuration are specifically chosen as

A ¼ 
B ¼ 0 and Dmax=L ¼ 103, and the results are
shown for � ¼ 0
 (top left), 60
 (bottom left), 87
 (top
right), and 120
 (bottom right). The distance between
clusters A and B becomes maximum at � ¼ 0
 and
180
, and is minimum at � ¼ 90
 and 270
. Compared
to the four-cluster case, the amplitudes of overlap reduc-
tion functions at f� 0:1 Hz become even larger for each
polarization mode. This implies that the separate detection
of polarized GWBs is achievable with a high SNR.

As examined in the four-cluster configuration, we con-
sider the condition for a separate detection of three polar-
ization modes. For small c � 1, Eqs. (25)–(27) become

�T
1;2

�V
1;2

�S
1;2

0
B@

1
CA ¼ � 45

16

j4
�4j4
6j4

0
@

1
A cos4�;

�T
3

�V
3

�S
3

0
B@

1
CA ¼ 16

j0 þ 5
28 j2 � 37

1792 j4
j0 � 5

56 j2 þ 37
448 j4

j0 � 5
28 j2 � 111

896 j4

0
B@

1
CA;

�T
4

�V
4

�S
4

0
B@

1
CA ¼ 16

ffiffiffi
3

p
c sin�

j0 þ 25
56 j2 � 3

448 j4
j0 � 25

112 j2 þ 3
112 j4

j0 � 25
56 j2 � 9

224 j4

0
B@

1
CA:

Thus, for � � 1, the terms j2 and j4 become negligible,
and the overlap reduction functions for all polarization
modes are reduced to an identical form. Hence, j0 � j2 �
j4 is required for having the different oscillatory behaviors
for overlap reduction function of scalar, vector, and tensor
modes and leads to the same conclusion as that in the case I
configuration, D> �g for each pair of detectors.

3. Results

For the two-cluster configuration, we have, in total, 9
correlation signals between clusters A and B. Combining
these signals, the optimal SNR is computed taking account
of the time variation of the overlap reduction functions. In
practice, the time integral in Eq. (14) is discretized as the
sum of the finite time segment. We checked that the results
remain unchanged if the number of segments in 1 yr is
larger than 12.

In Fig. 9, minimum detectable amplitude h20�gw is

plotted against the maximum separation, Dmax=L, keeping
Tobs ¼ 3 yr, and SNR ¼ 5. The detectable amplitude for
each polarization mode first decreases and begins increas-
ing as the separation Dmax increases. The best sensitivity is
achieved at Dmax=L� 1:4� 103, and the detectable am-
plitude for each polarization mode becomes

h20�
T
gw ¼ 1:3� 10�15; h20�

V
gw ¼ 8:5� 10�16;

�h20�
S
gw ¼ 7:4� 10�16:

Therefore, compared to the four-cluster configuration, the
sensitivity to the separate detection of each polarization

mode is greatly improved. Note, however, that the optimal
sensitivity to GWBs themselves is rather degraded, com-
pared with those when we do not consider the mode
separation. This is because no colocated and coaligned
cluster configuration is available in the present setup.

IV. DISCUSSION

The previous section reveals that a separate detection of
three polarization modes with high signal sensitivity needs
a sophisticated setup for detector configuration, but we
may achieve �gw � 10�15. In this section, we briefly dis-

cuss how the results are changed for a different setup or
situation.
First consider the influence of astrophysical fore-

grounds, which was not taken into account when we esti-
mated the SNR. It is expected that the low-frequency side
of the DECIGO could be dominated by the unresolved
GWs from the white-dwarf binaries. According to the
estimation by Ref. [56], cosmological population of
white-dwarf binaries produces a large GW signal at f &
0:2 Hz, and may act as a confusion noise. Thus, below the
frequency fcut ¼ 0:2 Hz, a definite detection of cosmo-
logical GWBs might not be possible.
Here, in order to examine the significance of this effect,

we introduce the low-frequency cutoff in the frequency
integral of Eq. (13), and estimate the SNR again. Based on
this, the detectable amplitude of GWB is calculated for
four- and two-cluster configurations. In Figs. 10 and 11, the
dependence of the detectable energy density h20�gw on the

cutoff frequency is shown for a four-cluster case with � ¼
60
 and 90
, and two-cluster setup with Dmax=L ¼ 103

and 104, respectively. In both cases, the effect of low-
frequency cutoff becomes significant as fcut increases,
but the results are not drastically changed at fcut &
0:2 Hz. This is rather consistent with the results by

