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The appearance of a few unevenly spaced bright flashes of light on top of Hawking radiation is the sign

of the amplification effect in black hole horizon fluctuations. Previous studies on this problem suffer from

the lack of considering all emitted photons in the theoretical spectroscopy of these fluctuations. In this

paper, we include all of the physical transition weights and present a consistent intensity formula. This

modifies a black hole radiation pattern.
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I. INTRODUCTION

Since the time of predicting black hole radiation by
Hawking [1], it has been argued this radiation may not
become observable due to its low intensity in stable holes
[2]. Nevertheless, the derivation of this radiation is incom-
plete and relies on a fixed nonperturbing background
whose quantum properties of gravity are not present.

Semiclassical quantization analysis predicts a discrete
area for rotating uncharged holes [3], charged holes [4],
Kerr and extremal Kerr holes [5], and some others [6–9]. A
large class of these studies predict a discrete spectrum of
area of the form A� ffiffiffi

n
p

, which is obviously unevenly
spaced. Loop quantum gravity also supports this discrete-
ness on any surface [10]. Therefore one can expect this
area quantization to change the Hawking radiation picture
due to the fluctuations of the horizon area.

Based on the heuristic proposal of an evenly spaced
quantization of area by Bekenstein in [11], Bekenstein
and Mukhanov worked out the effect of fluctuations of
horizon area in [12–14]. Because the area of a black hole
surface is connected to the black hole mass, the black hole
mass is likely to be quantized as well. The black hole mass
decreases when it radiates; therefore its quantum of mass
decreases by a finite value after one emission, similar to the
way atoms decay. A consequence of this picture is that
radiation is emitted at quantized frequencies, correspond-
ing to the differences between energy levels. Therefore the
version of quantum gravity they applied implies an evenly
spaced discrete emission spectrum for the black hole ra-
diation on top of Hawking radiation [13,14].

Ansari in [10] studied theories with unevenly spaced
quantum of area, such as those with area spectrum A�ffiffiffi
n

p
. The fluctuations of such a horizon results in a continu-

ous spectrum; however, at some discrete frequencies an
avalanche of many copies of a photon is generated by the
hole while other frequencies remain single copied.
Therefore, the intensity is inhomogeneous such that the
amplified modes are radiates in intense lines, similar to a
laser system. As a result, the transitions between equidis-

tant subsets amplify by the hole and prevail in the radiated
spectrum. The overlapping of all transitions produces an
‘‘unevenly spaced’’ spectrum of amplified lines and only a
few of these lines are the brightest ones.
Recently some attempts have been made to search for

these lines in high energy observations [15]. Therefore, it is
crucially important to extract the spectroscopy of the
highly amplified lines. We noticed in the previous studies
on determining this spectroscopy [10,16] only a limited
number of photons have been counted due to ignoring the
transition weight. Here, we introduce this factor and derive
the brightness intensity. Unlike the results presented in
[10], the intensity is completely independent of the
Barbero-Immirzi parameter and scales with the frequency
harmonic number in a power law. As a result, the spectros-
copy profile of a black hole radiation is changed such that
in the interval of !=!o < 3 one can expect to observe a
few unevenly spaced lines with maximum intensity. The
frequency scale !o is shown to depend on the black hole
mass and to be independent of the Barbero-Immirzi
parameter.

II. NEAR HORIZON GEOMETRY

A classical event horizon is a null boundary between two
partitions of space-time by definition. This boundary is not
locally defined, not even in time. To define this boundary,
one needs the information of the entire manifold. Therefore
other than expansions of geodesic congruences used in
general relativity, a suitable local information flow defini-
tion is needed to define a black hole horizon locally. In
canonical quantum gravity, a definition is needed by which
one looks at a place in space and says those photons that
are reaching to us must come from a spatial slice that
intersects a space-time horizon. Such local definitions are
those of apparent, trapping, and dynamical horizons [17].
These space-time horizons are not necessarily null. They

would be so if we have (1) vacuum and (2) the absence of
gravitational radiation. Vacuum can easily be achieved for
spin networks, but we cannot prevent the local gravita-
tional degrees of freedom to be excited in the neighbor-
hood of a space-time horizon. With this gravitational*mhansari@math.uwaterloo.ca
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radiation across the horizon and with positive energy con-
ditions (or vacuum), the horizon will be spacelike rather
than null.

