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This paper deals mainly with a discussion of three new manifold correction methods and three existing

ones, which can numerically preserve or correct all integrals in the conservative post-Newtonian

Hamiltonian formulation of spinning compact binaries. Two of them are listed here. One is a new

momentum-position scaling scheme for complete consistency of both the total energy and the magnitude

of the total angular momentum, and the other is the Nacozy’s approach with least-squares correction of the

four integrals including the total energy and the total angular momentum vector. The post-Newtonian

contributions, the spin effects, and the classification of orbits play an important role in the effectiveness of

these six manifold corrections. They are all nearly equivalent to correct the integrals at the level of the

machine epsilon for the pure Kepler problem. Once the third-order post-Newtonian contributions are

added to the pure orbital part, three of these corrections have only minor effects on controlling the errors

of these integrals. When the spin effects are also included, the effectiveness of the Nacozy’s approach

becomes further weakened, and even gets useless for the chaotic case. In all cases tested, the new

momentum-position scaling scheme always shows the optimal performance. It requires a little but not

much expensive additional computational cost when the spin effects exist and several time-saving

techniques are used. As an interesting case, the efficiency of the correction to chaotic eccentric orbits

is generally better than one to quasicircular regular orbits. Besides this, the corrected fast Lyapunov

indicators and Lyapunov exponents of chaotic eccentric orbits are large as compared with the uncorrected

counterparts. The amplification is a true expression of the original dynamical behavior. With the aid of

both the manifold correction added to a certain low-order integration algorithm as a fast and high-

precision device and the fast Lyapunov indicators of two nearby trajectories, phase space scans for chaos

in the spinning compact binary system are given.
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I. INTRODUCTION

Spinning compact binaries consisting of neutron stars or
black holes, as a high nonlinear and nonintegrable relativ-
istic two-body problem, are a rich source for potential
chaos whose signature lies in sensitive dependence on
initial conditions. Because the presence of chaos would
affect future gravitational-wave detections, its investiga-
tion has received intense attention in recent years.

Whether two different post-Newtonian (PN) approxima-
tions to the black hole pair exhibit chaos is mainly consid-
ered in the literature. One is the PN Lagrangian
formulation describing the orbital evolution of black hole
pairs in harmonic coordinates [1–3], and the other relates
to the PN Hamiltonian formulation determining the motion
of two compact bodies in Arnowitt-Deser-Misner coordi-
nates [4–6]. An earlier paper [7] confirmed with the
method of fractal basin boundaries that the 2PN
Lagrangian dynamics of a comparable-mass binary system
having one spinning body (or two spins restricted to the
leading order spin-orbit interaction) is chaotic. However,
the method of finding parametric solutions indicates the
absence of chaos in the corresponding 2PN Hamiltonian

dynamics [8,9]. These facts show that the two formulations
have different dynamical behaviors [10] although they are
proved to be approximately equivalent [2,4]. When two
objects spin and the spin effects include the spin-spin
coupling as well as the leading order spin-orbit interaction,
the 2PN Lagrangian dynamics was said to be chaotic
[7,11,12]. The result was also supported by other referen-
ces [13–15] in terms of different methods for identifying
chaos, such as the frequency map analysis [13] and the
invariant fast Lyapunov indicators of two nearby trajecto-
ries [14,15]. Here are some brief introductions to the
history and the details of these methods for distinguishing
between ordered and chaotic motion. The frequency analy-
sis method of Laskar and his associates [16–18], as an
improvement of the method of power spectrum [19–21],
can detect chaos much faster from order than the method of
Lyapunov exponents, and find the fundamental frequencies
of the regular orbits. It is also suitable for a system with
many degrees of freedom. Its main application lies in
identifying order and chaos in the solar system dynamics
[16]. Of course, the fast Lyapunov indicator method with
the length of a tangent vector increasing in completely
different time rates for ordered and chaotic orbits, intro-
duced by Froeschlé et al. [22,23], is also a quicker method
to find chaos. So is the smaller alignment index with the
magnitude of the difference or the sum of two normalized
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tangent vectors at the same orbit decreasing in completely
different time rates for the two types of orbits, made by
Skokos [24]. A comparison of the various methods can be
found in the book entitled Order and Chaos in Dynamical
Astronomywritten by Contopoulos [25]. On the other hand,
matched with this Lagrangian approach, the 2PN
Hamiltonian dynamics admits the onset of chaos [26].

The above investigations of chaos in spinning compact
binaries rely mainly on numerical integration algorithms,
which are only referred to as conventional numerical in-
tegration schemes like Runge-Kutta–type integrators
rather than symplectic integration algorithms [27–30].
Unfortunately, roundoff and truncation errors are not
avoided at all during a process of numerical integration.
Usually the small errors make the numerical solution dis-
satisfy the related integrals of motion, such as six con-
served quantities involving the total energy, the total
angular momentum vector, and the constant lengths of
spins in the conservative 3PN Hamiltonian formulation
for spinning compact binaries [5,6]. Especially for the
instability of gravitational systems (e.g. the Kepler prob-
lem as the Newtonian limit of the formulation, and chaotic
orbits) in the Lyapunov sense [31,32], such small errors
will often become unbounded with time. In this case, the
numerical solution will be far from the original hypersur-
face constrained by the integrals, i.e., its true solution. The
stabilization of differential equations of Baumgarte [33]
and the manifold correction of Nacozy [34] seem to be
powerful tools for weakening or eliminating the instability
influence on the numerical solution.

Baumgarte’s method [33] relates to the use of modified
and stabilized differential equations by adding some con-
trol terms (connected with known constraints) to the origi-
nal unstable differential equations. In other words, its
kernel is the application of stabilization to the set of
equations by including the stabilizing terms. Its discussions
and applications in satellite, asteroid, stellar, and planetary
problems can be seen in Ref. [32]. Maybe because there is
no universal rule for the choice of the optimal stabilizing
parameter in this method, one pays much attention to the
development and applicability of Nacozy’s approach [34]
in classical celestial mechanics. This approach applies the
Lagrange multipliers least-squares corrections of a few
integrals to obtain control terms, which are added to the
numerical solution at the end of each time step so that the
corrected numerical solution back onto the true manifolds
of these integrals can be achieved. Moreover, it is named as
the manifold correction [35], the projection method [36],
or the post-stabilization method [37,38].