FIG. 9 (color online). Detectable h20�gw (�h20�gw for the
scalar mode) after the mode separation in case II.
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Ref. [38]. Thus, even in the presence of confusion noise,
the detectable h20�gw remains unchanged as long as the

cutoff frequency is below 0.2 Hz. This conclusion may be
rather natural because DECIGO has been designed to
evade the low-frequency confusion noises.

Next consider the alternative design of space interfer-
ometer, i.e., BBO. As we mentioned in Sec. I, BBO plans
to use a transponder type with the arm-length, L ¼ 5�
104 km. This point is rather different from DECIGO, how-
ever, the noise curve and the detector configuration of BBO
are almost the same as those of DECIGO. Thus, we naively
expect that the results obtained in the previous section
basically hold for the case of BBO. A subtle point is that

low-frequency approximation of the detector response
which we adopted throughout the analysis might not be
valid for GWs at frequencies f * 1 Hz. Thus, a correct
treatment without using low-frequency approximation is
necessary for quantitative estimation of detectability.
Nevertheless, the quantitative difference would be cer-
tainly small, and the qualitative point of our results can
be applied to the BBO case, because the noise curve of
BBO coincides with that of DECIGO within 5% of a factor
at frequencies below 1 Hz [31] and the SNR is almost
determined by a signal below 1 Hz.

V. SUMMARY

In this paper, we discuss how well we can separately
detect and measure the extra-polarization modes of a GWB
in addition to the standard tensor-type GWB, i.e., scalar
and vector GWBs, via the space-based interferometers. In
addition to the tensor mode, scalar and vector-type GWBs
may have been produced in the early stage of the Universe
through various mechanisms including inflation, phase
transition and reheating of the Universe, when the general
relativity would not strictly hold. Thus, the detection and
measurement of scalar and vector modes of GWBs is a
direct probe of gravity, and can also yield information
about the physics of the early Universe.
We have presented the formula for the optimal SNR to

separately detect three polarization modes combining mul-
tiple correlation signals. Based on this, we have considered
the two specific configurations for planned space interfer-
ometer, DECIGO, and estimated the ability to detect extra-
polarization modes of GWB. For the four-cluster setup
consisting of the four sets of spacecraft constellations
with coplanar orbits, the detectable minimum amplitudes
of GWB are degraded significantly for each polarization
mode, and the detectable density somehow reaches
h20�gw � 10�14. This is in marked contrast to the standard

analysis that only considers the tensor mode of GWB. To
raise the sensitivity, we then considered the two-cluster
setup, in which the orbits of two sets of spacecraft con-
stellations are slightly misaligned. Thanks to the nonsta-
tionarity of detector configuration, the cross-correlation
measured at different times can be regarded as an indepen-
dent set of signals with different location and separation,
and this helps to improve the detection sensitivity. As a
result, the detectable density is found to be h20�gw � 10�15

for the tensor mode, and even better for scalar and vector
modes.
Currently, no definite theoretical bound on the amplitude

of GWB exists below h20�gw � 10�6, and thus it is rather

difficult to predict how much amount of GWB is expected
for each polarization mode. Nevertheless, constraints from
cosmic microwave background anisotropies imply that the
tensor-type GWB generated during inflation is likely to be
as small as h20�gw � 10�16 at frequency f� 0:1–1 Hz

[25,57–59]. Given that the coupling parameters of scalar

FIG. 10 (color online). Detectable h20�gw (�h20�gw for the
scalar mode) after the mode separation in case I with the cutoff
frequency. The detector separation is selected as � ¼ 60
 (solid
curves) and � ¼ 90
 (dotted curves).

