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Petrov type D gravitational fields, generated by a perfect fluid with spatially homogeneous energy

density and with flow lines which form a nonshearing and nonrotating timelike congruence, are

reexamined. It turns out that the anisotropic such spacetimes, which comprise the vacuum C metric as

a limit case, can have nonzero expansion, contrary to the conclusion in the original investigation by Barnes

[A. Barnes, Gen. Relativ. Gravit. 4, 105 (1973).]. Apart from the static members, this class consists of

cosmological models with precisely one symmetry. The general line element is constructed and some

important properties are discussed. It is also shown that purely electric Petrov type D vacuum spacetimes

admit shear-free normal timelike congruences everywhere, even in the nonstatic regions. This result

incited to deduce intrinsic, easily testable criteria regarding shear-free normality and staticity of Petrov

type D spacetimes in general, which are added in an appendix.
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I. INTRODUCTION

The C metric is a well-known exact solution of
Einstein’s vacuum equation with zero cosmological con-
stant. The static region of the corresponding spacetime was
first described by Weyl [1]. At about the same time Levi-
Civita [2] constructed its line element in closed form,
arriving at essentially one cubic polynomial with two
parameters as the metric structure function. The C metric
is a Petrov type D solution for which at each spacetime
point both Weyl principal null directions (PNDs) are geo-
desic, nonshearing, nontwisting but diverging; it thus be-
longs to the Robinson-Trautman class of solutions and was
rediscovered as such [3]. The label C derives from the
invariant classification of static degenerate Petrov type D
vacuum spacetimes by Ehlers and Kundt [4]. The impor-
tance of this solution as summarized by Kinnersley and
Walker [5] is threefold. First, the C metric describes a
spacetime with only two independent Killing vector fields
(KVFs) which can be fully analyzed. Next, it is an ‘‘ex-
ample of almost everything,’’ most notably it describes a
radiative, locally asymptotically flat spacetime, while con-
taining a static region. The C metric is contained in the
class of boost-rotation-symmetric spacetimes [6,7], which
are the only axially symmetric, radiative and asymptoti-
cally flat spacetimes with two Killing vectors. Finally, the
solution has a clear physical interpretation as the aniso-
tropic gravitational field of two Schwarzschild black holes
being uniformly accelerated in opposite directions by a

cosmic string or strut, provided that m�< 1=
ffiffiffiffiffiffi
27

p
, where

the mass m and acceleration � are equivalents of the two
essential parameters of Levi-Civita [5,8] (see, however, the
end of Sec. II C for a comment).

Generalizations of the C metric have been widely con-
sidered. Adding a cosmological constant � is straightfor-
ward, and wewill henceforth refer with ‘‘Cmetric’’ to such
Einstein spaces. Incorporating electromagnetic charge
jqj2 � e2 þ g2 is equally natural and leads to quartic
structure functions [5]. Recently, the question of how to
include rotation for the holes received a new answer [9,10],
avoiding the closed timelike curves appearing in the pre-
viously considered ‘‘spinning’’ C metric [11,12], just as in
the Newman-Unti-Tamburino (NUT) solutions [13]. All
these generalizations fit in the well-established class D
of Petrov type D Einstein-Maxwell solutions with a non-
null electromagnetic field possessing geodesic and non-
shearing null directions aligned with the PNDs [14,15],
which reduces for zero electromagnetic field to the sub-
class D0 of Petrov type D Einstein spaces and which
contains all well-known 4D black hole metrics. In fact,
all D metrics can be derived by performing ‘‘limiting
contractions’’ [16] from the most general member, the
Plebański-Demiański line element [17], which exhibits
two quartic structure functions with six essential parame-
ters m, �, jqj2, �, NUT parameter l, and angular momen-
tum a. A physically comprehensive and simplified
treatment can be found in [18,19], also surveying recent
work in this direction.
In this paper we present a new family of Petrov type D,

expanding and anisotropic perfect fluid (PF) generaliza-
tions of the C metric. The direct motivation and back-
ground for this work is the following.
According to the Goldberg-Sachs theorem [20] the two

PNDs of any member of D0 are precisely those null
directions which are geodesic and nonshearing. Such a
member is purely electric (PE, cf. Appendix B) precisely
when both PNDs, as well as the complex null directions
orthogonal to them, are nontwisting [nonrotating or hyper-
surface orthogonal (HO)]. This is, in particular, the case for
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theCmetric. As wewill show, it implies the existence of an
umbilical synchronization (US), i.e., a nonshearing and
nonrotating unit timelike vector field (tangent to a congru-
ence of observers). The importance of USs in cosmology
was stressed in [21]. If a congruence of observers measur-
ing isotropic radiation admits orthogonal hypersurfaces, an
US exists. Only small deviations from isotropy are seen in
the cosmic microwave background, and scalar perturba-
tions of a Friedmann-Lemaı̂tre-Robertson-Walker universe
preserve the existence of an US [22]. In general, space-
times admitting an US have zero magnetic part of the Weyl
tensor with respect to it [23] and thus are either of Petrov
type O, or PE and of type D or I [16]. Conformally flat
spacetimes always admit USs [see e.g. (6.15) in [16]].
Trümper showed that algebraically general vacua with an
US are static [24]. Motivated by this result and by his own
work [25] on static PFs, Barnes [26] studied PF spacetimes
with an US tangent to their flow lines. He was able to
generalize Trümper’s result to Petrov type I such PFs and
recovered Stephani’s results on conformally flat PF solu-
tions which are either of a generalized Schwarzschild type
or of a generalized Friedmann type (so-called Stephani
universes) [27]. The type D solutions were integrated and
invariantly partitioned, based on the direction of the gra-
dient of the energy density relative to the PNDs and the
flow vector at each point. Class I, characterized by the
energy density being constant on the hypersurfaces or-
thogonal to the flow lines and thus the only class containing
Einstein spaces as limit cases, was further subdivided using
the gradient of�2 (cf. Sec. II B for details). By solving the
field equations, Barnes concludes that class ID, consisting
of the anisotropic class I models, solely contains nonex-
panding solutions. Hence, these PF solutions would not be
viable as a cosmological model. However, based on an
integrability analysis of class I in the Geroch-Held-Penrose
(GHP) formalism [28], we found that this conclusion can-
not be valid and this led to a detailed reinvestigation.

In this article we construct the general line element of
the full ID class, comprising both the known nonexpanding
perfect fluid models and the new expanding ones, and
discuss some elementary properties. We want to stress
the following point. The full class represents a PF general-
ization of the C metric in the sense that the C metric is
contained as the Einstein space limit. The physical inter-
pretation of this fact is however not established. This
would require one to exhibit this solution for small masses
as a perturbation of a known PF solution, just as the
C-metric interpretation of small accelerating black holes
has been established in a flat or (anti–)de Sitter background
[5,29–32].

However, the mathematical relation with the C metric is
useful. As already deduced in [26], the PF solution is, just
as the C metric, conformally related to the direct sum of
two 2D metrics. The fact that one part is equal for the PF
solution and the C metric is helpful in the analysis, e.g. we

will show that (a part of) the axis of symmetry can readily
be identified as a conical singularity, analogous to the
defect of the cosmic string present in the C metric. The
nonstatic spacetimes presented are exact PF solutions with
only this symmetry, and the analysis appears to be within
reach. For the expanding ID PF models both the matter
density wðtÞ and the expansion scalar �ðtÞ can be arbitrary
functions. This freedom is displayed explicitly in the met-
ric form, and makes the solutions more attractive as a
cosmological model.
The paper is organized as follows. In Sec. II we present

the GHP approach to class I. We derive a closed set of
equations, construct suitable scalar invariants, interpret the
invariant subclassification of [26], and start the integration.
At the end we provide alternative characterizations for the
Einstein space members and identify their static regions
and USs. In Sec. III we finish the construction of the
general ID line element in a transparent way, and correct
the calculative error of [26] in the original approach. Then
we deduce basic properties of the ID perfect fluid models.
In Sec. IV we summarize the main results and indicate
points of further research. The work greatly benefited from
the use of the GHP formalism, which at the same time
elucidates the deviation from the C metric. In Appendix A
we provide a pragmatic survey of this formalism for the
nonexpert reader. In Appendix B, finally, we present crite-
ria for deciding when a Petrov type D spacetime admits a
(rigid) US or is static.
Notation.—For spacetimes ðM;gabÞ we take

(þþþ�) as the metric signature and use geometrized
units 8�G ¼ c ¼ 1, where G is the gravitational coupling
constant and c the speed of light. � denotes the cosmo-
logical constant. We make consistent use of the abstract
Latin index notation for tensor fields, as advocated in [33].
Round (square) brackets denote (anti-)symmetrization,
�abcd is the spacetime alternating pseudotensor, and
rcTab��� (LXTab���) designates the Levi-Civita covariant
derivative (Lie derivative with respect to Xa) of the tensor
field Tab���. One has

daf ¼ raf; dbYa ¼ r½bYa�

for the exterior derivative of a scalar field f, respectively,
one-form field Ya, and

X ðfÞ � Xadaf

denotes the Leibniz action of a vector field Xa on f; when
Xa is the xi-coordinate vector field @

xi
a we write @xif or

f;xi , and a prime denotes ordinary derivation for functions

of one variable, f0ðxÞ � @xfðxÞ. However, we use index-
free notation in line elements ds2 ¼ gijdx

idxj. The spe-

cific GHP notation is introduced in Appendix A.
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II. GHP APPROACH TO CLASS I

A. Definition and integrability

We consider Barnes’s class I [26], consisting of space-
times ðM;gabÞ with the following properties:

(i) The spacetime admits a unit timelike vector field ua

(uaua ¼ �1) which is nonshearing and nonrotating,
i.e., its covariant derivative is of the form

rbua ¼ �hab � _uaub; hab � gab þ uaub; (1)

where the acceleration _ua ¼ ubrbu
a and expansion

rate � ¼ rau
a are the remaining kinematic quanti-

ties of ua.
(ii) The Einstein tensor has the structure

Gab ¼ Suaub þ pgab ¼ wuaub þ phab; (2)

Daw � ha
brbw ¼ 0; (3)

i.e., the spacetime represents the gravitational field
of either a perfect fluid with shear-free normal four-
velocity ua, pressure pþ�, and spatially homoge-
neous energy density w�� (case S � wþ p � 0)
or a vacuum (Einstein space case S ¼ 0, where w ¼
�p may be identified with �).