It is worth noting that the correction to both the total
energy and the total angular momentum is not very effi-
cient for an n-body simulation in the Solar System [36].
The reason was given in Refs. [39–41]. Instead, individual
Kepler energies or angular momenta should be corrected.
However, they are not constants of motion but vary slowly

with time, so there seems to be an obstacle in the applica-
tion of Nacozy’s approach. Fortunately, more accurate
reference values, obtained from the integral invariant rela-
tions [42] of these varying quantities in quasi-Keplerian
motion, provide a good chance to implement this approach.
Following this idea, the scaling method of Liu and Liao
[43], the single scaling method of Fukushima [44], the
velocity scaling method and the position scaling method
of Ma et al. [45], as extensions to Nacozy’s approach, can
exactly satisfy the relation of the Keplerian energy for each
planet or asteroid so as to improve the accuracy of the
semimajor axis and the mean anomaly. Then, there are the
dual scaling method [46] with correction of individual
Keplerian energy and Laplace integral (equivalent to cor-
recting the semimajor axis and the eccentricity), and the
linear transformation method [47] with correction of indi-
vidual Keplerian energy, Laplace integral and angular
momentum vector (equivalent to improving all the orbital
elements of each body). In fact, these belong to rigorous
correction methods, which do strictly satisfy the relations
of these slowly varying quasi-integrals. Almost equivalent
to them in the correction effects, their corresponding ap-
proximate correction methods have recently been pre-
sented in Refs. [41,48–50].
In principle, the idea of a manifold correction can be

used in PN celestial mechanics. Based on this point and our
previous work [50] about the velocity scaling method with
least-squares correction of some constraints, several new
manifold correction methods will be designed for the con-
servative PN Hamiltonian formulation of spinning com-
pact binaries. This becomes one of our main aims in the
present paper. Another objective lies in evaluating how the
PN contributions, the spin effects, and the classification of
orbits exert influences on the effectiveness of the new
correction schemes as well as some existing correction
schemes involving Nacozy’s approach. Above all, our
ambition is to select the best of them as a reliable, fast,
and high-precision device for some further insight into the
dynamics of order and chaos in spinning compact binaries.
The remainder of this paper is constructed as follows. In

Sec. II, all conserved quantities in the 3PN Hamiltonian
formulation of spinning compact binaries are listed, and six
new and old manifold correction methods for these invar-
iants are given. Then numerical simulations and compari-
sons are arranged in Sec. III. As an application of the
optimal manifold correction method, phase space scans
for chaos in spinning compact binaries are shown in
Sec. IV. Finally, Sec. V summarizes our conclusions.
Geometric units c ¼ G ¼ 1 are used throughout the work.

II. PHYSICAL MODEL AND MANIFOLD
CORRECTION SCHEMES

We introduce the Hamiltonian formulation of spinning
compact binaries, its equations of motion, and its first
integrals. Then several manifold correction schemes, in-
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cluding the manifold correction of Nacozy [34] and the
existing velocity (or momentum) scaling method with
least-squares correction of some constraints [50], its ex-
tensions and its variants, are prepared for consistency of
these integrals at every integration step.

A. The Hamiltonian formulation, evolution equations,
and conserved quantities

For a relativistic system of spinning black hole pairs
with masses m1 and m2 (m1 � m2), we take the total mass
M ¼ m1 þm2 and the reduced mass � ¼ m1m2=M, and
also set � ¼ �=M ¼ �=ð1þ �Þ2 with the mass ratio � ¼
m1=m2. The dimensionless relative coordinate vector r is
measured in terms of M, and its corresponding canonical
momentum p in terms of�. In this sense, the unit of time t
has no choice butM. In the mean time we specify the scale
r as the length of the vector r, and let the unit vector n be
r=r. The dimensionless conservative 3PN Hamiltonian for
describing center-of-mass motion of the relativistic two-
body problem can be written as

H ¼ HO þHS: (1)

The first term HO in the above equation denotes the pure

orbital part including the Newtonian, 1PN, 2PN, and 3PN
contributions, that is,

HO ¼ HN þH1PN þH2PN þH3PN: (2)

Their detailed expressions read [5,6]

HN ¼ p2

2
� 1

r
; (3)

H1PN ¼ 1

8
ð3�� 1Þðp2Þ2 � 1

2
½ð3þ �Þp2 þ �ðn � pÞ2� 1

r

þ 1

2r2
; (4)

H2PN ¼ 1

16
ð1� 5�þ 5�2Þðp2Þ3 þ 1

8
½ð5� 20�� 3�2Þ

� ðp2Þ2 � 2�2ðn � pÞ2p2 � 3�2ðn � pÞ4� 1
r

þ 1

2
½ð5þ 8�Þðp2Þ þ 3�ðn � pÞ2� 1

r2

� 1

4
ð1þ 3�Þ 1

r3
; (5)

H3PN ¼ 1

128
ð�5þ 35�� 70�2 þ 35�3Þðp2Þ4 þ 1

16
½ð�7þ 42�� 53�2 � 5�3Þðp2Þ3 þ ð2� 3�Þ�2ðn � pÞ2ðp2Þ2

þ 3ð1� �Þ�2ðn � pÞ4p2 � 5�3ðn � pÞ6� 1
r
þ

�
1

16
ð�27þ 136�þ 109�2Þðp2Þ2 þ 1

16
ð17þ 30�Þ�ðn � pÞ2p2

þ 1

12
ð5þ 43�Þ�ðn � pÞ4

�
1

r2
þ

��
� 25

8
þ

�
1

64
�2 � 335

48

�
�� 23

8
�2

�
p2 þ

�
� 85

16
� 3

64
�2 � 7

4
�

�
�ðn � pÞ2

�
1

r3

þ
�
1

8
þ

�
109

12
� 21

32
�2

�
�

�
1

r4
: (6)

On the other hand, the second part HS in Eq. (1), as
spinning effects, is of the form [5,6]

HS ¼ HSO þHSS: (7)

Here the spin-orbit coupling at 1.5PN order reads

HSO ¼ 1

r3
L � Seff (8)

with the Newtonian-looking angular momentum

L ¼ r� p (9)

(whose magnitude is L ¼ jLj) and

S eff ¼
�
2þ 3

2�

�
S1 þ

�
2þ 3

2
�

�
S2: (10)

In addition, the spin-spin coupling at 2PN order is given by

HSS ¼ 1

2r3
½3ðS0 � nÞ2 � S2

0� (11)

with

S 0 ¼ ð1þ 1=�ÞS1 þ ð1þ �ÞS2: (12)

Note that dimensionless spin variables are adopted and
defined as

S i ¼ Ŝið�im
2
i =M

2Þ ði ¼ 1; 2Þ; (13)

where Ŝi represent unit spin vectors, and dimensionless
parameters �i 2 ½0; 1�. Through this treatment, the system
(1) depends on no mass but the mass ratio.
The equations of motion about conjugate variables ðr;pÞ

satisfy the canonical forms

dr

dt
¼ @H

@p
;

dp

dt
¼ �@H

@r
: (14)

Meanwhile, the time evolutions of the two spins are [5,6]

dŜi

dt
¼ @H

@Si

� Ŝi ¼ �i � Ŝi; (15)

where
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�1 ¼
�
2þ 3

2�

�
L

r3
þ 1

�r3
½3nðS2 � nÞ � S2�

þ 3

r3
ð1þ 1=�Þ2nðS1 � nÞ; (16)