FIG. 11 (color online). Detectable h20�gw (�h20�gw for the
scalar mode) after the mode separation in case II with the cutoff
frequency. The detector separation is selected as Dmax ¼ 103L
(solid curves) and 104L (dotted curves).
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and vector degrees of freedom to a background gravita-
tional field are almost the same as that of the tensor, no
significant amount of GWB is expected for scalar and
vector polarizations. Therefore, with the setup examined
in this paper, it might be hard to separately measure the
three polarization modes of inflationary GWB, although
the detector itself has an ability to detect such a small
GWB.

Nonetheless, this argument is based on an extrapolation
from the extremely low-frequency observation by 16 or-
ders of magnitude, and there may still exist many windows
to generate a large amplitude of inflationary GWB around
frequency f� 0:1–1 Hz. Further, there are several viable
scenarios that can produce a large amplitude of low-
frequency GWB. An example is the GWB produced by
density fluctuation through cosmological phase transition
and/or preheating. In this case, the energy density of scalar
GWBmight exceed that of the tensor mode, because scalar
GW would be easily emitted by the monopole moment of
the density fluctuation. The resultant spectrum of GWB
may have a sharp peak with an amplitude of at most
h20�gw � 10�7 [7,10,11,13,60]. Hence, even with a limited

sensitivity, a search for additional polarization modes of
GWB via space-based interferometer is indispensable for a
cosmological test of gravity, and definitely yields an addi-
tional scientific benefit for probing the physics of the early
Universe.
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APPENDIX A: CORRELATION SIGNAL IN A
CLUSTER

In this Appendix, we show that it is impossible to obtain
a correlation signal sensitive to a GWB in a cluster, even if
three interferometers in a cluster are used.

Let us consider a correlation signal in a cluster of
DECIGO like Fig. 1. We denote three spacecraft as SC1,
SC2, and SC3, three interferometers in the cluster as IFO1,
IFO2, and IFO3. The displacement noise of the optical link
between i-th SC and j-th SC (the light is injected from i-th
SC, reflected at the mirror near j-th SC, and finally returns
to i-th SC) is dij and the shot noise at i-th SC is �i. The

noise components in the signal obtained by each IFO are
written as

s1 ¼ d12 � d13 þ �1; (A1)

s2 ¼ d23 � d21 þ �2; (A2)

s3 ¼ d31 � d32 þ �3: (A3)

The displacement noises, dij, can be considered to be

symmetric with respect to the subscripts, because the
cavity storage time of light, 10L=c 
 0:03 sec , is shorter
than the period of a GW that we are interested in,
�1–10 sec . So, Eqs. (A1)–(A3) can be written as

s1 ¼ d12 � d13 þ �1; (A4)

s2 ¼ d23 � d12 þ �2; (A5)

s3 ¼ d13 � d23 þ �3: (A6)

We linearly combine Eqs. (A4)–(A6) with arbitrary coef-
ficients, and take the ensemble average of the correlation
signal

hðs1 þ c2s2 þ c3s3Þðs1 þ c02s2 þ c03s3Þi
¼ ð1� c2Þð1� c02Þhd212i þ ð1� c3Þð1� c03Þhd213i

þ ðc2 � c3Þðc02 � c03Þhd223i þ ð1þ c2c
0
2 þ c3c

0
3Þh�2i:
(A7)

Here we assumed that hdij�ki ¼ 0, hdijdk‘i ¼ 0 for i � j

and k � ‘, and h�i�ji ¼ 0 for i � j, and wrote h�2i ¼
h�i�ji for i ¼ j. To obtain the correlation signal that is

insensitive to the correlation noise, the coefficients should
be chosen as

ðc2; c3; c02; c03Þ ¼ ðc2;�1� c2; 1; 1Þ;
where c2 is arbitrary. Thus one of the combination signals
in the correlation must be a symmetric combination, s1 þ
s2 þ s3, regardless of another combination signal.
Next, we define

ssym � 1ffiffiffi
3

p ðs1 þ s2 þ s3Þ;

which is known as the symmetrized Sagnac signal [61–63],
and calculate its GW signal. As we will see below, the
correlation signal with ssym is not helpful for the separation