(iii) The Weyl tensor Cabcd is degenerate but nonzero,
i.e., the spacetime is algebraically special but not
conformally flat.

Choose null vector fields ka and la, subject to the normal-
ization condition kala ¼ �1, such that

ua ¼ 1ffiffiffiffiffiffi
2q

p ðqka þ laÞ; q > 0: (4)

Within the GHP formalism (cf. Appendix A) based on the
complex null tetrad ðka; la; ma; �maÞ, q is ð�2;�2Þ
weighted and conditions (i) and (ii) translate into

�þ �� ¼ q ��þ q�1�; � ¼ q �	;


� �
 ¼ qð ��� �Þ; (5)

Þ0q� qÞq ¼ �2qð
� q ��Þ; ðq ¼ ð0q ¼ 0 (6)

and

�01 ¼ �12 ¼ �02 ¼ 0; (7)

�11 ¼ S

8
; �00 ¼ S

4q
; �22 ¼ qS

4
; (8)

R � 24� ¼ w� 3p ¼ 4w� 3S; (9)

ðw ¼ ð0w ¼ 0; Þ0w� qÞw ¼ 0; (10)

respectively. By virtue of condition (i) the magnetic part
Hab � 1

2�acmnC
mn

bdu
cud of the Weyl tensor with respect

to ua vanishes [23]. In combination with condition (iii) it

follows that the Weyl tensor is purely electric with respect
to ua, Eab � Cacbdu

cud � 0, the Weyl-Petrov type is D,
and at each point ua lies in the plane � spanned by the
Weyl PNDs (cf. Appendix B for a GHP proof of these well-
known facts). Hence, choosing ka and la along the PNDs,
ðka; la; ma; �maÞ is a Weyl principal null tetrad (WPNT) and
we have

�0 ¼ �1 ¼ �3 ¼ �4 ¼ 0; (11)

�� ¼ � � 0; � � 2�2: (12)

Under the restrictions (7) and (11), the GHP Bianchi
equations are given by (A31)–(A36) and their prime duals.
Combining these with the other equations in (5)–(12)
results in

� ¼ 0; � ¼ 0; 	 ¼ � ¼ 0; (13)

�� ¼ �; �
 ¼ 
; � ¼ � ��; (14)

Þ� ¼ 3��; Þ0� ¼ �3
�; (15)

ð� ¼ 3��; ð0� ¼ �3��; (16)

Þ0S� qÞS ¼ SðÞq�
þ q�Þ; (17)

ðS ¼ �S; ð0S ¼ ��S; (18)

Þ0w ¼ qÞw ¼ � 3Sð
� q�Þ
2

: (19)

With (7)–(9) and (11)–(14) the Ricci equations, given by
(A25)–(A30) and their prime duals, reduce to

Þ
 ¼ �Þ0� (20)

¼ �ð0�þ
 ��þ � ��þ�

2
þ w

3
� S

4
; (21)

Þ0
 ¼ �
2 � qS

4
; ð
 ¼ ð0
 ¼ 0; (22)

Þ� ¼ �2 þ S

4q
; ð� ¼ ð0� ¼ 0; (23)

Þ� ¼ Þ0� ¼ 0; ð� ¼ �2; (24)

� ð� ¼ ð0� ¼ ð �� � H

2
(25)

and the complex conjugates of (24), while the commutator
relations applied to a ðwp;wqÞ-weighted scalar � become

½Þ; Þ0�� ¼ ðwp þ wqÞ
�
� ����

2
þ w

6
� S

4

�
�; (26)

½ð; ð0�� ¼ ðwp � wqÞ
�
�
�þ�

2
� w

6

�
�; (27)

½Þ; ð�� ¼ ð��Þþ �ðþ wq��Þ�; (28)
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½Þ; ð0�� ¼ ð� ��Þþ �ð0 þ wp� ��Þ�; (29)

½Þ0; ð�� ¼ ð��Þ0 �
ðþ wp
�Þ�; (30)

½Þ0; ð0�� ¼ ð� ��Þ0 �
ð0 þ wq
 ��Þ�: (31)

Then the ½ð; ð0�ð�Þ, ½ð; ð0�ð ��Þ, ½Þ; ð0�ð�Þ, and ½Þ0; ð0�ð�Þ com-
mutator relations imply

ðH ¼ 2�ðH þ��GÞ; ð0H ¼ 2 ��ðH þ��GÞ;
ÞH ¼ �ðH þ FÞ; Þ0H ¼ �
ðH þ FÞ; (32)

where

F � 2� ��; G � 2
�þ w

3
: (33)

One checks that the integrability conditions for the system
(6)–(33) of partial differential equations (PDEs) are iden-
tically satisfied, indicating that corresponding solutions
exist. Those for which ua is nonexpanding additionally
satisfy

��
� q �� ¼ 0 (34)

[cf. (96) and (100)]. However, (34) does not follow as a
consequence of the ansätze; this implies the existence of
expanding anisotropic perfect fluid models in class I
(Sec. III). Also, the scalar invariant 
� may be strictly
negative, which is incompatible with (34); as a conse-
quence, the class I Einstein spaces are not necessarily static
(Sec. II C).

B. Metric structure and subclassification

The first, second, and last parts of (13) and (14) precisely
account for the hypersurface orthogonality of ka, la, and
ma $ �ma, respectively. Thus real scalar fields u, v, (zero
weighted) and U, V [ð�1;�1Þ, respectively, (1, 1)
weighted], and complex scalar fields � (zero weighted)
and Z [ð1;�1Þ weighted] exist such that

dau ¼ �1=3

U
ka; dav ¼ �1=3

V
la; da� ¼ �1=3

Z
ma:

(35)

By (A16) this is equivalent to

Þ0u ¼ ��1=3=U; Þu ¼ ðu ¼ ð0u ¼ 0; (36)

Þv ¼ ��1=3=V; Þ0v ¼ ðv ¼ ð0v ¼ 0; (37)

ð0� ¼ �1=3=Z; Þ� ¼ Þ0� ¼ ð� ¼ 0; (38)

ð �� ¼ �1=3= �Z; Þ �� ¼ Þ0 �� ¼ ð0 �� ¼ 0: (39)

The commutator relations (28)–(31) applied to u, v, � , and
�� then yield

ðU ¼ ð0U ¼ ðV ¼ ð0V ¼ 0; (40)

ÞZ ¼ Þ0Z ¼ Þ �Z ¼ Þ0 �Z ¼ 0: (41)

Hence, when we take these fields as coordinates, (35)–(41)
imply that the zero-weighted fields UV and Z �Z only de-
pend on ðu; vÞ, respectively, ð�; ��Þ, such that all class I
metrics are conformally related to direct sums of metrics
on two-spaces:

gab ¼ ��2=3ðg?ab � g�abÞ; (42)

g?ab � 2�2=3mða �mbÞ ¼ 2Z �Zð�; ��Þdða�dbÞ ��; (43)

g�ab � �2�2=3kðalbÞ ¼ �2UVðu; vÞdðaudbÞv: (44)

The line elements of g?ab and g�ab will be denoted by ds2?,
respectively, ds2�.

In the case where such a two-space is not of constant
curvature, however, we will construct more suitable coor-
dinates in the sequel. Inspired by the GHPmanipulations of
[34] for type D vacua [35], we start this construction by
deducing suitable combinations of the scalar invariants F,
G, H, and �. From (A16), (10), and (15)–(33), it is found
that

daF ¼ 3�1=3’�a; daG ¼ 3�1=3�a; (45)

da’ ¼ 2�1=3x�a; da ¼ 2�1=3y�a; (46)

dax ¼ �1=3�a; day ¼ �1=3�a; (47)

where

�a � ��ma þ � �ma; �a � 
ka � �la (48)

are invariantly defined one-forms and

’ � Hþ F

3�1=3
;  � �H þ�þ Fþ 2G

3�1=3
; (49)

x � H þ��G

3�2=3
; y � �H þ 2�þG

3�2=3
: (50)

Consequently, the scalar invariants,

C � 3ð’� x2Þ ¼ 3ð� y2Þ; (51)

D � �x3 � Cxþ F ¼ y3 þ Cy�G; (52)

are constant (daC ¼ daD ¼ 0). From (50) and (52) it
follows that F, G, H, and � are biunivocally related to x,
y, C, and D, where

2� �� � F ¼ x3 þ CxþD; (53)

2
� � G� w

3
¼ y3 þ Cy�D� w

3
; (54)

2ð0� � H ¼ 2x3 þ 3x2yþ Cy�D; (55)
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� ¼ ðxþ yÞ3 � 0: (56)

Barnes [26] partitioned class I according to the position
of the gradient ra� relative to � and �?. This relates to
the vanishing of the invariants � �� ¼ ��� or 
�, maximal

symmetry of g?ab or g�ab, and spatial rotation or boost

isotropy of gab, as follows.
First assume � ¼ 0. In this case (25) and the first parts of

(33) and (49)–(52) imply

H ¼ F ¼ ’ ¼ 0; ��G ¼ 3x�2=3;

C ¼ �3x2; D ¼ 2x3;
(57)

such that x is constant. In combination with the last part of
(14) and (16) and the first parts of (47) and (48) one gets

� �� ¼ 0 , � ¼ � ¼ 0 , x ¼ const , ra� 2 �: (58)

The ½ð; ð0� commutator relation applied to � , �� , and Z

imply ðZ ¼ ð0 �Z ¼ 0 and ðð0Z ¼ 3x�2=3Z. Herewith the
Gaussian curvature of the two-space with metric g?ab be-

comes

K? ¼ �ðZ �ZÞ�1ðlnðZ �ZÞÞ;� �� ¼ ���2=3ðð0ðlnZ �ZÞ

¼ ���2=3ð

�
ð0Z
Z

�
¼ �3x; (59)

where the dual of (35) was used in the calculation. In
conjunction with the results of Goode and Wainwright
[36], we conclude that (58) yields the class I solutions
which are locally rotationally symmetric (LRS) of
label II in the Stewart-Ellis classification [37], character-
ized by g?ab having constant curvature K? ¼ �3x. As is

well known (see e.g. the appendix of [38]) the coordinates
� and �� may then be adapted such that Z �Zð�; ��Þ ¼ ð1þ
K?� ��=2Þ�1 in (43), or an alternative form may be taken:

ds2? ¼ 2d�d ��

1þ K?
2 � ��

¼ Y2
?ðdx21 þ cosð ffiffiffiffiffiffi

k?
p

x1Þ2dx22Þ;