�2 ¼
�
2þ 3

2
�

�
L

r3
þ 1

�r3
½3nðS1 � nÞ � S1�

þ 3

r3
ð1þ �Þ2nðS2 � nÞ: (17)

Obviously, the Hamiltonian (1) itself, called the total
energy E, is a first integral of motion. Besides this, there
are five integrals or conserved quantities, involving the
total angular momentum [5,6]

J ¼ Lþ S1 þ S2 (18)

(whose magnitude is J ¼ jJj) and the constant unit lengths
of spins

Ŝ i ¼ jŜij ¼ 1: (19)

In total, six independent integrals exist in a 12-dimensional

space made of variables ½r;p; Ŝ1; Ŝ2�.
However, the existence of these six independent inte-

grals does not imply the integrability of the system (1)
owing to the use of these two noncanonical or nonconju-
gate spin variables whose time evolutions are Eq. (15) but
unlike the canonical Hamiltonian equations (14). In fact,
the 12-dimensional problem can be reduced to a 10-
dimensional canonical form with symplectic structure
[51], where four integrals including the total energy and
the total angular momentum vector exist, but a fifth integral
is absent. Because of this high nonlinearity and nonintegr-
ability, the analytical solutions of the system cannot be
obtained, but the numerical solutions easily can.
Unfortunately, various errors in numerical integrations
often cause the loss of these conserved quantities. That is
to say, the errors may make the numerical solutions leave
the 6-dimensional hypersurface determined by the inte-
grals. In order to avoid it, we shall introduce some mani-
fold correction schemes in which the numerical solutions
are frequently readjusted to rigorously satisfy the identity
relations (1), (18), and (19), or to approximately remain on
the original integral hypersurface during the numerical
integration.

B. Several manifold correction schemes

Assume that the system (1) has the total energy E0 and
the total angular momentum vector J0 (whose three com-
ponents are ½Jx0; Jy0; Jz0�, and whose magnitude is J0) at

the starting time. And suppose that H and J are, respec-
tively, viewed as the energy and the angular momentum

given by a true solution ½r;p; Ŝ1; Ŝ2� of the system at time t.

As mentioned above, there are always H ¼
Hðr;p; Ŝ1; Ŝ2Þ � E0, J ¼ Jðr;P; Ŝ1; Ŝ2Þ � J0, and Ŝi �

1. On the other hand, it is easy to obtain a numerical

solution ½r�;p�; Ŝ�
1; Ŝ

�
2� at the same time t by using a

numerical scheme to integrate the evolution equations
(14) and (15) for the system (1). The so-called computed
(or integrated) solution corresponds to the computed en-

ergy H� ¼ Hðr�;p�; Ŝ�
1; Ŝ

�
2Þ, the computed angular mo-

mentum J� ¼ Jðr�;p�; Ŝ�
1; Ŝ

�
2Þ, the computed Newtonian

angular momentum L� ¼ Lðr�;p�Þ, and the computed

spin lengths Ŝ�i . Generally speaking, H� � E0, J
� � J0,

and Ŝ�i � 1 because various errors in the computational
procedure give rise to the computed solution different from
the true one. In this sense, there is a simple way to find the
relationship between the computed solution and its more

accurate solution ½�r; �p; �̂S1; �̂S2� via spatial scale transforma-
tions to the computed solution, in which scale factors are

determined by constraining the solution ½�r; �p; �̂S1; �̂S2� on the
proper integral surfaces. Thus the more accurate solution,
called the corrected solution, may become a good approxi-
mation to the true solution.

For corrections to the computed spin vectors Ŝ�
i , a simple

treatment is

Ŝ i � �̂Si ¼ Ŝ�
i =Ŝ

�
i : (20)

At once, the integrals (19) are exactly satisfied at each
integration step. As to corrections to both the computed
energy H� and the computed angular momentum J�, sev-
eral methods that adjust the coordinates or the momenta
with the aid of scale transformations are presented as
follows.
Method 1 (M1): A momentum scaling scheme with least-

squares correction of four integrals.—This approach,
which deals with both the use of only a scale transforma-
tion to the computed velocity (or momentum) vector and
the determination of the scale factor based on the least-
squares correction of the sum of the squares of errors of
several integrals, was proposed in our previous work [50].
Now it is applied to suppress the accumulation of numeri-
cal errors in these integrals, Eqs. (1) and (18). The cor-
rected momentum vector is expressed as

p � �p ¼ �p�; (21)

where the scale factor � is given by the minimizing error
function

�1ð�Þ ¼ w1½Hðr�; �p; �̂S1; �̂S2Þ � E0�2

þ w2f½Jxðr�; �p; �̂S1; �̂S2Þ � Jx0�2

þ ½Jyðr�; �p; �̂S1; �̂S2Þ � Jy0�2

þ ½Jzðr�; �p; �̂S1; �̂S2Þ � Jz0�2g; (22)

equivalently, its vanishing derivative

�0
1ð�Þ ¼ 0: (23)
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Note thatw1 andw2 are two positive weight coefficients. In
this case, � can be solved from Eq. (23) in terms of an
analytical method or a numerical method such as Newton’s
iterative method. Hereafter, the scaling correction scheme
(21) is referred to as method 1 (M1).

Two points about this technique are worth emphasizing.
It is clear from Eq. (21) that only the accuracy of the
integrated momentum would be improved rather than
that of the integrated position coordinates from a process
of one integration step. However, the latter should also be
raised during entire numerical integrations, as claimed in
Refs. [41,45]. On the other hand, it is shown in Eq. (22) that
the method may have a certain effectiveness of correction
to any one of the four integrals by Eqs. (1) and (18), but
does not completely.

Method 2 (M2): A momentum scaling scheme with least-
squares correction of the total energy and the magnitude of
the total angular momentum.—This technique still adopts
the scale change (21) but the scale factor � is derived from
the least-squares correction of the total energy and the
magnitude of the total angular momentum, that is, � sat-
isfies the relation

�0
2ð�Þ ¼ 0; (24)

where

�2ð�Þ ¼ w1½Hðr�; �p; �̂S1; �̂S2Þ � E0�2

þ w2f½Jðr�; �p; �̂S1; �̂S2Þ � J0�2g: (25)

Method 3 (M3): A momentum-position scaling scheme
with least-squares correction of four integrals.—It is simi-
lar to M1 but uses two distinct scale factors (� and �) to,
respectively, adjust the integrated momentum and the in-
tegrated position in the expressions

p � �p ¼ �p�; r � �r ¼ �r�: (26)

As in M1, the two scale factors are worked out by solving
the equations

@�3

@�
¼ 0;

@�3

@�
¼ 0 (27)

with the auxiliary quantity

�3ð�;�Þ ¼ w1½Hð�r; �p; �̂S1; �̂S2Þ � E0�2

þ w2f½Jxð�r; �p; �̂S1; �̂S2Þ � Jx0�2

þ ½Jyð�r; �p; �̂S1; �̂S2Þ � Jy0�2

þ ½Jzð�r; �p; �̂S1; �̂S2Þ � Jz0�2g: (28)