Moreover, the energy conditions in quantum gravity
could not be taken for granted, even for semiclassical
states, as long as violations occur on small length scales.
Thus, quantum space-time horizons can become even time-
like with a two-way information transfer.

In the lack of energy positivity and the presence of
gravitational radiations, the extension of an event horizon
in quantum scales can no longer be considered as being
null. In other words, in the vicinity of a black hole one
cannot restrict the quantum fluctuations of the horizon area

into the null boundary subset of area A� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

(for
positive half-integer j), which scales approximately as an
integer number [17,18].

Instead, one may consider the fluctuations of black hole
horizon into non-null surfaces in the vicinity of a classical
null boundary. Figure 1 represents the null boundary in
black sphere and non-null surfaces as a cover shell in its
vicinity. The geometry of this shell can be connected into
exterior and interior space-time sectors via the outcoming
and ingoing edges, respectively. There are also edges re-
siding on the surface as well. The interior edges intersect
the classical null boundary at Chern-Simons punctures,
which are degenerate wave functions [17].

The quantum area at this surface is determined by the
complete spectrum, obtained in loop quantum gravity as

A� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2juðju þ 1Þ þ 2jdðjd þ 1Þ � jsðjs þ 1Þp

condi-

tioned to jju � jdj � js � ju þ jd, where ju, jd, and js
are half-integers and denote local holonomy states in the
upper, lower, and surface sectors. Using the number theory
one can reformulate this complete spectrum of area in the
form of A� ffiffiffi

n
p

for positive integer n.
In this paper our focus is on the class of theories that

predicts area in the following form in the region infinitesi-
mally near a black hole horizon:

anð�Þ ¼ a0
ffiffiffi
n

p
; (1)

where n is any natural number and we consider ao of the

order of Planck’s area. In Appendix A of [10], it is proven
that a square root can be reformulated by integers as multi-
pliers of square-free numbers � ¼ f1; 2; 3; 5; . . .g [19].
Therefore, we can reformulate (1) into

anð�Þ ¼ a0
ffiffiffi
�

p
n: (2)

By fixing � in Eq. (2) an equidistant subset appears that
is called a ‘‘generation.’’ The parameter � is called the
‘‘generational number.’’ Let us also name the minimum
generational number �min and the corresponding minimal
area amin. Note that the term

ffiffiffi
�

p
is an irrational number and

is unique in a generation. Therefore the summation of any
two quanta an1ð�1Þ and an2ð�2Þ of different generations

(�1 � �2) belongs to none of the generations.

III. DEGENERACY

The quantum states of the surfaces in the vicinity of a
black hole horizon are degenerate states [16]. Large area
patches in a generation can be exactly decomposed into
smaller patches of the same generation. For example, an ¼
na1 ¼ ðn� 2Þa1 þ a2 ¼ � � � . These cells are all com-
pletely distinguishable due to the presence of surface grav-
ity excitations on a surface as discussed in [16]. The
multiplicity of area eigenvalue an is therefore �n ¼ gn þ
gn�1g1 þ � � � þ ðg1Þn. The dominant term in the sum be-
longs to the configuration with the maximum number of
the area cell a1. Therefore the total degeneracy of anð�Þ for
n � 1 is

�nð�Þ ¼ g1ð�Þn: (3)

In the classical limits, the dominant configuration of a
large surface with respect to the Planck scale is the nearest
area level into the horizon area from the generation of the
minimal gap between levels; i.e. A � namin. This dominant
degeneracy is g1ð�minÞn and a kinematic entropy can be
associated with it proportional to the area:

S ¼ Aðlng1ð�minÞ=aminÞ: (4)

Depending on the type of time evolution of the surface,
this entropy may vanish, decrease, increase, or remain
unchanged in the course of time. In other words, a classical
surface characterized by its area at each time slice pos-
sesses a finite entropylike parameter. Space-time horizons
as a class of physical surfaces possess a nondecreasing
entropy. In other words, their kinematical entropy in the
course of time, due to the second black hole thermody-
namics law, is physical entropy. We will show in the next
section such a horizon carries an entropy whose nature is
the total degeneracy of vacuum fluctuation modes respon-
sible for the thermal radiation of black hole. However, for
the aim of this note on the study of kinematics of fluctua-
tions we disregard here the issues of defining the
Hamiltonian of a quantum horizon based on spin foam,
which is still an open problem.