K? ¼ k?Y�2
? ; k? 2 f�1; 0; 1g:

(60)

Now assume 
� ¼ 0. It follows from (20)–(23), (33),
and (55) and the second parts of (49)–(52) that

S ¼  ¼ 0; G ¼ w

3
� �

3
;

�Hþ 2�þ�

3
¼ 3y�2=3; C ¼ �3y2;

D ¼ �2y3 ��

3
;

(61)

such that y is constant. In combination with (15) and the
second parts of (47) and (48) this implies


� ¼ 0 , 
 ¼ � ¼ 0 , y ¼ const , ra� 2 �?:
(62)

By a similar reasoning as in the case of � ¼ 0 one con-

cludes that (62) yields the locally boost-isotropic Einstein

spaces of Petrov type D, characterized by g�ab having

constant curvature

K� ¼ �3y; (63)

such that in this case one may take UVðu; vÞ ¼
ð1� K�uv=2Þ�1 in (44) and we have

ds2� ¼ � 2dudv

1� K�

2 uv
¼ Y2

�ðdx23 � cosð ffiffiffiffiffiffi
k�

p
x3Þ2dx24Þ;

K� ¼ k�Y
�2
� ; k� 2 f�1; 0; 1g:

(64)

With (42) and ds2� written in the second form, it is clear

that

@x4
a ¼ ���2=3Y2

� cosð ffiffiffiffiffiffi
k�

p
x3Þ2dax4 (65)

is a HO timelike Killing vector field.
Four subclasses of class I thus arise, which were labeled

by Barnes as follows:

IA : � ¼ 0 ¼ 
�; IB: � ¼ 0 � 
�;

IC: � � 0 ¼ 
�; ID: � � 0 � 
�:
(66)

We proceed with the respective integrations. Notice that in
the joint case 
�� ¼ 0 one has

2ð� ��þ
�Þ ¼ ðxþ yÞ3 þ Kðxþ yÞ2 � w

3
; (67)

with K ¼ K? for � ¼ 0 and K ¼ K� for 
� ¼ 0. When
� � 0 or 
� � 0 we may take x, respectively, y as a
coordinate, where (47), (48), and (56) imply

ðxþ yÞð ��ma þ � �maÞ ¼ dax; (68)

ðxþ yÞð
ka � �laÞ ¼ day: (69)

In view of (42)–(44) and (56) it then remains to determine
suitable complementary coordinates for x in g?ab or y in

g�ab.
For � � 0, Frobenius’s theorem and (68) suggest to

examine whether zero-weighted functions � and f exist
such that

i
xþ y

2� ��
ð� �ma � ��maÞ ¼ fda�: (70)

By (A16) this amounts to calculating the integrability
conditions of the system

Þ� ¼ Þ0� ¼ 0; ��ð� ¼ ��ð0� ¼ i
xþ y

2f
; (71)

which turn out to be

Þf ¼ Þ0f ¼ 0; �araf ¼ 0: (72)

These last equations have the trivial solution f ¼ 1, for
which a solution� of (71) is determined up to an irrelevant
constant. Herewith the invariantly defined one-form on the
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left-hand side in (70) is exact, and we take � as the
coordinate complementary to x. On solving (68) and (70)
with f ¼ 1 forma and �ma and using (53) we conclude from
(43) that

ds2? ¼ dx2

2� ��
þ 2� ��d�2; 2� �� ¼ x3 þ CxþD (73)

for classes IC and ID. Clearly, the metric solutions should
be restricted to spacetime regions where x3 þ CxþD> 0
for consistency, while

@�
a ¼ i

� �ma � ��ma

xþ y
¼ 2� ��

ðxþ yÞ2 d
a�; (74)

is a HO spacelike KVF.
For 
� � 0 one analogously considers

ðc ¼ ð0c ¼ 0; 
Þc ¼ �Þ0c ¼ xþ y

2g
; (75)

but the integrability conditions of this system are now

ðg ¼ ð0g ¼ 0; �arag ¼ �gS

2 þ q2�2

q
�
: (76)

So g ¼ 1 is only a solution in the Einstein subcase S ¼ 0,
for which we then get

ds2� ¼ dy2

2
�
� 2
�dc 2; 2
� ¼ y3 þ Cy�D��

3

(77)

from (44), (54), (69), and (75), with KVF

@c
a ¼ 
ka þ �la

xþ y
¼ � 2
�

ðxþ yÞ2 d
ac ; (78)

which is timelike for 
�> 0 and spacelike for 
�< 0. In
general, the second vector field in (78) is always HO: the
integrability conditions of (76) are checked to be identi-
cally satisfied, such that solutions g and a corresponding
solution c of (75) exist. However, taking c as a comple-
mentary coordinate of y eventually leads to a very compli-
cated system of coupled PDEs for g ¼ gðy; c Þ, which is
impossible to solve explicitly. We shall remedy this in
Sec. III A but now discuss characterizing features of the
Einstein space limit cases.

C. Characterizations of PE Petrov type D Einstein
spaces

Petrov type D Einstein spaces constitute the class D0

(cf. the Introduction) and are all explicitly known. The line
elements are obtained by putting the electromagnetic
charge parameter �0 or e2 þ g2 equal to zero in the
D metrics given by Debever et al. [14], respectively,
Garcı́a [15]. These coordinate forms generalize and
streamline those found by Kinnersley [39] in the � ¼ 0
case.

Recently, a manifestly invariant treatment of D0, mak-
ing use of the GHP formalism, was presented [34]. Within
GHP, D0 metrics are characterized by the existence of a
complex null tetrad with respect to which (11) and�ij ¼ 0

hold [i.e., the tetrad is a WPNT and (7) and (8) with S ¼ 0
hold]. According to the Goldberg-Sachs theorem [20], (13)
holds and characterizes WPNTs as well. The scalar invari-
ant identities (see [34,40])


 �� ¼ �
�; � �� ¼ � ��; (79)

just as (15), (16), (20), and (21) and the first equation of
(25) are also valid in general. From these relations it
follows that

ð12Þ , ð14Þ; (80)

i.e., a Petrov type D Einstein space is PE if and only if the
WPNT directions are HO. In fact, it can readily be shown
by a more detailed analysis than in [34] that if the space-
time belongs to Kundt’s class, i.e., if one of the PNDs is
moreover nondiverging, one has


 ¼ 0 ) � ¼ 0 or �� �� � 0 � �þ ��: (81)

Equations (4), (5), and (31) in [34] then imply

� ¼ �� � 0 ) 
 ¼ �
 � 0 ¼ �þ ��; (82)

� ¼ � �� � 0 ) 
 ¼ �
; � ¼ ��: (83)

One concludes that the Kundt and Robinson-Trautman
subclasses of D0 have empty intersection, and that the
latter consists of PE spacetimes for which both PNDs are
nontwisting but diverging. These results—which remain
valid for the electrovac class D, just as the two theorems
below—are implicit in [14], where the concerning PE
metrics form the Einstein space subclasses of the classes
labeled by

C00: � ¼ 0 ¼ 
�; C0þ: � ¼ 0 � 
�;

C0�: � � 0 ¼ 
�; C�: � � 0 � 
�:
(84)

By the Einstein space specifications S ¼ 0 and w ¼ � ¼
const, the boost field q disappears from the equations (7)–
(33) and is not determined by the geometry, in contrast to
the situation for perfect fluids S � 0 (cf. Sec. III A).
Moreover, Eqs. (5) and (6), i.e. the requirement that an
US given by (4) exists, are decoupled from (7)–(33) and is
not needed to derive (15)–(33) from (7)–(14). From the
integrability of the complete set (6)–(33) and (66) and the
above we conclude:
Theorem 2.1: The closed set (7)–(33) characterizes the

class D0 of PE Petrov type D Einstein spaces, which are
precisely those Einstein spaces for which the WPNT di-
rections are HO or, alternatively, those which belong to
Barnes’s class I, all admitting a 1-degree freedom of USs in
all regions of spacetime. Barnes’s boost-isotropic Kundt
classes IA and IC coincide with C00, respectively, C0�,
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while the Robinson-Trautman members of D0 constitute
C0þ and C�, form the Einstein space subclasses of IB,
respectively, ID, and possess nontwisting but diverging
PNDs at each point.

The result is in agreement with Proposition B.1, which
provides criteria for deciding when a Petrov type D space-
time allows for an US, regardless of the structure of the
energy-momentum tensor. The hypersurface orthogonality
(13) and (14) of the WPNT directions corresponds to
criterion 5 and is actually equivalent to a 1-degree freedom
of USs. It is worth mentioning that all LRS II spacetimes,
i.e. those exhibiting (pseudo-) spherical or plane symmetry,
share this property with the D0 and D metrics. On the
other hand, certainly not all PE spacetimes admit an US.
For instance, the Gödel solution is an LRS I PE perfect
fluid of Petrov type D, described in GHP by (7)–(13) and

S=2 ¼ w ¼ p ¼ �3�2 ¼ �2
� ¼ const> 0; (85)

� ¼ � ¼ 0; 
 ¼ q�; �
 ¼ �
; �� ¼ ��;

(86)

with q > 0 being annihilated by all weighted GHP deriva-
tives; hence the invariant ð
� �
Þð�� ��Þ ¼ 4
� ¼ 4q�2

appearing in criterion 2 of Proposition B.1 is strictly nega-
tive, and it follows that the Gödel solution does not admit
an US. As another example, the spatially homogeneous
� ¼ 0 vacuum metrics

ds2 ¼ t2p1dx2 þ t2p2dy2 þ t2p3dz2 � dt2; (87)

p1 þ p2 þ p3 ¼ p2
1 þ p2

2 þ p2
3 ¼ 1; p1p2p3 � 0

(88)

attributed to Kasner [41] are PE [42]. If the pi are all
different, there is a complete group G3I of isometries and
the Petrov type is I. In this case @t

a is the up to reflection
unique Weyl principal vector field and hence the only
possible US candidate; however, its shear tensor has the
nonzero eigenvalues ð1=3� piÞ=t and hence the spacetime
does not admit an US. On the other hand, if two pi’s are
equal it follows that p2 ¼ p3 ¼ �2p1 ¼ 2=3 (without loss
of generality). Then the line element represents a Petrov
type D, nonstationary, plane-symmetric vacuum which,
according to Theorem 2.1, admits a 1-degree freedom of
USs (cf. the end of this section).