Method 4 (M4): A momentum-position scaling scheme
for complete consistency of both the total energy and the
magnitude of the total angular momentum.—This is a
combination of M2 and M3. That is to say, the method
continues to use Eqs. (26) and (27) in which�3 gives place

to

�4ð�;�Þ ¼ w1½Hð�r; �p; �̂S1; �̂S2Þ � E0�2

þ w2f½Jð�r; �p; �̂S1; �̂S2Þ � J0�2g: (29)

In this case, the two integrals are always preserved rigor-
ously at each integration step, i.e.,

Hð�r; �p; �̂S1; �̂S2Þ ¼ E0 (30)

and

j��L� þ �S1 þ �S2j ¼ J0: (31)

Substituting � [given by Eq. (31)] into Eq. (30), we can
easily obtain the scaling factor �, too.
Method 5 (M5): A momentum-position scaling scheme

with exact correction of the total energy and with least-
squares correction of three components of the total angular
momentum.—Here Eq. (30) is still considered, but Eq. (31)
is replaced with

d

d�
�5ð�;�Þ ¼ 0; (32)

where

�5ð�;�Þ ¼ ½Jxð�r; �p; �̂S1; �̂S2Þ � Jx0�2

þ ½Jyð�r; �p; �̂S1; �̂S2Þ � Jy0�2

þ ½Jzð�r; �p; �̂S1; �̂S2Þ � Jz0�2; (33)

and � is a function of �, determined by Eq. (30).
Method 6 (M6): Nacozy’s approach.—Of course, the

manifold correction scheme of Nacozy [34], which em-
ploys Lagrange multipliers to bring the corrected solution
to fall on the true integral hypersurface along the shortest
path, can be applied to stabilize the four integrals (1) and
(18). Some details of its implementation are illustrated
here. The integrated solution about the position and the
momentum is marked as X� ¼ ðx�; y�; z�; p�

x; p
�
y; p

�
zÞT ,

where the T superscript denotes transpose. The error func-
tion vector is defined as Y ¼ ðH� � E0; J

�
x � Jx0; J

�
y �

Jy0; J
�
z � Jz0ÞT . The corrected solution is

X � �X ¼ X� þ�X�; (34)

where the correction vector added to the numerical solution
is of the type

�X� ¼ �W�1ZTðZW�1ZTÞ�1Y: (35)

In the above equation, W is a 6� 6 weighting matrix with
rank 6, and Z stands for a 4� 6 matrix (having rank 4)
associated with partial derivatives of the integrals, namely,
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Z ¼

@H
@x

@H
@y

@H
@z

@H
@px

@H
@py

@H
@pz

@Jx
@x

@Jx
@y

@Jx
@z

@Jx
@px

@Jx
@py

@Jx
@pz

@Jy
@x

@Jy
@y

@Jy
@z

@Jy
@px

@Jy
@py

@Jy
@pz

@Jz
@x

@Jz
@y

@Jz
@z

@Jz
@px

@Jz
@py

@Jz
@pz

2
6666664

3
7777775

ðX�; �̂S1; �̂S2Þ

: (36)

Each corrected integral contains a second-order accuracy
of its uncorrected counterpart.

It should be pointed out that the six correction methods
mentioned above are all originated from the idea of least-
squares corrections, but have explicit differences in the
performance of improving the accuracy of these integrals
and the correction path of forcing the integrated solution
back to the original integral hypersurface. The number of
the corrected integrals is always more than that of the scale
factors used in any one of the four methods M1, M2, M3,
and M5. As a result, each of the integrals (except the
energy integral in M5) has neither a complete correction
nor a least-squares correction. Note that the least-squares
correction is only applied to the sum of the squares of the
errors of these integrals. However, M4, as a particular case
that the number of the requested scale factors is just equal
to one of the integrals of the total energy and the magnitude
of the total angular momentum, can exactly keep the two
integrals in numerical integrations. In addition, M6, unlike
each of the four methods M1, M2, M3, and M5, gives the
least-squares correction to individual integral. On the other
hand, the correction direction is not normal to the hyper-
surface for each of the five methods M1–M5, but it is for
M6. Table I lists some basic characteristics of these cor-
rection methods. Detailed numerical simulations will also
be necessary to give further insight into the correction
effectiveness of each method.

III. NUMERICAL COMPARISONS

The above manifold correction methods are used to
control numerical errors of the related integrals according
to three cases: the Newtonian two-body problem, the pure
orbital part to the 3PN order, and the 3PN formulation
having two spins.

A. The Newtonian two-body problem

A pure Kepler two-body problem (3), as the Newtonian
limit of the system (1), holds the energy integral (3) and the

angular momentum integrals (9). The corrections to these
integrals are equivalent to ones to the orbital elements such
as the semimajor axis, the inclination, and the longitude of
the ascending node. In order to suppress the growth of
integration errors in these elements, the rotation combined
with the single scaling method was proposed in Ref. [52].
Since the rotation and the single scaling method are used
independently, the energy integral and the angular momen-
tum are not simultaneously corrected. Here we consider the
applicability of the above manifold corrections. For the
simplified case, the scale factors of M4 and M5 can be
given explicitly. For M4 we have

� ¼ ½L� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�2 þ 2E0L

2
0r

�2p�2
q

�=ðL0r
�p�2Þ;

� ¼ L0=ð�L�Þ:
(37)

Additionally, the two scale factors in M5 are easily
achieved by

�¼ ½L�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�2þ 2E0r

�2p�2ðL0 �L�Þ2
q

�=½r�p�2ðL0 �L�Þ�;
�¼ ðL0 �L�Þ=ð�L�2Þ: (38)

However, the determination of the scale factors for the
three methods M1, M2, and M3 has to rely on the
Newtonian method in which the iterative precision is de-
sired to arrive at the order of 10�15.
According to the suggestion of Ref. [50], we still take

the weight coefficients w1 ¼ 100 and w2 ¼ 1. And let the
weighting matrix W be a unit matrix. Now a fifth-order
Runge-Kutta integrator (RK5) with a fixed time step of 0.2,
as an uncorrected integrator, is used to integrate a quasi-
circular (or small eccentricity) orbit with initial conditions
of ðr;pÞ ¼ ð20; 0; 0; 0; 0:2461; 0Þ. In fact, the orbit corre-
sponds to its eccentricity e ¼ 0:1847. As shown in Fig. 1
that draws numerical errors of both the energy and the
length of the angular momentum varying with time for
RK5 and its correction methods M1–M6, all these correc-
tions compared with the uncorrected scheme RK5 have
almost the same effect in drastically controlling the errors
of the two integrals, even reaching the machine precision,
the order of 10�16. The result is also suitable for the pure
orbital part to 1PN or 2PN order. Thus it can be concluded
that the six correction methods are nearly effective in
improving the quality of integration for the three cases of

TABLE I. Basic characteristics of several manifold correction methods. Here we suppose that a jth-order integrator with a time step
of � works in a double-precision environment, the order of 10�16. J denotes the magnitude of the total angular momentum.