of the multiple polarization modes. Using Eq. (2), we can
find the GW signal of ssym

hsym � 1ffiffiffi
3

p ðh1 þ h2 þ h3Þ

¼ X
p

Z
S2
d�̂

Z 1

�1
df~hpðf; �̂Þe2�iftDsym:epð�̂Þ;

where Dsym at the zeroth order in the low-frequency ap-

proximation is exactly zero since all terms are canceled
due to the symmetry of the combination. To obtain the
leading contribution, one needs to include the response
functions in the detector arms in Eq. (4) [61,62,64–66].
The detector tensor of the combination signal ssym is

Dsymðf; �̂Þ / ifL=c, then the GW response is suppressed

below the frequency, f 
 c=L 
 300 Hz. Consequently,
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at 0.1–1 Hz, the GW response is 300–3000 times worse
than that before taking the signal combination.

APPENDIX B: DERIVATION OF OPTIMAL SNR
FORMULA FOR SEPARATELY DETECTING

SCALAR, VECTOR, AND TENSOR
POLARIZATIONS

Here, we will derive the SNR formula for separately
detecting the three polarization modes by optimally com-
bining an arbitrary number of detector signals (Npair � 3).

When one correlates detector signals in a frequency bin,
the estimated value of the correlation signal, �̂iðfÞ, fluc-
tuates around the true value, �iðfÞ. Assuming the width of
a frequency bin is much larger than the frequency resolu-
tion of the data we obtain, the likelihood function for �̂iðfÞ
is expected to be a Gaussian distribution, owing to the
central limit theorem. Let us denote a set of the estimated
correlation signals of a detector pair in a frequency bin,
f�̂iðfÞ; 1 � i � Npairg, where the subscript i designates a

detector pair (for I-th and J-th detector pair, i ¼ IJ). The
multidimensional likelihood function for the set of the
estimator is written as

L½f�̂iðfÞg� / exp

�
� XNpair

i¼1

f�̂iðfÞ ��iðfÞg2
2N iðfÞ

�
; (B1)

where the covariance noise matrix, N iðfÞ, is defined as,
say, N 12ðfÞ � P1ðfÞP2ðfÞ. Note that we assume that
detector noise is not correlated with other detectors and
that a GW signal is much smaller than the noise, so the
calculation in Eq. (12) is applied here.

On the other hand, from Eq. (8), the GW contribution in
the correlation signal is

�iðfÞ / 
T
i ðfÞ�T

gwðfÞ þ 
V
i ðfÞ�V

gwðfÞ þ 
S
i ðfÞ��S

gwðfÞ;
(B2)

�̂ iðfÞ / 
T
i ðfÞ�̂T

gwðfÞ þ 
V
i ðfÞ�̂V

gwðfÞ þ 
S
i ðfÞ��̂S

gwðfÞ:
(B3)

The hat fixed to �gw represents that it is the estimated

quantity. Substituting Eqs. (B2) and (B3) for Eq. (B1), we
obtain the quadratic with respect to�gw in the argument of

Eq. (B1), from which we can read the proportional relation

of the Fisher matrix

F ðfÞ ¼ a factor�
FTT FTV FTS

FTV FVV FVS

FTS FVS FSS

0
@

1
A;

with

FTTðfÞ ¼
X
i

ð
T
i Þ2

N i

; FVVðfÞ ¼
X
i

ð
V
i Þ2

N i

; (B4)

FSSðfÞ ¼
X
i

ð
S
i Þ2

N i

; FTVðfÞ ¼
X
i


T
i 


V
i

N i

; (B5)

FVSðfÞ ¼
X
i


V
i 


S
i

N i

; FTSðfÞ ¼
X
i


T
i 


S
i

N i

: (B6)

Thus, we find that the SNR in a frequency bin is propor-
tional to some combination of the components of the Fisher
matrix, namely

½SNRTðfÞ�2 / ð�T
gwÞ2

ðF�1Þ11
¼ ð�T

gwÞ2 detF
FVVFSS � F2

VS

; (B7)