In theorem 3 of [26] it is claimed that all vacuum space-
times admitting an US are static, which would generalize
Trümper’s result [24] by including Petrov type D.
However, this conclusion only holds when 
� � 0.
Indeed, a static member of D0 necessarily admits a rigid
(i.e. nonexpanding) US, such that 
� � 0, cf. (34).
Conversely, when 
� ¼ 0 or 
�> 0 for a PE member,
it admits the HO timelike KVF (65), respectively, (78) and
is thus static. This is in agreement with Proposition B.3:
regarding 
 ¼ � ¼ 0 criterion 6’’ tells that in fact all
boost-isotropic spacetimes, with � ¼ � �� with respect to

a WPNT, are static, while for 
�> 0 one checks that
criterion 2’’ is satisfied by virtue of (11)–(33). In
Appendix B the freedom of the rigid USs and HO timelike
KVF directions (static observers) in these cases is also
specified, which is in accordance with a result by
Wahlquist and Estabrook [43]. In summary we have the
following:
Theorem 2.2: A Petrov type D Einstein space is static if

it admits a rigid US. This is precisely the case when the
spacetime is PE and has a positive or zero scalar invariant

�, being the product of the divergences of (nontwisting)
Weyl principal null vectors ka and la subject to kala ¼ �1.
For 
�> 0 there is an up to reflection unique rigid US,
defined from the geometry by (4) and q ¼ 
=� and par-
allel to the unique HO timelike KVF direction. For 
� ¼
0 ) 
 ¼ � ¼ 0 (classes IA and IC) all USs are rigid USs
and have a 1-degree freedom, while the HO timelike KVF
directions are parametrized by two constants.
For completeness we display standard coordinate forms

of the PE Petrov type D Einstein space metrics, as recov-
ered here by (42), (56), (60), (64), (73), and (77).
C00 corresponds to (60) and (64). From (57), (59), (61),

and (63) one deduces that

K? ¼ �3x ¼ �3y ¼ K�; �2 ¼ ��

3
¼ 4x3 � 0:

Rescaling � , u, and v by a factor ð2xÞ�1 one arrives at

ds2 ¼ 2d�d ��

1þ �
2 �

��
� 2dudv

1� �
2 uv

; 1þ�

2
� �� > 0; �� 0:

This represents the Einstein space limit �0 ¼ 0 of
Bertotti’s static and homogeneous electrovac family with
cosmological constant [44], exhibiting spatial rotation and
boost isotropy (complete group G6 of isometries). The
� ¼ 0 limit yields flat Minkowski spacetime.
C0þ and C0� correspond to (60) and (77), respectively,

(64) and (73). Making use of (67), replacing in the C0þ
(C0�) case the coordinate y (x) by r ¼ �ð2mÞ1=3=ðxþ yÞ,
rescaling the remaining coordinates by a factor ð2mÞ�1=3

and writing Y � ð2mÞ1=3 > 0 one finds

ds2 ¼ r2ðd�2 þ � cosð ffiffiffi
k

p
�Þ2d�2Þ þ dr2

gkðrÞ � �gkðrÞd�2;

gkðrÞ ¼ k� 2m

r
��

3
r2; k ¼ Kð2mÞ1=3 2 f�1; 0; 1g;

with � ¼ 1 for C0þ (� ¼ �1 for C0�). These solutions
have a complete groupG4 of isometries acting on spacelike
(timelike) three-dimensional orbits, and for � ¼ 0 corre-
spond to Kinnersley’s case I (IV) with l ¼ 0. The static
region of C0þ [gkðrÞ> 0] yields class A in the classifica-
tion of static Petrov type D vacua by Ehlers and Kundt [4];
C0� is static everywhere and corresponds to class B.
Regarding C0þ, the subcase k ¼ 1 reproduces after � �
�=2� � the well-known forms of the spherically symmet-
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ric Schwarzschild-Kottler interior and exterior metrics
[45]; the subcase k ¼ � ¼ 0, r > 0 [gkðrÞ< 0] gives an-
other form of the plane-symmetric Kasner metrics (cf.
supra).

C� corresponds to (73) and (77), which gives the line
element

ds2 ¼ 1

ðxþ yÞ2
�
dx2

fðxÞ þ fðxÞd�2 þ dy2

gðyÞ � gðyÞdc 2

�
;

fðxÞ ¼ x3 þ CxþD> 0; gðyÞ ¼ �fð�yÞ ��

3
:

(89)

The KVFs @�
a and @c

a generate the complete, Abelian

group G2 of isometries. For � ¼ 0, (89) is the form of the
C metric obtained by Levi-Civita and recovered by Ehlers
and Kundt, and corresponds to Kinnersley’s case IIIA. It is
generally assumed—and suggested in the original paper
[5]—that the Kinnersley-Walker form

ds2 ¼ 1

�2ð�þ �Þ2
�
d�2

hð�Þ þ hð�Þd�2 þ d�2

kð�Þ � kð�Þdc 2

�
;

hð�Þ ¼ 1� �2 � 2m��3 > 0; kð�Þ ¼ �hð��Þ (90)

equivalently describes the gravitational field of the � ¼ 0
C metric. However, this is not entirely correct. Equating
the Lorentz invariants appearing in the right-hand sides of
the equations in (50)–(52), calculated for the metrics (89)
and (90), yields

x ¼ �ð2mÞ1=3
�
��þ 1

6m

�
;

y ¼ �ð2mÞ1=3
�
��� 1

6m

�
;

C ¼ � 1

3ð2mÞ4=3 ;

D ¼ �2 � 1

54m2
:

(91)

Hence (90) only covers the range C< 0, D>�2ð� C
3Þ3=2,

whereas in general the constant scalar invariants C and D
are allowed to take any real value. Yet, the cubic fðxÞ has
discriminant �4C3 � 27D2; thus it has three distinct real
roots if and only if

C<�3

�
D

2

�
2=3 , C< 0; jDj< 2

��C

3

�
3=2

: (92)

Thus (91) is compatible for this case, and by further

rescaling � and c with a factor �ð2mÞ�1=3 one arrives at

(90); (92) is equivalent with m�< 1=
ffiffiffiffiffiffi
27

p
, leading to the

physical interpretation of two uniformly accelerating
masses. Recently, Hong and Teo [46] introduced a normal-
ized factored form for this situation, which greatly simpli-
fies certain analyses of the C metric. A further coordinate
transformation can be made such that the Schwarzschild

metric is comprised as the subcase � ¼ 0. This was further
exploited for the full D class in [19].
Finally, we write down the equations which determine

all USs for a member of C�, in the coordinates y and c of
(89). Let

Ua ¼ � xþ yffiffiffiffiffiffiffiffiffi
gðyÞp @t

a; Va ¼ �ðxþ yÞ
ffiffiffiffiffiffiffiffiffi
gðyÞ

q
@y

a

in the static region and

Ua ¼ �ðxþ yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðyÞ

q
@y

a; Va ¼ xþ yffiffiffiffiffiffiffiffiffiffiffiffiffi�gðyÞp @t
a

in the nonstatic region, and gauge fix ka ¼ ðUa þ
VaÞ= ffiffiffiffiffiffið2Þp

, la ¼ ðUa � VaÞ= ffiffiffiffiffiffið2Þp
. The unit timelike field

(4) is an US if and only (6) holds; this translates to q ¼
qðy; c Þ and

gðyÞðq	 1Þq;y þ ðq
 1Þðq;c þ g0ðyÞqÞ ¼ 0: (93)

Here and below the upper (lower) signs should be taken in
the static (nonstatic) region. For solutions q ¼ qðyÞ, i.e.
q;c ¼ 0, direct integration of (93) yields

gðyÞðqðyÞ 
 1Þ2 ¼ E	qðyÞ; (94)

with Eþ � 0 and E� < 0 constants of integration. Notice
that in the static region the solution qðyÞ ¼ 1 , Eþ ¼ 0
yields the unique static observer. In the case q;c � 0 the

solutions get implicitly determined by an equation of the
form c ¼ c ðy; qÞ, on applying the method of character-
istics for first-order PDEs (see e.g. [47]). In the subcase
where C ¼ D ¼ � ¼ 0, gðyÞ reduces to y3 and this equa-
tion reads

c ¼ �
�
yðq
 1Þ2=3

q1=3

�
2 Z ðq
 1Þ4=3dq

3q5=3
þ Z

�
yðq
 1Þ2=3

q1=3

�
:

(95)

Here Z is a free function of its argument, making the 1-
degree freedom of USs more explicit. Replacing (73) by
(60) does not alter these equations, i.e., the above remains
valid for C0þ. Then C ¼ D ¼ 0 is equivalent to x ¼
K? ¼ 0, cf. (57) and (59); for � ¼ 0 the nonstatic region
y < 0 corresponds to the plane-symmetric Kasner vacuum

metrics, where y ¼ �ð3t=2Þ�2=3 and a rescaling of the
other coordinates recovers (87), the USs being determined
by (94) and (95) with the lower sign.

III. PERFECT FLUIDGENERALIZATIONSOF THE
C METRIC

A. Line element

We resume the integration of class I started at the end of
Sec. II C. We thereby focus on the subclass ID character-
ized by � � 0 � 
�. Let us first summarize what we did
so far. We started off with the closed set (6)–(33) of first-
order GHP equations in the seven (weighted) real variables
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�, S, w, 
, �, q, ð0� and the complex variable �. These
variables are equivalent to two dimensionless spin and
boost gauge fields, e.g. �= �� and 
=�, and seven real scalar
invariants. The boost and spin gauge fields could serve to
invariantly fix the tetrad—the ID members being therefore
anisotropic—but can be further ignored. For the
C�-Einstein spaces, S ¼ 0 and w ¼ � ¼ const, and we
remarked that q is not a part of the intrinsic describing
set of variables. Hence we end up with four real scalar
invariants in this subcase. These invariants are equivalent
to the two constants C and D and two independent func-
tions x and y, which we took as coordinates and in terms of
which, on adding two coordinates � and c related to the
symmetries, the correspondingC� metric can be expressed.
In the perfect fluid case S � 0, (8) gives the boost field q
which, starting from an arbitrary gauge ðka; laÞ, turns ua

given by (4) into the invariantly defined fluid four-velocity.
The four invariants and their use persist, just as the coor-
dinate �. However, the scalar invariants w and S are no
longer constant and c is no longer a suitable coordinate.
Thus we need one more scalar invariant for our description
and one remaining coordinate complementary to y.