Correction method M1 M2 M3 M4 M5 M6

Approach character Approximate Approximate Approximate Rigorous Approximate Approximate

Corrected variables Momentum Momentum Momentum position Momentum position Momentum position Momentum position

Energy accuracy Unknown Unknown Unknown 10�16 10�16 Oð�2ðjþ1ÞÞ
Accuracy of J Unknown Unknown Unknown 10�16 Unknown Oð�2ðjþ1ÞÞ
Literature Ref. [50] Ref. [50] This work This work This work Ref. [34]
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the Newtonian problem, the 1PN and 2PN approximations.
What about their performance for the pure orbital part to
3PN order? The following demonstration will answer it.

B. The 3PN nonspinning formulation

The pure orbital 3PN formulation (2) belongs to a typi-
cal perturbed Kepler problem that has the energy integral
(2) and the angular momentum integrals (9). The existence
of these integrals implies the integrability or the nonchao-
ticity of this canonical system. It is necessary to apply the
Newtonian method to solve the scale factors of the five
methods M1–M5. The above orbit is still used in this
formulation with the mass ratio � ¼ 1=3. Although there
are the 1PN, 2PN, and 3PN contributions, the orbit pro-
vided by RK5 in Fig. 2(a) like its corresponding Keplerian
orbit is always restricted to the x-y plane because the
constant angular momentum vector is perpendicular to
the plane at any time. As is expected, the corrected orbit
from any correction scheme in Fig. 2(b) remains the same
as the uncorrected one in Fig. 2(a). In fact they are both
completely different if the integration lasts too long. An
uncorrected regular orbit can become spurious chaos for a
long time of numerical integration, but its corrected one
cannot. See Fig. 5 of Ref. [45] or Fig. 1 of Ref. [50] for
more details.

However, there are great differences in suppressing the
errors of these integrals among the correction methods.
Figures 2(b) and 2(c) display that the three methods M1,
M2, and M3 have slighter corrections to either the energy
or the angular momentum (except for M3) but do not bring
more dramatic ones than the uncorrected scheme, RK5. On
the contrary, M4, M5, and M6 play an important role in
significantly reducing the errors of these conserved quan-
tities down to the level of the machine epsilon. This
illustrates clearly that the PN terms have a great effect on
these correction methods. Next we want to know whether
the validity depends on the spin effects.

C. The 3PN formulation with two spins

In order to further understand the effectiveness of vari-
ous correction methods mentioned above, we are interested
in the application of these methods to small eccentric
orbits, higher eccentric orbits, and chaotic orbits in the
comparable-mass compact binary system (1), where the
1.5PN order and 2PN order spin effects as well as the 1PN,
2PN, and 3PN pure orbital contributions are simulta-
neously added to the Newtonian problem (3).

1. A small eccentric regular orbit

The dynamical parameters we used are � ¼ 1=3 and
�1 ¼ �2 ¼ 0:75. The initial conditions of the chosen orbit
(labeled as orbit 1) are the same as those in Fig. 2, and the

starting unit spin configurations Ŝ1 ¼ ðsin	1; 0; cos	1Þ and
Ŝ2 ¼ ðsin	2; 0; cos	2Þ with initial spin angles 	1 ¼ �=6
and 	2 ¼ �=4 are chosen. As stated above, the correspond-
ing Keplerian orbit is small eccentric or quasicircular.
By means of RK5, we get a three-dimensional view of

the orbit in Fig. 3(a) that indicates the occurrence of the
precession motion. This tells us the dependence of the
precession of the orbital plane on the spin contributions.
Through the treatment of the manifold correction method
M4, the obtained three-dimensional view in Fig. 3(b) is
very similar to the one in Fig. 3(a), but some difference
between them exists indeed from the projection onto the
x-px plane. The tours without any correction in Fig. 3(c)
have a small width formed by a series of discretized points,
while the one with correction in Fig. 3(d) becomes ex-
tremely thinner. A similar result can also be found from the
projection onto the x-y plane, colored gray in panels (a)
and (b).
As far as the classification of the orbit in Fig. 3 is

concerned, power spectra with a discrete frequency distri-
bution of the time series of the x component in Fig. 4(a)
turn out to show the regularity of the orbit. This fact is also

FIG. 1. Errors of the total energy (a) and the magnitude of the angular momentum (b) for RK5 and its correction schemes applied to
the Kepler problem. As two examples to illustrate the related symbols, M2� 0:01 denotes the plotted errors decreased by 100 times
compared with the real ones for M2, while M3� 100 indicates the plotted errors enlarged by 100 times.
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FIG. 2. A 3PN orbit with initial conditions of ðr;pÞ ¼ ð20; 0; 0; 0; 0:2461; 0Þ and the mass ratio � ¼ 1=3 without any spin and its
errors in the total energy and the angular momentum. (a) relates to the uncorrected orbit, and (b) to the corrected one with M4.

FIG. 3. A quasicircular orbit with initial conditions and mass ratio the same as those of Fig. 2 in the case of two starting unit spin
configurations Ŝ1 ¼ ðsin�6 ; 0; cos�6Þ and Ŝ2 ¼ ðsin�4 ; 0; cos�4Þ and spin parameters �1 ¼ �2 ¼ 0:75. (a) is the three-dimensional view

yielded by the uncorrected scheme RK5, where the bottom code-colored gray denotes the projection of the orbit onto the x-y plane. (b)
relates to the correction of (a) with M4. Both (c) and (d) are the uncorrected and corrected projections of the orbit onto the x-px plane,
respectively. Obviously, the corrected tours become thinner than the uncorrected ones.
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supported by the fast Lyapunov indicator (FLI) that mea-
sures the power-law divergence of initially close trajecto-
ries with time in Fig. 4(c). Notice that both the corrected
power spectra and FLIs on the right-hand side of Fig. 4 and
the uncorrected ones on the left-hand side are nearly
compatible. As a point to illustrate, the FLI we adopted
is based on the one with two-nearby trajectories and its
algorithm proposed in Ref. [53]. This indicator is defined
as

FLI ðtÞ ¼ lg½dðtÞ=d0�; (39)

where d0 and dðtÞ represent the separations of the two
trajectories at times 0 and t, respectively. Although it is
not a coordinate-invariant indicator mentioned in [54,55],
the identification of chaos is unambiguous in the adopted
space-time coordinates. It is said to be a more sensitive tool
to detect chaos from order than the method of Lyapunov
exponents [14]. It has been applicable to the study of the
dynamics of some complicated systems [15,56,57].
Because of this advantage, it is used frequently in later
discussions of this paper.