FIG. 1 (color online). A quantum black hole horizon in the
vicinity of a null boundary (the black sphere).
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IV. FLUCTUATIONS OFA HORIZON

Black holes are physical systems with nondecreasing
entropies. Jacobson et al. in [20] associates this entropy
of a black hole with the region where the interior and
exterior space-time sectors meet on the horizon; therefore
we assume this entropy changes only minimally in the
region infinitesimally near the hole. We assume during
the latest steps of a surface falling into a horizon, after
all gravitational perturbations are radiated away, the sur-
face radiates energies that only depend on the event hori-

zon area A ¼ 16�G2

c4
M2. Using (2) the energy fluctuations

become �M ¼ MPl

8M

ffiffiffi
�

p
�n.

This energy in the quantum picture is generated from the
change of surface area and passing this geometrical energy
into a correlated photon with this geometry. The transitions
between area levels are classified into two classes: either
(1) the generational transitions: those with initial and final
levels at the same generation, or (2) the intergenerational
transitions: those with initial and final levels belonging in
different generations. The former case generates harmonic
modes whose fundamental frequency is the minimal fre-
quency of that generation. The intergenerational transitions
produce inharmonic modes. The ‘‘fundamental frequency’’
of the harmonic frequencies is the jump between two
consecutive levels with frequency $ð�Þ ¼ ð ffiffiffi

�
p Þ!o, where

!o :¼ c3

8GM is the so-called ‘‘frequency scale.’’

Let us estimate the range of these frequencies. In a micro
black hole of mass 10�18M� the event horizon area is
about 10�29ðm2Þ and the temperature is of order 1011 K.
The frequency scale is thus of the order of�10 keV. Such
a typical hole has a horizon 40 orders of magnitude larger
than the Planck length area. Therefore from each harmonic
mode there are numerous copies emitted from different
levels. Such modes are extremely amplified by the hole. On
the other hand, since two levels of different generations
have a unique difference, there exists only one copy from
each inharmonic mode in all possible transitions.

The difference between harmonic and inharmonic
modes in their particle production populations make the
harmonic modes to become heavily intensified by the hole,
the so-called quantum amplification effect (QAE). In other
words, a black hole condensates its particle production
mostly on harmonic modes. One important consequence
of QAE is that the density matrix elements of inharmonic
modes can be regarded negligible at population. Therefore
we can propose the generational transitions matrix ele-
ments to be uniform.

A. Transition weight

In a transition down the level of a generation, there are
two weight factors: (1) the transition and (2) the population
weights. Let us introduce them. Assume a hole of large
area A. When the hole jumps f steps down the ladder of
levels in the generation � , it emits a quanta of the frequency

f$ð�Þ. This radiance energy could also be emitted in the

dominant configuration by radiating f a1ð�Þ
amin

quanta of the

fundamental frequency $ð�minÞ. These two transitions,
although they are of the same frequency, appear with
different possibilities. The degeneracy ratio of these two

is �ðf$ð�ÞÞ=�ðf a1ð�Þ
amin

$ð�minÞÞ that gives rise to the defi-

nition of transition weight:

�ð�; fÞ ¼ g1ð�Þfg1ð�minÞ�fa1ð�Þ=amin : (5)

B. Population weight

The second weight is the population one that comes
from a different root. Because of QAE, from each har-
monic frequency there produced many copies in different
levels on the generation. This weight is, in fact, the number
of possible quanta emitting from different levels with the
same frequency. It is easy to verify this number is N$ð�Þ �
fþ 1 where N$ð�Þ is the number of copies from the

fundamental frequency, and for near level modes (f �
N$ð�Þ) it is A

a1ð�Þ . We absorb constants in normalization

factors and the population weight near levels becomes

�ð�Þ :¼ 1=
ffiffiffi
�

p
: (6)

Finally notice that within one generation when a space-
time hole jumps f steps down the ladder of levels, the
degeneracy decreases by a factor of g1ð�Þf.

C. Fluctuations

Having defined the relevant transitions for the case of an
nonequidistant area spectrum, we use the same strategy
used originally in [12] to determine the relative intensities.
The probability of an !fð�Þ emission from the area spec-

trum (2) is

C�1�ð�Þg1ð�minÞ�f
ffiffiffiffiffiffiffiffiffiffi
�=�min

p
;

where C is the normalization factor [21]. Let us denote this
probability by Pð!fð�Þj1Þ as a conditional probability.