For the first purpose it is natural to look at the kinematics
of the fluid, which are fully determined by

b � 2rðaucÞma �mc ¼ raucv
avb ¼ �

3
; (96)

_u k � va _u
a; _u?a � 2 �mðamcÞ _uc: (97)

Here

va � 1ffiffiffiffiffiffi
2q

p ðqka � laÞ (98)

is the intrinsic spacelike vector field, which determines at
each point the up to reflection unique normalized vector
orthogonal to ua and lying in the PND plane �, while _uk
and _u?a are the component along va, respectively, projec-
tion onto �? of the acceleration _ua. In analogy with (96)
we define the invariant

~b � 2rðavcÞma �mc: (99)

The relation with GHP quantities is

b ¼ 
� q�ffiffiffiffiffiffi
2q

p ; ~b ¼ �
þ q�ffiffiffiffiffiffi
2q

p ; (100)

_u k ¼ ð2qÞ�3=2ðÞ0qþ qÞqÞ ¼ Þqffiffiffiffiffiffi
2q

p � b; (101)

� _u?a ¼ ��ma þ � �ma � �a ¼ dax

xþ y
: (102)

Notice that (100) is equivalent to

bua � ~bva ¼ 
ka � �la � �a ¼ day

xþ y
: (103)

In combination with (53) and (54), Eqs. (102) and (103)
imply

2� �� ¼ _u?a _u?a ¼ x3 þ CxþD; (104)

2
� ¼ ~b2 � b2 ¼ y3 þ Cy�D� w

3
: (105)

We choose b as the final describing invariant and use ~b and
_uk as auxiliary variables. In view of (101) and (102) one

deduces that the differential information for S, w, and b
comprised in (6)–(33) is precisely

DaS ¼ �S _ua; (106)

daw ¼ �uðwÞua; uðwÞ ¼ �3bS; (107)

dab ¼ �uðbÞua; uðbÞ ¼ �vð~bÞ þ ~bð _uk � ~bÞ � S

2
;

(108)

v ð~bÞ ¼ � xþ y

2
ð3y2 þ CÞ: (109)

From (109) it follows that ~b is nonconstant, such that we
may see the second part of (108) as a definition of _uk.
Equation (107) is nothing but the energy, respectively,
momentum conservation equations for a perfect fluid sub-
ject to Daw ¼ 0. The first part of Eq. (108) confirms that
Da� ¼ 0 [23,26], while the second implies again that the
expansion scalar does not vanish in general (cf. the end of
Sec. II A and below).
For the second purpose we rely on the hypersurface

orthogonality of ua by assumption: zero-weighted real
scalar fields t and I exist such that

dat ¼ Iua: (110)

The integrability condition hereof is

DaI ¼ �I _ua ¼ �Ið _u?a þ _ukvaÞ; (111)

which is equivalent to

ðI ¼ �I; vðIÞ ¼ � _ukI: (112)

From ~b � 0, (103) and (110) it follows that t is function-
ally independent of y (and of x and �) and we take it as
the fourth coordinate. With the aid of (110) and (111),
Eq. (106) and the first parts of (107) and (108) precisely tell

that A � S
2I , w and b only depend on t. Hence ~b ¼ ~bðy; tÞ

from (105). On using (102) and (103), the first part of (112)
is equivalent to J ¼ Jðy; tÞ, where

J � xþ y

I ~b
: (113)

Eliminating _uk between the second parts of (108) and

(112), and using vðxþ yÞ ¼ �~bðxþ yÞ implied by (102)
and (103), yields
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~b 2vðJÞ ¼ ~bJuðbÞ þ Aðxþ yÞ: (114)

Inverting (103) and (110) we get

ðxþ yÞua ¼ ~bJdat; ðxþ yÞva ¼ bJdat� day
~b

;

(115)

or dually

� ua

xþ y
¼ @t

a

~bJ
þ b@y

a; � va

xþ y
¼ ~b@y

a: (116)

Thus in the chosen coordinates (114) reads

@yJðy; tÞ ¼ ~bðy; tÞ�3½b0ðtÞ � AðtÞ�: (117)

From (42) and (73), g�ab ¼ ðvavb � uaubÞ=ðxþ yÞ2 and

the only remaining Eq. (107) we obtain the line element

ds2 ¼ ðxþ yÞ�2½ds2? þ ds2��; (118)

ds2? ¼ dx2

fðxÞ þ fðxÞd�2; fðxÞ ¼ x3 þ CxþD;

(119)

ds2� ¼
�
bJdt� dy

~b

�
2 � ð~bJdtÞ2; (120)

where

b ¼ bðtÞ; w ¼ wðtÞ; A �
~bJS

2ðxþ yÞ ¼ AðtÞ;
(121)

w0ðtÞ ¼ 6bðtÞAðtÞ , daw ¼ 6bAdat ¼ 3bSua; (122)

~b ¼ ~bðy; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 þ Cy�Dþ bðtÞ2 � wðtÞ=3

q
; (123)

J ¼ Jðy; tÞ ¼ ½b0ðtÞ � AðtÞ�
Z dy

~bðy; tÞ3 þ LðtÞ; (124)

with LðtÞ a free function of integration. The solutions are
defined and regular in the coordinate regions

2� �� � x3 þ CxþD> 0; (125)

~bðy; tÞ2 � y3 þ Cy�Dþ bðtÞ2 � wðtÞ=3> 0: (126)

Notice that we nowhere used S � 0 explicitly in the
above integration procedure. Therefore, the above line
element describes the complete class ID, including the
C�-vacuum limits which correspond to wðtÞ ¼ � and
AðtÞ ¼ 0, cf. (121). In this case the coordinate transforma-
tion ðt; y; x; �Þ � ðc ; y; x; �Þ, which connects (118)–(124)
to the original form (89), eliminates bðtÞ and LðtÞ and
follows from (4), (78), (98), (100), and (115), giving

dac ¼ � xþ y

2
�
ð
ka þ �laÞ ¼ xþ y

2
�
ð~bua � bvaÞ

¼ Jdatþ b
~bð~b2 � b2Þday: (127)

Hence, c ¼ c ðy; tÞ and it is the solution of the consistent
system

@tc ¼ J; @yc ¼ b
~bð~b2 � b2Þ ; (128)

the integrability condition hereof being precisely (117)
with AðtÞ ¼ 0. The transformation is singular at degenerate

roots of ~b2 and at the union of the black hole and accel-

eration horizons [19,48] ~b2 � b2 � fð�yÞ þ�=3 ¼ 0,
which separate the static from the nonstatic regions. Let
us emphasize that the bðtÞ freedom is essentially a freedom
in the choice of coordinates. The form (89) describes the
full C-metric manifold; y can take any value, and the sign

of fð�yÞ þ �
3 is positive in the static region and negative in

the nonstatic region. In the form (118)–(120) y is always
spacelike and we have constructed t as a synchronized
timelike coordinate corresponding to an US ua, with asso-
ciated expansion rate �ðtÞ ¼ 3bðtÞ; for fixed bðtÞ the range
of y is constrained by (126) and only this subregion of the
manifold is described by the coordinates. For example,
(118)–(124) with AðtÞ ¼ 0, wðtÞ ¼ �=3, bðtÞ ¼ 0, and
LðtÞ ¼ 1 [which formally reduces to (89) on putting t ¼
c additionally] only describes the static part of the
C metric, the vector field ua then lying along the unique
HO timelike KVF direction. However, in the neighborhood
of any point with coordinate label y, the metric can be
described by (118)–(124), by choosing bðtÞ2 > fð�yÞ þ
�=3.
We neither used � � 0. This implies that the line ele-

ment of the complete class IB, characterized by
� � 0 ¼
� and constituted by all LRS II Einstein spaces and shear-
free perfect fluids with Daw ¼ 0, is described by (118)–
(124), with (119) replaced by (60). This class was first
described by Kustaanheimo [49] and rediscovered by
Barnes [26], both using different coordinates [see also
(16.49) and (16.51) in [16]].
Of course, the result (118)–(124) could have been ob-

tained without referring to GHP calculus. Barnes [26]
showed that the metric can be written in the form

ds2 ¼ ðxþ YÞ�2ðf�1dx2 þ fd�2 þ dz2 � e2Zdt2Þ;
(129)

with f ¼ fðxÞ. Indeed, from (115), (117), and (123) it
follows that ðxþ yÞva is exact: ðxþ yÞva ¼ daz; z is

used as a coordinate instead of y, and one puts J ~b � eZ,
Z ¼ Zðz; tÞ. Notice from (103), (110), and (113) that now

y ¼ Yðz; tÞ; Y;z ¼ �~b; � ¼ 3Y;te
�Z: (130)

Let us directly attack the field equations in these coordi-
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nates, thereby correcting [26]. One can check that only four
of the field equations are not identically satisfied [the
indices 1–4 label the Weyl principal tetrad vectors natu-
rally associated with (129)]:

G34 ¼ 0 ¼ �Y;tz þ Y;tZ;z; (131)

G11 �G33 ¼ 0

¼ f0 � 2Y;zz þ ðxþ YÞðZ2
;z þ Z;zz � f00=2Þ;

(132)

G11 ¼ p

¼ 2ðe�2ZðY;tt � Y;tZ;tÞ � Y;zZ;z � f0=2Þðxþ YÞ
þ ðZ;zz þ Z2

;zÞðxþ YÞ2 þ 3ðY2
;z þ f� Y2

;te
�2ZÞ;
(133)

G33 þG44 ¼ S

¼ 2ðxþ YÞ½Y;zz � Y;zZ;z þ e�2ZðY;tt � Y;tZ;tÞ�:
(134)

Hence, if supplemented with �� Y;t ¼ 0, these equations

are the ones obtained by Barnes in [26]: Eq. (131) �
vð�Þ ¼ 0 was missed out, and both Eqs. (133) and (134)
differ from Eqs. (4.23), respectively, (4.24) in [26] by a
term 2ðxþ YÞY;tte

�2Z. Thus, it is clear that with these

differences a correct nonexpanding solution can be found,
but the analysis of expanding solutions will be incorrect.