On the other hand, Fig. 5 indicates that the spin part (3)
does greatly affect the effectiveness of these correction

methods. The corrected errors in the integrals including
the total energy and the total angular momentum for the
methods M1, M2, and M3 are slightly less than or almost
the same as the uncorrected errors for RK5. Roughly
speaking, the corrections become basically useless. In
particular, Nacozy’s approach M6 does not provide very
idealized corrections. Meanwhile it is easy to see that M4 is
the best method in the control of the errors. M4 makes the
errors of the integrals almost equal or close to the limit of
the computer capability. These results should be reason-
able since M4 itself satisfies strictly the two integrals from
the theoretical point of view (note that M5 also gives an
exact correction to the energy), but the rest does approxi-
mately. In addition, it is worth emphasizing that the im-
plementation of M4 or M5 becomes more difficult or needs
a rather larger additional computational expense in the
spinning case than it does in the nonspinning case. Here
are several time-saving techniques during the correction
procedure. First, the scaling factor � appearing in all
denominators should be killed before the iterative method
is used to solve the two scaling factors. Second, the itera-
tion should end and the obtained values of the scaling
factors should be outputted when the number of iterations

1 x 10-4 1 x 10-4

FIG. 4. Comparison of the power spectra between the uncorrected (a) and corrected (b) cases for the orbit in Fig. 3. The bottom
panels are the same as the top ones but to the fast Lyapunov indicators (FLIs).
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is added up to 1500 even if the requested iterative precision
with respect to the scaling factors is not satisfied. As an
illustration, the energy accurate to the order of 10�16 and
the angular momentum to the order of 10�14 within some
time span for M4 show that the scaling factors have
achieved the requested iterative precision, while slightly
poorer accuracies of the energy and the angular momentum
at the approach of the final integration time indicate that
the scaling factors have not yet. Third, the iteration should
also stop when the number of iterations does not reach
1500 but the scaling factor � is as small as the order of
10�12, so extremely smaller denominators can be avoided
to appear in the equations of motion.

Considering the spin effects making the correction
methods M1, M2, and M3 have a poor performance in
controlling these integral errors and noting M5 inferior to
M4, we focus on a comparison betweenM4 andM6 in later
numerical checks.

2. A higher eccentric regular orbit

Now we choose an orbit (labeled as orbit 2) that holds
initial conditions ðr;pÞ ¼ ð20; 0; 0; 0; 0:265; 0Þ, initial spin
angles 	1 ¼ 	2 ¼ �=4, and dynamical parameters � ¼ 1
and �1 ¼ �2 ¼ 0:75. Its corresponding Keplerian orbit has
larger eccentricity e ¼ 0:4045.
Seen from a three-dimensional view of the orbit in

Fig. 6(a), the precession motion yields still. Although the
three-dimensional orbit and its projection onto the x-y
plane in Fig. 6(b) are obtained from the uncorrected inte-
grator RK5, they are very similar when the correction M4
is added. In addition, they seem to indicate that the orbit is
typically ordered. The methods of power spectra and FLIs
(whose diagrams are not plotted) also support this point.
It is easy to observe that the corrected errors of the

energy and the angular momentum given by M4 and M6
for the larger eccentric orbit in Fig. 7 are similar to those
for the quasicircular orbit in Fig. 5. That is to say, Nacozy’s

FIG. 6. An eccentric orbit with initial conditions ðr;pÞ ¼ ð20; 0; 0; 0; 0:265; 0Þ, parameters � ¼ 1 and �1 ¼ �2 ¼ 0:75, and initial
spin angles 	1 ¼ 	2 ¼ �=4. (a) and (b) represent a three-dimensional view of the orbit and its projection onto the x-y plane,
respectively.

FIG. 5. Errors in the total energy and the total angular momentum for the orbit of Fig. 3.
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approachM6 has smaller corrections to either the energy or
the angular momentum than the uncorrected scheme RK5,
while the method M4 provides more dramatic ones. Still
there is the problem that these scaling factors for M4
cannot reach the desired iterative precision under the lim-
ited number of iterations when integration time is close to
the end.

Besides the cases of smaller and larger eccentricities,
how chaotic eccentric orbits affect the correction effective-
ness of both M4 and M6 is worth paying attention to. See
the next numerical tests for more information.

3. A chaotic eccentric orbit

The spinning compact binary system is full of the high
nonlinearity, so it becomes a rich source of hiding potential
chaos. Chaos can occur in the conservative Hamiltonian
dynamics of spinning compact binaries with the spin ef-
fects at 2PN order and the pure orbital part to 2PN or 3PN

order. This fact was confirmed in Ref. [26]. Without a
doubt, chaos must increase the degree of the numerically
artificial dissipation. What about these corrections for this
case?
Let us consider the case of two maximal spin magni-

tudes, namely, spin parameters �1 ¼ �2 ¼ 1, and take the
mass ratio � ¼ 1. Initial conditions of an orbit marked as
orbit 3 are ðr;pÞ ¼ ð5:658; 0; 0; 0; 0:764 580 5; 0Þ, corre-
sponding to the Newtonian orbital eccentricity e ¼
0:3076. Meanwhile initial unit spin vectors are chosen

as Ŝ1 ¼ ð0:130 36; 0:262 852;�0:955 989Þ and Ŝ2 ¼
ð0:118 966;�0:134 59;�0:983 734Þ. When RK5 is still
used as a numerical tool, the three-dimensional orbit em-
bedded in Euclidian space is drawn in Fig. 8(a). The orbit
looks to exhibit a highly stochastic motion. So does the
projection onto the x-y plane in Fig. 8(b). As a point to
illustrate, the three-dimensional view and its projection
onto the plane agree closely with those when the correction

FIG. 7. Similar to Fig. 5, but for the eccentric orbit in Fig. 6.

FIG. 8. A chaotic eccentric orbit of two maximally spinning compact binaries with initial conditions ðr;pÞ ¼
ð5:658; 0; 0; 0; 0:764 580 5; 0Þ, dynamical parameters �1 ¼ �2 ¼ 1 and � ¼ 1, and initial unit spin vectors Ŝ1 ¼
ð0:130 36; 0:262 852;�0:955 989Þ and Ŝ2 ¼ ð0:118 966;�0:134 59;�0:983 734Þ. Both the three-dimensional view (a) and its projec-
tion (b) onto the x-y plane are given by RK5.
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M4 or M6 is added. However, this does not mean that there
is not any difference in the corrections of the total energy
and the magnitude of the total angular momentum between
M4 and M6. As we expect, M4 can achieve the ideal
corrections to either the total energy or the magnitude of
the total angular momentum, but M6 has no correction
effect. Their details are provided in Fig. 9.