This keeps in mind the necessary information that should
be taken care of when later on a sequence of emissions are
considered.
At the moment when the black hole mass is Mi it may

proceed to decay to a state of lower mass Miþ1 and emits
photons of energy Mi �Miþ1. This process that is stimu-
lated by zero-point fluctuations of the vacuum energy can
be repeated in timely sequential order. Gerlach proposed
this order originally for an incipient black hole in [22].
Consider successive emissions. The probability of a string
of sequential emissions is provided by multiplying the
probability of each emission in the time-ordered manner.
First, note the conditional probability of j emissions isQj
i¼1 Pð!fið�iÞj1Þ. The probability of the sequences to

include k emissions out of j to be of the frequency
!f	 ð�	Þ (in no matter what order) while the rest of the
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accompanying emissions are of any value except this fre-
quency is

Pðk;!f	 ð�	Þ; f!f1ð�1Þ; . . .gjjÞ ¼ ðjkÞ½Pð!f	 ð�	Þj1Þ
k

� Yj�k

i¼1;���	
Pð!fið�iÞj1Þ:

The accompanying modes are allowed to accept any
frequency except !f	 ð�	Þ, and therefore the probabilities

of any accompanying frequency should sum. From the
definition of C, it is easy to find out in each sum over
accompanying modes instead of

P
!�!	Pð!fið�iÞj1Þ we

can replace C� Pð!f	 ð�	Þj1Þ that simplifies the probabil-

ity to become

Pðk;!f	 ð�	ÞjjÞ ¼ ðkjÞ½Pð!f	 ð�	Þj1Þ
k
� ½C� Pð!f	 ð�	Þj1Þ
j�k: (7)

Second, we need to determine what is the probability of
a time-ordered sequence. The probabilities of zero and one
jump (of no matter what frequency) in the time interval �t
are P�tð0Þ and P�tð1Þ, respectively. In the time interval
2�t, the probabilities of zero, one, and two jumps are
P�tð0Þ2, 2P�tð0ÞP�tð1Þ, and 2P�tð0ÞP�tð2Þ þ P�tð1Þ2, re-
spectively. By induction this is found for a higher number
of jumps in an interval and for a longer time. A general
solution for the equations of the probability of j time-
ordered decays in an interval of time �t is P�tðjÞ ¼ 1

j!�
ð�t� Þj expð�t� Þ. Multiplying this probability with

Pðk;!f	 ð�	ÞjjÞ and then summing over all sequence di-

mensions j � k, it is easy to manipulate the total proba-
bility of k emissions with frequency !f	 ð�	Þ to be

P�tðk;!f	 ð�	ÞÞ ¼ 1

k!
ðx	fÞk expð�x	fÞ;

where x	f ¼ �t
C� �ð�	Þg1ð�minÞ�f

ffiffiffiffiffiffiffiffiffiffi
�=�min

p
. This indicates the

distribution of the number of quanta emitted in harmonic
modes is Poisson-like. By definition, the intensity of
a mode is the total energy emitted in that frequency
per unit time and area. The average number of emissive
quanta at a typical harmonic frequency is �k ¼P1

k¼1 kP�tðkj!fð�ÞÞ. Calculating this summation gives

rise to the intensity

Ið!fð�ÞÞ
Io

¼ fg1ð�minÞ�f
ffiffiffiffiffiffiffiffiffiffi
�=�min

p
: (8)

Comparing Eq. (8) with the intensity result in Ref. [16],
one can see some major differences. First, the intensity is
independent of the Barbero-Immirzi parameter, while the
intensity in Ref. [16] due to the lack of the transition
weight analysis gave rise to a formula that strictly depends
on this parameter. Second, the intensity scales as a power
law with the harmonic number. Third, the intensity sup-
presses as a power lawwith

ffiffiffi
�

p
, which provides a very high

suppression of high generations and harmonics.