Differentiating (133) twice with respect to x yields
d4fðxÞ=dx4 ¼ 0, whence

fðxÞ ¼ ax3 þ bx2 þ cxþ d: (135)

Substituting this in Eq. (133), and equating coefficients of
powers of x, leads to

Z;zzðz; tÞ þ Z;zðz; tÞ2 ¼ 3aYðz; tÞ � b; (136)

Y;zzðz; tÞ ¼ c

2
� Yðz; tÞbþ 3

2
aYðz; tÞ2: (137)

The solutions Yðz; tÞ of the last equation are defined by

Z Yðz;tÞ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ar3 � br2 þ crþ f1ðtÞ

p � zþ f2ðtÞ ¼ 0; (138)

which can be solved for z in terms of Y. This eventually
suggests to transform coordinates from ðz; tÞ into ðy; tÞ,
with y ¼ Yðz; tÞ. Rescaling and translating coordinates
allows us to set a ¼ 1 and b ¼ 0. One can check that the
remaining equations lead exactly to Eqs. (117) and (122),
recovering solutions (118)–(124).

B. Properties

Consider the metric (118)–(124), for which we assume
henceforth that it describes a perfect fluid [AðtÞ � 0]. In

contrast to the Einstein subcase, ua is now the unique
invariantly defined fluid velocity, and the expansion rate
�ðtÞ and energy density wðtÞ �� of the fluid are scalar
invariants. Expressions for the pressure pþ� and the
components _u?a and _uk of the acceleration follow from

(102), (108), (109), (116), and (119)–(124):

p ¼ 2ðxþ yÞAðtÞ
ð~bJÞðy; tÞ � wðtÞ; _u?a ¼ �ðxþ yÞfðxÞ@xa;

_uk ¼ ~bðy; tÞ � xþ y
~bðy; tÞ

�
3y2 þ C

2
þ b0ðtÞ � AðtÞ

ð~bJÞðy; tÞ
�
:

The fluid is nonshearing and nonrotating, i.e. ua is an US.
Because of (13) and (14) criterion 5 of Proposition B.1 is
satisfied, such that there is a 1-degree freedom of USs.
These can be found by taking q ¼ 1 in (4) and (98), hereby
fixing the ðka; laÞ gauge geometrically, and solving (6) with
q replaced by Q, the USs then being ðQka þ laÞ= ffiffiffiffiffiffiffi

2Q
p

.
This yields Q ¼ Qðy; tÞ and

~bJ½~bðQþ 1Þ þ bðQ� 1Þ�Q;y þ ðQ� 1ÞQ;t

¼ �2QðQ� 1Þ~bð~bJÞ;y
¼ �QðQ� 1Þ

~b
½ð3y2 þ CÞ~bJþ 2ðb0 � AÞ�:

If the class is to be used as a cosmological model, it is
interesting to discuss the intrinsic freedom. By (115) and

(122) we have that 2AðtÞdat ¼ Sua and Jðy; tÞdat ¼ ðxþ
yÞua=~b are invariantly defined one-forms, and hence so is
LðtÞdat because of (124). It follows that L

A ðtÞ is a scalar

invariant. Moreover, as AðtÞdat is exact we may remove the
only remaining coordinate freedom on t by putting AðtÞ ¼
1, such that the conservation of energy equation (122) can
be considered as a definition �ðtÞ ¼ w0ðtÞ=2. Hence, in this
most general picture for S � 0, the scalar constants C, D
and invariants L

A ðtÞ, wðtÞ characterize the model within the

class. Notice that the presence of two invariantly defined,
distinguishing free functions could have been predicted,
since after elimination of _uk, there are two scalar invariants
uðbÞ and uðSÞ remaining unprescribed in the system of
Eqs. (106)–(109).
In this fashion however, the physical implications re-

main obscure: it would be nice to have a free function, with
a clear physical interpretation, instead of L=A. Spacetimes
with LðtÞ ¼ 0 havewðtÞ as the only free function. If LðtÞ �
0, LðtÞ can alternatively be fixed to 1 by a t-coordinate
transformation. In this case the metric structure functions
display the expansion scalar, the energy density, and the
pressure [since 2AðtÞdat ¼ ðwþ pÞua]; these are related
by energy conservation (122), where wðtÞ and AðtÞ can be
chosen freely. Alternatively, one can subdivide further in
� ¼ 0 and � � 0. In the case � ¼ 0, the energy density
w�� is constant because of (122) and can be chosen
freely, just as AðtÞ. In the most interesting case � � 0, wðtÞ
and �ðtÞ can be chosen freely, determining Sua via (122).
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Thus class ID provides a class of anisotropic cosmological
models with arbitrary evolution of energy density and
(nonzero) expansion.

Regarding symmetry, all perfect fluid ID models admit
at least one KVF @�

a given by (74), which at each point

yields an invariantly defined spacelike vector orthogonal to
_u?a and lying in �?. If � is chosen to be a periodic
coordinate, with range given by ½��E;�E½, the spacetime
is cyclically symmetric. We will then refer to the region
F � fðxÞ ¼ 0, where the norm of @�

a vanishes, as the axis

of symmetry [48,50]. Finding the complete group of
isometries and their nature is trivial in our approach. The
functions x, y, w, and L=A are invariant scalars, such that
Kadax ¼ Kaday ¼ Kadaw ¼ KadaðL=AÞ ¼ 0 for any
KVF Ka. As the ID models are anisotropic, it follows
that the complete isometry group is at most G2, and if it
is G2, both w and L=A are constant. Conversely, when w
and L=A are constant we have � � 3b ¼ 0 from (122),
~b ¼ ~bðyÞ from (123), and Jðy; tÞ ¼ �AðtÞF2ðyÞ from
(124). By redefining the time coordinate such that AðtÞ ¼
1 one sees from (118)–(124) that @t

a is a HO timelike KVF.
We conclude that the ID perfect fluid models have at least
one spacelike KVF @�

a, which may be interpreted as the

generator of cyclic symmetry. They admit a second inde-
pendent KVF if and only if both scalar invariants w and
L=A are constant, in which case the spacetimes are static
and the complete group of isometries is Abelian G2, gen-
erated by @�

a and @t
a.

Consider the case where fðxÞ has 3 real nondegenerate
roots xi, i.e. (92) holds. If x1 < x2 < x3 then fðxÞ> 0 for
all x 2�x1; x2½. Furthermore, we let � be a periodic coor-
dinate. The ratio between circumference and radius of a
small circle around the axis, x ¼ x1 or x ¼ x2, is given by

lim
x!x2
<

2�E
ffiffiffiffiffiffiffiffiffi
fðxÞp

R
x2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�1ðxÞp

dx
¼ ��Eð3x22 þ CÞ; (139)

respectively,

lim
x!x1
>

2�E
ffiffiffiffiffiffiffiffiffi
fðxÞp

R
x
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�1ðxÞp

dx
¼ �Eð3x21 þ CÞ: (140)

It is only possible to choose the parameter E such that the
complete axis is regular, if 3x21 þ C ¼ �ð3x22 þ CÞ.
However, eliminating C and D between this equation and
fðx1Þ ¼ fðx2Þ ¼ 0 implies x1 ¼ x2. Consequently, if fðxÞ
has three real nondegenerate roots, the spacetime contains
a conical singularity. This echoes the properties of the
C metric [5,48], and suggests the presence of a cosmic
string.

IV. CONCLUSIONS AND DISCUSSION

A new class of Petrov type D exact solutions of
Einstein’s field equation in a perfect fluid with spatially
homogeneous energy density has been presented. It con-

sists of all anisotropic such fluids with shear-free normal
four-velocity, and generalizes a previously found class to
include nonzero expansion. The analysis and integration
was rooted in the 2þ 2 structure of the metric and use of
invariant quantities. This approach clarified the link with
the vacuum C-metric limit, and certain properties of the
vacuum case are inherited. However, the presence of the
perfect fluid defines generically two extra invariants. For
the expanding solutions, this translates into an evolution of
energy density and expansion which can be chosen freely.
This subclass contains only one (potentially cyclic)
symmetry.
The viability of these solutions as a low-symmetry class

of cosmological models is subject to further research. More
in particular, it should be clarified whether a thermody-
namic interpretation of the perfect fluid can be made
[51]—it is certainly not possible to prescribe a barotropic
equation of state p ¼ pðwÞ. The relation with the Cmetric
also suggests to further examine the arising coordinate
ranges, properties of horizons, and whether an interpreta-
tion as a perturbation for small masses of a known PF
solution exists for certain members.
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APPENDIX A: GEROCH-HELD-PENROSE
FORMALISM

The GHP formalism [16,28] is a complex, scalar formal-
ism, which is a ‘‘weighted’’ version of the Newman-
Penrose (NP) tetrad formalism. Use is made of a complex
null tetrad ðe1a; e2a; e3a; e4aÞ � ðma; �ma; la; kaÞ, where

kala ¼ �1; ma �ma ¼ 1 (A1)

and all other inner products vanish. To put it in other words,
at each point one takes a timelike plane, two vectors ka and
la lying along its real null directions, and two vectors ma

and �ma lying along the complex conjugate null directions
of the orthogonal spacelike plane, these pairs of vectors
satisfying the normalization conditions (A1). We use the

labels â, b̂, etc. for the tetrad indices. The basic variables
of the formalism are the spin coefficients (�â b̂ ĉ �
eâ

arcðeb̂Þaeĉc ¼ ��b̂ â ĉ)

� ¼ �414; � ¼ �413; 	 ¼ �411; � ¼ �412;

(A2)

� ¼ �233; � ¼ �234; � ¼ �232; 
 ¼ �231;

(A3)

the 9 independent components of the traceless part of the
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Ricci tensor Sab ¼ Rab � 1
4Rgab,

�00 ¼ 1
2Sabk

akb; �22 ¼ 1
2Sabl

alb; (A4)

�01 ¼ 1
2Sabk

amb; �12 ¼ 1
2Sabl

amb; (A5)

�02 ¼ 1
2Sabm

amb; �11 ¼ 1
2Sabðkalb þma �mbÞ; (A6)

with �ji ¼ ��ij, the multiple

� � R

24
(A7)

of the Ricci scalar, and the 10 independent components of
the Weyl tensor Cabcd,

�0 ¼ Cabcdk
ambkcmd; �4 ¼ Cabcdl

a �mblc �md; (A8)

�1 ¼ Cabcdk
albkcmd; �3 ¼ Cabcdl

akblc �md; (A9)