To our surprise, M4 is so powerful to correct these errors
that the scaling factors can be given in the desired iterative
precision before the limited number of iterations at every
integration step. The case is in disagreement with those of
the above-mentioned quasicircular regular orbit 1 and ec-
centric regular orbit 2 because of the basic dynamical
character of orbit 3. Both the power spectra with a con-
tinuous frequency distribution in Fig. 10(a) and the FLIs
having the exponential-law divergence of initially close
trajectories with time in Fig. 10(c) indicate the chaoticity
of orbit 3. Certainly, chaos with exponential sensitivity on
small variations of initial conditions results in a rapid
increase of various numerical errors and Lyapunov’s orbi-
tal instability, but this just gives a good chance for the
application of a manifold correction scheme. It is mainly
based on the task of the correction scheme, which sup-
presses the fast accumulation of these errors. In other
words, the faster the artificial dissipation gets, the more
necessary the use of the correction is, and the more appar-
ent the effect of the correction becomes. Therefore, the
scaling factors become quicker to obtain for the chaotic
case than they do for the above regular orbits.

Now we want to know how the manifold correction
scheme M4 exerts influences to the power spectra, the
FLIs, and the Lyapunov exponents for the chaotic orbit.
It is clearly shown in Figs. 10(a) and 10(b) that the cor-
rected power spectra on the right-hand side coincide basi-
cally with the uncorrected ones on the left-hand side. In
addition, the corrected FLIs and the uncorrected ones are
almost the same before an integration time span of about
10 000, as shown in Fig. 10(c). Since then, a separation

between them has begun to produce, and the value of the
corrected FLI has always been over that of the uncorrected
FLI at the same time. This seems to tell us that the
manifold correction leads to a chaotic amplification effect,
or some increase in the strength of chaos. Similarly, the
manifold correction also has an effect on the amplification
of a Lyapunov exponent. The Lyapunov exponent in
Fig. 10(d) is referred to as the slope of the line
ln½dðtÞ=d0� vs t. This is called the least-squares fit method
for the computation of Lyapunov exponents. In principle,
the calculation of Lyapunov exponents should have used
the limit method by obtaining the stabilizing limit values
about the natural logarithm of the divergence rate of nearby
trajectoriesversus time averages, namely,


 ¼ lim
t!1

1

t
ln
dðtÞ
d0

: (40)

However, usually the fit method is easier to identify the
regularity or the chaoticity than the limit method during a
short time [14]. Because of this, the fit method is used to
compute Lyapunov exponents in some referen-
ces [12,26,58]. A practical problem is whether the ampli-
fication of both the FLIs and the Lyapunov exponents given
by the manifold correction has an overestimation or physi-
cal significance. As a check, we employ higher-precision
integrators such as an 8th–9th order Runge-Kutta-Fehlberg
algorithm of variable time step and the 12th order Admas-
Cowell method to recalculate the FLIs and the Lyapunov
exponents. Consequently, it is found that these results
obtained from the higher-order integrators are nearly con-
sistent with those given by RK5 plus the manifold correc-
tion M4. This means that the amplification caused by the
manifold correction is not spurious. Here is an interpreta-
tion for it. When the manifold correction is used, the
preservation of these 6 conserved quantities is always
rigorous during the numerical integration so that a numeri-
cal solution is strictly restricted on a hypersurface of 6
dimensions. However, the artificial dissipation makes the

FIG. 9. Similar to Fig. 7, but for the chaotic orbit of Fig. 8.
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numerical orbit relatively free and relaxed for the case
without any correction, equivalently, run beyond the 6-
dimensional hypersurface. Thus the strength of chaos be-
comes weaker in some degree under the existence of the
artificial dissipation. In fact, the chaos damped by another
dissipation, called the gravitational dissipation at the 2.5PN
order radiation reaction term, was uncovered in Ref. [12].
Although the two kinds of dissipations are originated from
completely distinct mechanisms, they should play a similar
role in damping chaos. In brief, these facts and analysis
show that the manifold correction does keep some dynami-
cal properties even for the chaotic case. Inversely, the
chaotic case makes the manifold correction apparently
efficient, and leads to the fast convergence of the scaling
factors, as compared with the regular case.

By comparison with these results obtained in the above
numerical tests, a summary is concluded here. The effec-
tiveness of the above-mentioned six manifold correction
methods depends closely on the twofold, different approx-
imations to the same physical system and classification of
orbits. Above all, both the spin effects and the chaotic

feature of orbits have an important effect on corrections
to either the total energy or the magnitude of the total
angular momentum. Some details are described in the
following. For the Kepler problem as case 1, the six
manifold correction methods work almost equivalently in
keeping the errors of the total energy and the magnitude of
the total angular momentum at the level of the machine
epsilon. Nevertheless, the PN contributions for the 3PN
nonspinning formulation (case 2) make each of the mani-
fold corrections M1, M2, and M3 improve the quality of
these integrals only somewhat. Especially for case 3 (the
3PN formulation with two spinning objects), the existence
of the spin effects greatly affects the validity of these
corrections. Any one of the manifold corrections M1,
M2, andM3 gives only minor correction effects, or roughly
speaking, becomes invalid for orbit 1, the quasicircular
regular orbit. The correction M5 is relatively superior to
M6, but inferior to M4. It is particularly interesting to see
that M4 demonstrates the best performance of corrections
for orbit 3, the chaotic eccentric orbit. This time, M6
becomes almost useless. As a clear expression of the

1 x 10-4 1 x 10-4

1 x 104

FIG. 10. (a) and (b) correspond to the uncorrected power spectra and the corrected ones for the chaotic orbit of Fig. 8. (c) shows
comparisons between the uncorrected and corrected FLIs, and (d) shows those between the uncorrected and corrected Lyapunov
exponents as the slopes of the lines ln½dðtÞ=d0� vs t. Clearly, the corrected FLIs and slope are larger than the uncorrected ones after
t ¼ 10 000.
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performance of these corrections in all cases tested,
Table II shows a comparison of the average errors of the
total energy and the magnitude of the total angular mo-
mentum during the final integration time. On the other
hand, these corrections should also have some apparent
differences at the cost of additional computations. These
corrections have a negligibly small increase in additional
computational labor for cases 1 and 2. So they except the
corrections M4 and M5 when the spin contributions are
added. However, the spin effects cause M4 and M5 to need
much additional computational time because more itera-
tions are required to solve the scaling factors. For the sake
of time savings, the number of iterations is limited even if
the desired iterative precision is not reached. Through this
treatment, the correction M4 requires a little but not much
expensive additional computational cost. Note that the use
of the correction becomes more expensive for orbit 1 than
the one for orbit 3 because the convergence of the scaling
factors is slower for the former. Detailed CPU times about
these corrections are displayed in Table III.

In conclusion, of all the above-mentioned manifold
correction methods, M4 is thought of as the optimal cor-
rection method. It can drastically reduce the integration

errors especially for the chaotic case. Even if a low-order
integrator (e.g. RK5) combined with the manifold correc-
tion M4 is adopted, the obtained qualitative results on the
dynamical information should be reliable. Because of this,
the correction M4 with the FLIs will be worth recommend-
ing to give phase space scans for chaos so that the dynam-
ics of spinning compact binaries can be further
investigated.