½SNRVðfÞ�2 / ð�V
gwÞ2

ðF�1Þ22
¼ ð�V

gwÞ2 detF
FTTFSS � F2

TS

; (B8)

½SNRSðfÞ�2 / ð��S
gwÞ2

ðF�1Þ33
¼ ð�S

gwÞ2 detF
FTTFVV � F2

TV

: (B9)

To determine the frequency-dependent factor of the
proportional relation, we compare those with the SNR
formula for Npair ¼ 3 case with three detectors, which

has been derived in [53]. For Npair ¼ 3, Eqs. (B7)–(B9)

are reduced to

ðSNRMðfÞÞ2 /
�
H2

gðfÞ
H2

nðfÞ
�
M
; M ¼ T; V; S; (B10)

� ðfÞ �

T
12 
V

12 
S
12


T
23 
V

23 
S
23


T
31 
V

31 
S
31

0
B@

1
CA;

�
H2

gðfÞ
H2

nðfÞ
�
T ¼ ð�T

gwÞ2ðdet�Þ2
P1P2ð
V

23

S
31 � 
S

23

V
31Þ2 þ P2P3ð
V

31

S
12 � 
S

31

V
12Þ2 þ P3P1ð
V

12

S
23 � 
S

12

V
23Þ2

;

�
H2

gðfÞ
H2

nðfÞ
�
V ¼ ð�V

gwÞ2ðdet�Þ2
P1P2ð
S

23

T
31 � 
T

23

S
31Þ2 þ P2P3ð
S

31

T
12 � 
T

31

S
12Þ2 þ P3P1ð
S

12

T
23 � 
T

12

S
23Þ2

;

�
H2

gðfÞ
H2

nðfÞ
�
S ¼ ð��S

gwÞ2ðdet�Þ2
P1P2ð
T

23

V
31 � 
V

23

T
31Þ2 þ P2P3ð
T

31

V
12 � 
V

31

T
12Þ2 þ P3P1ð
T

12

V
23 � 
V

12

T
23Þ2

:
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On the other hand, according to [53], the SNR formula in
the Npair ¼ 3 case (a factor coming from nonorthogonal

arms, sin	2 ¼ 3=4, is corrected) is given by

SNR ¼ 9H2
0

40�2

ffiffiffiffiffiffiffiffiffi
Tobs

p �
2
Z 1

0
df

H2
gðfÞ

f6H2
nðfÞ

�
1=2

: (B11)

Comparing Eq. (B10) with Eq. (B11) and compensating
the proportional factor, and then integrating with respect to
frequency, we finally obtain

SNRM ¼ 9H2
0

40�2

ffiffiffiffiffiffiffiffiffi
Tobs

p �
2
Z 1

0
df

ð�M
gwðfÞÞ2 detFðfÞ
f6FMðfÞ

�
1=2

;

(B12)

where we redefined the Fisher matrix, F, as the matrix

F ðfÞ �
FTT FTV FTS

FTV FVV FVS

FTS FVS FSS

0
@

1
A:

The quantity FM is the determinant of the submatrix,
which is constructed by removing the M’s elements from
(new) F.

Although so far we implicitly assume that the overlap
reduction functions are time-independent, the overlap re-
duction functions actually depend on time in the case of a
space-based detector through its orbital motion. It is easy
to extend to a time-dependent overlap reduction function.
In Eq. (B12), the overlap reduction functions are included
through Eqs. (B4)–(B6). As long as a stochastic GWB is
stationary, the summation with respect to i is equivalent to
the integral with respect to time, because the correlation
signals at different times can be regarded as those of the
detector pairs which have different location and orienta-
tion. Therefore, Eqs. (B12) and (B4)–(B6) should be re-
placed with

SNRM ¼ 9H2
0

40�2

�
2
Z 1

0
df

ð�M
gwðfÞÞ2 detFðfÞ
f6FMðfÞ

�
1=2

(B13)

and

FMM0 ðfÞ ¼ X
i

Z Tobs

0
dt


M
i ðt; fÞ
M0

i ðt; fÞ
N iðfÞ ;

where M and M0 denote polarization modes, M, M0 ¼ T,
V, S.
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