These lines will not blend because they are exactly
similar to the discussion in [12] for the case of equidistant
spectrum and have been worked out in detail in [10].
Because of the uncertainty principle �E�t� @, one can
substitute the variation of time sequence between emis-
sions into the time uncertainty and provide the frequency
width, which is found to be of the order of a thousandth of
the frequency scale !o. This shows that the spectrum lines
are indeed very narrow and the various black hole lines of
one generation are unlikely to overlap.
The intensity of all harmonic frequencies in the range of

frequencies up to 10!o is plotted in Fig. 2. Each generation
is denoted in a color. The dashed lines indicate the enve-
lope’s function of radiation intensity at each generation. In
this plot, one can see the first generation amplifies some
harmonic frequencies whose first few frequencies have the
highest intensity. The higher generations appear in har-
monic lines within the lower envelopes. In an ‘‘observa-
tional’’ spectroscopy of a black hole radiation, one can see
the first few harmonics of the first few generations. The
inset of Fig. 2 presents the intensity envelope of the first
few generations in the log scale. The first generation is the
topmost curve and the second generation is the one below
that. In the inset, as the plots from top to bottom denote
generations from the smallest gap between levels to higher
gaps, respectively.
As a consistency check let us briefly study the consis-

tency of this derivation we offered in Eq. (8) with the
Bekenstein black hole entropy. The distribution of the
number of quanta emitted from a blackbody radiation.
The probability of one emission of frequency !	 is

Boltzmann-like; �!	 ¼ B expð� @!	
kT Þ where B is normal-

ization factor B ¼ P
!�!.

FIG. 2 (color online). The spectrum of highly amplified modes
in the range of frequencies up to 10!o. The intensity envelopes
are in dashed lines. The inset indicates the intensity in log scales.
The generations with smaller gaps appear with higher amplified
intensities.
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Successive emissions occur independently, and there-
fore the probability of a j-dimensional sequence with p
emissions of the frequency !	 is

Pðp;!f	 ð�	ÞjjÞ ¼ ðjpÞð�!	 Þk Y
j�p

i

X

!i�!	
�!i

: (9)

The last summation term can be replaced from the
normalization relation by B� �!	 . This probability deter-
mines the entropy of the sequence of radiation: P�
expð�SÞ, where S is the photon emission entropy.

A black hole is hot and the thermal character of the
radiation is entirely due to the degeneracy of the levels, the
same degeneracy (3) that becomes manifest as black hole
entropy. Therefore its radiation is characterized by
Planck’s blackbody radiation with a temperature
that matches the black hole temperature (after the appro-
priate adjustment of the Barbero-Immirzi parameter). This

allows one to replace expð� @!	
kT Þ in the definition of �!	

in Eq. (9) with its geometrical analogous probability

g1ð�minÞ�f	
ffiffiffiffiffiffiffiffiffiffiffiffi
�	=�min

p
. One can explicitly find out this is the

probability of a j-dimensional sequence with p emissions
of the frequency !	 in black holes as a power law function
of the harmonic mode numbers P� g1ð�minÞA. This gives
rise to a physical black hole entropy equivalent to Eq. (4)
that provides the self-consistency of our method. It is
important to emphasize this analogy does not hold per-
fectly if one does not consider both the population and the
transition weights in the derivation.

V. CONCLUSION

A large class of semiclassical analysis and quantum
gravity theories predict an unevenly spaced discrete spec-

trum of area for a black hole horizon area. In the case this
spectrum of area contains a collection of unbounded evenly
spaced subsets, similar to the case where A� ffiffiffi

n
p

, recent
studies predict a large amplification of a few frequencies
due to the horizon fluctuations.
In this paper we studied the quantum amplification effect

by counting all emitted photons, which has been unnoticed
in previous studies. We derived the intensity scales with the
harmonic quantum numbers as a power law, and unlike
previous studies it is independent of the Barbero-Immirzi
parameter.
A black hole amplifies the quanta of its horizon area

such that a few of them become ‘‘observable’’ in the
macroscopic scales. The exact spectrum of these lights
reveals the underlying quantum gravity signature on the
quantization of area. The highly amplified flashes of light
are only a few in number about the range of frequencies
!=!o < 3 in an unevenly spaced fashion. In a typical
black hole of mass 10�18 solar mass the frequency scale
!o is in the range of 10 keV. These modes are even brighter
in larger holes, although their frequencies become smaller.
The different nature of this radiation from the formal

Hawking radiation and the amplification effect on a few
frequencies by the hole makes it possible to search for this
unevenly spaced spectrum in observations.
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