�2 ¼ Cabcdk
amb �mcld: (A10)

Changes of the tetrad leaving the null directions spanned
by ka, la, ma, and �ma invariant, and at the same time
preserving the normalization conditions (A1), consist of
boosts

ka ! Aka; la ! A�1la (A11)

and spatial rotations

ma ! ei�ma: (A12)

Quantities transforming under (A11) and (A12) as

� ! AðwpþwqÞ=2eiðwp�wqÞ�=2� (A13)

are called well weighted of type ðwp;wqÞ or ðwp;wqÞ
weighted [zero weighted in the case of type (0, 0)]. They

have boost weight wBð�Þ ¼ wpþwq

2 and spin weight

wSð�Þ ¼ wp�wq

2 . One can check that the GHP basic varia-

bles are well weighted, their weights following from the
definitions (A2)–(A13)—see also equation (7.36) in [16].
For example, wBð�Þ ¼ �2, wSð�Þ ¼ �1, implying � is of
type ð�3;�1Þ. The following derivative operators are
defined such that a well-weighted quantity � is trans-
formed in a well-weighted quantity:

Dâ� ¼ eâð�Þ þ �34âwBð�Þ�þ �12âwSð�Þ�: (A14)

When � is of type ðwp;wqÞ one can check that

wBðDâ�Þ ¼ wBð�Þ þ ~wBðâÞ;
wSðDA�Þ ¼ wSð�Þ þ ~wSðâÞ;

where

~wBðâÞ ¼
8><
>:
1; â¼ 4;

�1; â¼ 3;

0; â¼ 1;2

; ~wSðâÞ ¼
8><
>:
1; â¼ 1

�1; â¼ 2

0; â¼ 3;4:

One uses the notation

ð � D1; ð0 � D2; Þ0 � D3; Þ � D4:

(A15)

Notice that the differential of zero-weighted scalars f can
be expressed as

daf ¼ �Þ0fka � Þfla þ ð0fma þ ðf �ma (A16)

¼ �lðfÞka � kðfÞla þ �mðfÞma þmðfÞ �ma (A17)

¼ �uðfÞua þ vðfÞva þ �mðfÞma þmðfÞ �ma; (A18)

where ua and va are related to ka and la according to (4),
respectively, (98).
The basic (or ‘‘structure’’) equations of the GHP formal-

ism are the following:
(a) the commutator relations of the weighted deriva-

tives, in the joint Dâ notation given by

½Dâ;Db̂�� ¼ 2�ĉ
½â b̂�Dĉ�þ wBð�ÞðR34â b̂

þ 2�3ĉ½â�ĉ
j4jb̂�Þ�þ wSð�ÞðR12â b̂

þ 2�1ĉ½â�ĉ
j2jb̂�Þ�þ ~wBðb̂Þ�34âDb̂�

þ ~wSðb̂Þ�12âDb̂�� ~wBðâÞ�34b̂Dâ�

� ~wSðâÞ�12b̂Dâ�;

(b) 12 complex Ricci identities (or equations), namely,

e ĉð�â b̂ d̂Þ � ed̂ð�â b̂ ĉÞ ¼ Râ b̂ ĉ d̂ � 2�â ê½ĉj�ê
b̂jd̂�

� 2�â b̂ ê�
ê
½ĉ d̂�

with ½â b̂� ¼ ½14�; ½23� (the complex conjugates

corresponding to ½â b̂� ¼ ½24�; ½13�);
(c) the Bianchi identities (or equations)

e ½f̂ðRĉ d̂�â b̂Þ ¼ �2Râ b̂ ê½ĉ�
ê
d̂ f̂� þ �ê

â½ĉRd̂ f̂�ê b̂

� �ê
b̂½ĉRd̂ f̂�ê â:

One can show that, after writing the directional derivatives
eâ in terms of the weighted derivatives Dâ, these basic
equations (a)-(c) form a consistent, closed system of PDEs
in the variables (A2)–(A10) and with formal derivative
operators Dâ. Compared to the NP formalism, the 6 com-
plex Ricci identities which concern directional derivatives
of the non-well-weighted NP spin coefficients �, �, , and

� (corresponding to ½â b̂� ¼ ½12�; ½34�) have been ab-
sorbed in the commutator relations. Explicitly, for a
ðwp;wqÞ-weighted scalar one gets

½Þ; Þ0�ð�Þ ¼ ð�þ ��Þðð�Þ þ ð ��þ �Þð0ð�Þ
þ ð��� ��þ���11 ��2Þwp�

þ ð��� ��þ���11 � ��2Þwq�; (A19)
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½ð; ð0�ð�Þ ¼ ð
� �
ÞÞð�Þ þ ð�� ��ÞÞ0ð�Þ
þ ð�	�
�����11 þ�2Þwp�

� ð�	�
�����11 þ ��2Þwq�; (A20)

½Þ; ð�ð�Þ ¼ ��Þð�Þ � �Þ0ð�Þ þ ��ðð�Þ þ 	ð0ð�Þ
þ ð�
� 	���1Þwp�

þ ð��� ����01Þwq�; (A21)

together with the equations obtained by applying the com-
plex conjugate and/or prime dual operation to (A21). This
prime dual operation is generated by interchanging ka $
la and ma $ �ma, which comes down to

� $ ��; � $ ��; 	 $ ��; � $ �
;

(A22)

�ij $ �2�i2�j; �i $ �4�i; (A23)

Þ $ Þ0; ð $ ð0: (A24)

The interchange (A24) means that ðÞ0�Þ0 ¼ Þ�0, etc., and
is due to (A14) and

wBð�0Þ ¼ �wBð�Þ;
wSð�0Þ ¼ �wSð�Þ; i:e:;

wpð�0Þ ¼ �wpð�Þ;
wqð�0Þ ¼ �wqð�Þ:

Regarding complex conjugation one has Þ� ¼ Þ ��, ð� ¼
ð0 �� and

wBð ��Þ ¼ wBð�Þ;
wSð ��Þ ¼ �wSð�Þ; i:e:;

wpð ��Þ ¼ wqð�Þ;
wqð ��Þ ¼ wpð�Þ:

Explicitly, the 12 complex Ricci identities read

Þ�� Þ0� ¼ ð�þ ��Þ�þ ð ��þ �Þ	þ�01 þ�1; (A25)

ð�� ð0	 ¼ ð�� ��Þ�þ ð
� �
Þ�þ�01 ��1; (A26)

Þ	� ð� ¼ ð�þ ��Þ	þ ð ��� �Þ�þ�0; (A27)

Þ�� ð0� ¼ �2 þ 	 �	� ���þ ��þ�00; (A28)

Þ0	� ð� ¼ �	
� ���� �2 þ � ����02; (A29)

Þ0�� ð0� ¼ � �
�� �	� � ��þ ��� 2���2

(A30)

and their prime duals (A250)–(A300). Finally, the Bianchi
identities involve weighted derivatives of the Riemann

tensor components. In full generality they are given in
Ref. [16], (7.32a-k), or [33], (4.12.36-41).
The formalism is especially suited for situations where

two null directions are singled out by the geometry, such
that ka and la can be chosen along them. In particular, the
Weyl tensor of a Petrov typeD spacetime has precisely two
PNDs; choosing ka and la along them is equivalent to
condition (11), and a complex null tetrad realizing this
condition is called a Weyl principal null tetrad. When (7)
and (11) are both satisfied, the Bianchi identities reduce to

0 ¼ 	ð2�11 þ 3�2Þ � ���00; (A31)

Þ�2 þ Þ0�00 þ 2Þ� ¼ �ð2�11 þ 3�2Þ � �
�00;

(A32)

Þ�11 þ Þ0�00 þ 3Þ� ¼ 2ð�þ ��Þ�11 � ð
þ �
Þ�00;

(A33)

ð�2 þ 2ð� ¼ ��ð2�11 � 3�2Þ þ ���00; (A34)

ð�11 � 3ð� ¼ 2ð�� ��Þ�11� ���00 þ ��22; (A35)

ð�00 ¼ �ð2�11 � 3�2Þ � ���00 (A36)

and their prime duals (A310)–(A360).
In general, the GHP formalism may be used to find a

class of solutions, defined by a particular set of properties.
One first translates these properties in terms of GHP var-
iables, yielding (algebraic or differential) constraints on
the system of basic equations, then recloses the resulting
extended system (integrability analysis), and finally de-
scribes the corresponding metrics in terms of coordinates
(integration). These coordinates are four suitable, function-
ally independent zero-weighted scalars f; they may be
combinations of (derivatives of) basic variables, appearing
in the reclosed system S itself, or ‘‘external’’ coordinates
associated to HO vector fields due to Frobenius’s theorem.
The geometric duals of the null tetrad vectors, and hence
the metrics gab ¼ �2kðalbÞ þ 2mða �mbÞ, are obtained by

inverting (A16) for the chosen f’s. Eventually the remain-
ing equations of S are written in terms of these coordinates
and the resulting PDEs are solved as far as possible. We
refer to [52] for enlightening discussions, and to e.g. [53]
or this work for illustrations. In particular for Petrov typeD
spacetimes, notice that zero-weighted combinations of
WPNT spin coefficients and their weighted derivatives
(e.g. 
� or ð0�) are scalar (Lorentz) invariants x, which
are thus annihilated by any present KVF Ka, KðxÞ ¼
LKx ¼ 0. This facilitates the detection of KVFs. More
generally, zero-weighted tensor fields Tab���, algebraically
constructed from the Riemann tensor, WPNT vectors and
covariant derivatives thereof, are invariantly defined by the
geometry, and LKTab��� ¼ 0.
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APPENDIX B: (RIGID) SHEAR-FREE NORMALITY
AND STATICITY OF PETROV TYPE D

SPACETIMES

Consider (an open region of) a spacetime and a unit
timelike vector field ua defined on it. Choose a null vector
field ka. At each point, ka and ua span a timelike plane �,
the first null direction of which is spanned by ka. Construct
the null vector field la by taking at each point the unique
vector lying along the second null direction and satisfying
kala ¼ �1. Then ua is decomposed as in (4), where q ¼
A2, A ¼ �ð ffiffiffi

2
p

kauaÞ�1. The field va defined in (98) deter-
mines at each point the up to reflection unique unit space-
like vector lying in � and orthogonal to ua. The electric
and magnetic parts of the Weyl tensor with respect to ua

can be decomposed as

Eab � Cacbdu
cud

¼ ð�2 þ ��2Þ½vavb � �mðambÞ�

þ
�
�4 þ q2 ��0

2q
mamb þ 2

�3 � q ��1ffiffiffiffiffiffi
2q

p mðavbÞ
�

þ c:c; (B1)

Hab � �acmn

2
Cmn

bdu
cud

¼ ið�2 � ��2Þ½vavb � �mðambÞ�

þ i

�
�4 � q2 ��0

2q
mamb þ 2

�3 þ q ��1ffiffiffiffiffiffi
2q

p mðavbÞ
�

þ c:c: (B2)

If ua exists such that Hab ¼ 0, the Weyl tensor is PE with
respect to ua, the spacetime itself being also called PE. A
criterion in terms of Weyl tensor concomitants, deciding
whether this is the case, follows from the flow diagram 9.1
in [16] and Theorem 1 in [54].

Suppose now that the spacetime admits a unit timelike
vector field ua satisfying (1)—corresponding to an US, i.e.
forming the tangent field of a shear-free and vorticity-free
cloud of test particles. Within the GHP formalism based on
ka and la as introduced above, this is the case if and only if
a ð�2;�2Þ-weighted field q exists satisfying (5) and (6).
By virtue of these relations, the ½ð; ð0�ðqÞ commutator

relation yields (12), adding 2q½ðA26Þ � ðA26Þ0� to the

½Þ0 � qÞ; ð0�ðqÞ commutator relation gives �3 þ q ��1 ¼
0 and the combination q2ðA27Þ � ðA27Þ0 þ q½ðA29Þ0� �
ðA29Þ� produces �4 � q2 ��0 ¼ 0. Hence Hab ¼ 0 from
(B2), and if we choose ka to be a (multiple) PND, �0 ¼
0 (�0 ¼ �1 ¼ 0), then also la is a (multiple) PND, �4 ¼
0 (�4 ¼ �3 ¼ 0). Hence the spacetime must be either
conformally flat (all �i zero), and then USs are always
admitted [see e.g. (6.15) in [16]], or PE and of Petrov type
D or I, the Weyl tensor being PE with respect to ua. For
Petrov type I, there are 4 distinct PNDs, and ua is the up to
reflection unique timelike vector lying along the intersec-

tion of the planes spanned by two particular pairs of PNDs.
For Petrov typeD, ka and la can be taken to be the multiple
PNDs, and ua lies in the plane � spanned by them.
Propositions 4 in [55] and 16 in [56] imply intrinsic,

easily testable criteria for deciding when a Petrov type I
spacetime admits an US, respectively, is static. Here we
present likewise criteria in the Petrov type D case. These
criteria are invariant statements, in terms of GHP basic
variables and weighted derivatives associated to an arbi-
trary WPNT. Given a Petrov type D spacetime in coordi-
nates, the determination of the PNDs, and hence the
WPNTs, is straightforward and can be performed cova-
riantly [56]. It then suffices to fix one WPNT and calculate
the appearing spin-boost covariant expressions by using
definitions (A2)–(A10) and (A14). For complex
ð2k; 2kÞ-weighted scalars (k 2 Z) z ¼ ReðzÞ þ i ImðzÞ we
mean with z > 0 (z < 0) that z is real and strict positive
(negative) in the sequel.
It turns out that, given (11) and (12), the integrability

conditions of (6) are identically satisfied. Thus we find:
Proposition B.1: A Petrov type D spacetime admits an

US if and only if, with respect to an arbitrary WPNT,�2 is
real and one of the following sets of conditions holds:
(1) 	 � 0, the scalar invariant �	> 0, and q0 � �= �	

satisfies (5) and (6);
(2) � � ��, the real scalar invariant ð
� �
Þð�� ��Þ>

0, and q0 � �ð
� �
Þ=ð�� ��Þ satisfies
(5) and (6);

(3) � ¼ 	 ¼ 
� �
 ¼ �� �� ¼ 0, the scalar invariant
�� � 0 and one of the following situations occurs,
where q0 defined in each subcase satisfies (6) and
where b � ð�þ ��Þ=�, c � �=�:
(a) ImðbÞ ImðcÞ> 0 and q0 � ImðcÞ=ImðbÞ also

satisfies q20 � ReðbÞq0 þ ReðcÞ ¼ 0;
(b) b ¼ ReðbÞ, c < 0, and q0 � ðbþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4c
p

Þ=2;
(c) b > 0, c > 0, b2 � 4c, and q0 � ðbþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4c
p

Þ=2 or q0 � ðb�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
Þ=2;

(4) � ¼ 	 ¼ 
� �
 ¼ �� �� ¼ 0, and either
(a) � ¼ 0 � �, ð ��þ �Þ� > 0, and q0 ¼

�=ð�þ ��Þ satisfies (6), or
(b) � � 0 ¼ �, ð�þ ��Þ� > 0, and q0 ¼

ð�þ ��Þ= �� satisfies (6);
(5) the WPNT directions are HO, i.e., (13) and (14)

holds.
The subdivision of case 3 stems from a straightforward

analysis of the first equation of (5). In cases 1, 2, 3a, 3b, and
4 there is a unique US, whereas there may be one or two
USs in case 3c. Because of the number and nature of
Eq. (6) there is a 1-degree freedom of USs in case 5, where

the condition �2 ¼ ��2 can be dropped since it is implied
by the imaginary part of (A30) + (A300) and (13) and (14).
Important examples of spacetimes satisfying criterion 5 are
the Petrov type D purely electric Einstein spaces and their
‘‘electrovac’’ generalizations (see [40,57] and Sec. II C)
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and all spacetimes with (pseudo-)spherical or planar sym-
metry (which constitute the LRS II Lorentzian spaces, see
[16,37,58]). These examples all satisfy (7) on top of (13)
and (14) and are further characterized by �00 ¼ �22 ¼
ð�11 ¼Þ0, respectively, � ¼ � ¼ ðR ¼ 0 (cf. [36]).

The spacetime will admit a unit timelike vector field ua

satisfying

ua;b ¼ � _uaub; (B3)

corresponding to a rigid US or modeling a rigid
nonrotating cloud of test particles, if and only if a
ð�2;�2Þ-weighted field q exists satisfying (5), (6), and
(34). Notice that, given (34), the third equation of (5) is
identically satisfied. Hence we have

Proposition B.2: A Petrov type D spacetime admits a
rigid US if and only if, with respect to an arbitrary WPNT,
�2 is real and one of the following sets of conditions holds:

(1′) condition 1 with the third equation of (5) replaced
by (34);

(2′) the scalar invariant 
�> 0 and q0 � 
= �� satisfies
(5) and (6);

(3′)-(5′) conditions 3–5 with 
� �
 ¼ �� �� ¼ 0 re-
placed by 
 ¼ � ¼ 0.

In case 50, the spacetime possesses geodesic, shear-free,
and nondiverging PNDs (� ¼ 	 ¼ � ¼ 0, � ¼ � ¼

 ¼ 0)—thus belonging to Kundt’s class—and HO Weyl
principal complex null directions (� ¼ 	 ¼ �þ �� ¼ 0),
and admits a 1-degree freedom of rigid USs.

The spacetime is static if and only if it admits a HO
timelike KVF. An equivalent characterization was given by
Ehlers and Kundt [4]: the spacetime is static if and only if a
unit timelike vector field ua exists for which shear, vor-
ticity, and expansion scalar vanish, i.e. (B3) holds, and for
which the acceleration _ua is Fermi propagated along the
integral curves of ua:

€u ½aub� ¼ 0: (B4)

The field ua is then parallel to a (HO and timelike) KVF
and identified with a congruence of static observers. By a
long but straightforward calculation, thereby simplifying
expressions by means of (5), (6), (34), and (A25), (A250),
and the ½Þ; Þ0�ðqÞ commutator relation, one shows that the
extra condition (B4) is equivalent to

ðq�þ q�1 ��ÞðÞqþ ffiffiffiffiffiffi
2q

p Þ � 2Þ ��þ 2qÞ�þ�12

� q�01 ¼ 0; (B5)

ÞÞq ¼ ��þ ��� qð��þ ��Þ � q�1ð� ��þ ���Þ

þ 2�11 � R

12
þ 2�2: (B6)

In case 50 above, the Ricci equations (A25) and (A28), and
(A280) yield Þ� ¼ �01 and �00 ¼ �22 ¼ 0, and so (B5)
and (B6) reduce to

�12 þ q�01 ¼ 0; (B7)

ÞÞq ¼ �2� ��þ 2�11 � R

12
þ 2�2: (B8)

In the subcase �01 ¼ �12 ¼ 0 of (B7), the ½Þ;Þ0�, ½Þ; ð�,
and ½Þ; ð0� commutators applied to q yield

Þ0Þq ¼ �qÞÞqþ ðÞqÞ2; (B9)

ðÞq ¼ �Þq; ð0Þq ¼ ��Þq: (B10)

The compatibility requirement of (B8)–(B10) with the
commutator relations for Þq gives the single condition

Þ0Rþ qÞR ¼ 0: (B11)

According to the Sach’s star dual [28] of the LRS criterion
in [36], the subcase Þ0R ¼ ÞR ¼ 0 of (B11) precisely
corresponds to a boost-isotropic spacetime with �þ �� ¼
0. From the above we conclude the following:
Proposition B.3: A Petrov type D spacetime is static if

and only if, with respect to an arbitrary WPNT, one of the
following sets of conditions holds:
(1′′)-(4′′) �2 is real, conditions 10–40 hold and q0 addi-

tionally satisfies (B5) and (B6);
(5′′a) condition 50 holds, the scalar invariant �01�21 <

0 and q0 � ��12=�01 satisfies (6) and (B8);
(5′′b) condition 50 holds, �01 ¼ �21 ¼ 0, the scalar

invariant ðÞ0RÞðÞRÞ< 0 and q0 � �Þ0R=ÞR satisfies (6)
and (B8);
(6′′) the spacetime is (locally) boost isotropic and �þ

�� ¼ 0.

The HO timelike KVF directions are parametrized by two
constants in case 600 [59], are 1 or 2 in number in case 300c,
and are unique in all other cases.
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Quantum Gravity 18, 4939 (2001).

[57] R. Debever and R.G. McLenaghan, J. Math. Phys. (N.Y.)
22, 1711 (1981).

[58] L. Defrise, Ph.D. thesis, Université libre de Bruxelles,
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