IV. PHASE SPACE SCANS FOR CHAOS

A sensitivity to chaos depends on the variation of any of
the degrees of freedom as well as the mass ratio of the two
spinning compact objects. Numerical investigations are
impossible to cover all variations finding chaos. In this
instance our scan searching for the presence of chaos is
limited only to the variation of two initial spin directions
with the aid of both M4 added to RK5 and the FLIs.
Let us begin to trace a transition to chaos as one of

the two spin angles is varied initially. Some details of
the implementation are as follows. We fix the dynami-
cal parameters of the mass ratio � ¼ 1=4 and the spin
parameters �1 ¼ �2 ¼ 1, initial conditions ðr;pÞ ¼
ð5:658; 0; 0; 0; 0:764 580 5; 0Þ, and the first starting spin
angle 	1 ¼ �=2, whereas the second starting spin angle
	2 ranges from 0 to � with a span of �	2 ¼ 0:01. In total,
314 orbits are integrated numerically. Consequently, the
value of the FLI for each orbit is obtained after an integra-
tion time span of 105. All the FLIs of Fig. 11(a) show an
abrupt change in the dynamics from order to chaos. The
transition occurs when 	2 exceeds approximately 2.78,
corresponding to FLIs larger than 5.8 as the threshold
between order and chaos. If the mass ratio � ¼ 1=4 is
replaced only with � ¼ 1, the transition to chaos shifts
slightly from 	2 ¼ 2:78 to 	2 ¼ 2:38, as shown in
Fig. 11(b). It should be emphasized that the chaotic orbits
and the strength of chaos are mainly located near 	2 ¼ �
for the two cases. This coincides basically with the result of
[26] that chaos appears in the ð10þ 10ÞM	 configuration
when initial spin vectors are nearly antialigned with the
Newtonian-looking orbital angular momentumL. It can be
seen much clearly from the case of varying the two initial
spin angles. Figure 12(a) is a scan for chaos by calculating
the FLIs of 314� 314 orbits on the ð	1; 	2Þ plane. The
black domains relate to chaotic initial spin angles with
FLIs larger than 5.8, and the gray areas stand for regular
initial spin angles with FLIs less than 5.8. Obviously, there
is a strong chaotic belt in a neighborhood of a point ð�;�Þ,
but there is no chaos at all in some regions far away from
this point, especially including one region around the point
ð�=2; �=2Þ and another domain near the point (0, 0). That
is to say, chaos completely disappears when the initial
spins are both perpendicular to or aligned with the orbital
angular momentum. Saying this in another way, the spin
coupling effects are weak in these cases, while strong
around the point ð�;�Þ. Is it suitable for other fixed dy-

TABLE II. Errors �E of the total energy and errors �J of the
magnitude of the total angular momentum for RK5 and its
manifold correction methods. Cases 1, 2, and 3 correspond to
the Kepler problem, the 3PN nonspinning formulation, and the
3PN formulation having two spinning objects, respectively.
Orbits 1, 2, and 3 are in sequence referred to as the quasicircular
regular orbit in Fig. 3, the higher eccentric regular orbit of Fig. 6,
and the chaotic eccentric orbit in Fig. 8.

Method RK5 M1 M2 M3 M4 M5 M6

Case 1 �E 10�8 10�16 10�16 10�16 10�16 10�16 10�16

�J 10�5 10�15 10�15 10�15 10�15 10�15 10�15

Case 2 �E 10�6 10�7 10�7 10�8 10�16 10�16 10�16

�J 10�4 10�7 10�7 10�15 10�15 10�15 10�15

Case 3 �E 10�6 10�4 10�7 10�5 10�15 10�14 10�8

Orbit 1 �J 10�4 10�6 10�5 10�4 10�14 10�10 10�14

Case 3 �E 10�5 � � � � � � � � � 10�15 � � � 10�10

Orbit 2 �J 10�4 � � � � � � � � � 10�14 � � � 10�11

Case 3 �E 10�4 � � � � � � � � � 10�15 � � � 10�4

Orbit 3 �J 10�3 � � � � � � � � � 10�14 � � � 10�4

TABLE III. CPU times(s) of all the cases tested in Table II.

Method RK5 M1 M2 M3 M4 M5 M6

Case 1 9 10 10 10 10 10 10

Case 2 9 10 10 10 11 11 11

Orbit 1 10 12 12 12 40 30 15

Orbit 2 10 � � � � � � � � � 30 � � � 14

Orbit 3 10 � � � � � � � � � 27 � � � 14
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namical parameters, initial positions, and momenta? No, as
an answer, is shown in Fig. 12(b) that uses only � ¼ 1=4
instead of � ¼ 1. Unlike Fig. 12(a), this panel describes
that chaos is absent near the point ð�;�Þ, but present for
initial spin angles 	1 2 ð1:5; �� and huge numbers of
initial spin angles 	2 2 ½0; ��. The difference is because
the onset of chaos depends on not only a single physical
parameter or initial condition, but also a complicated com-
bination of all parameters and initial conditions. In this
sense, the dependence of chaos on a certain parameter or
initial condition should alter when other fixed dynamical
parameters or initial conditions are chosen. This is just a
further check of the work [15], where the dynamics of the
2PN Lagrangian formulation for spinning compact bi-
naries was resurveyed. In addition, it is worth noting that
Fig. 12(b) apparently contains the fractal meaning.

V. SUMMARY

The conservative PN Hamiltonian formulation for spin-
ning compact binaries holds six integrals of motion, the

total energy, the total angular momentum vector, and the
constant lengths of the two spin vectors. A scale trans-
formation to each spin can exactly preserve the constant
magnitude of the spin at every integration step. For the sake
of the numerical preservation or correction to the rest
integrals, several new and existing manifold correction
methods are considered. They include the method M1 as
an existing momentum scaling scheme [50] with least-
squares correction of the four integrals consisting of the
total energy and the total angular momentum vector, the
method M2 being an existing momentum scaling scheme
[50] with least-squares correction of the total energy and
the magnitude of the total angular momentum, the method
M3 belonging to a new momentum-position scaling
scheme with least-squares correction of the four integrals,
the method M4 corresponding to a new momentum-
position scaling scheme for complete consistency of both
the total energy and the magnitude of the total angular
momentum, the method M5 on a new momentum-position
scaling scheme with exact correction of the total energy
and with least-squares correction of three components of

FIG. 12. Similar to Fig. 11, but scans of a group of initial points on the 	1-	2 plane for chaos. Black areas with FLIs> 5:8 indicate
chaos, and gray areas with FLIs � 5:8 show order.

FIG. 11. FLI as a function of initial spin angle 	2 with fixed initial states r ¼ 5:658, py ¼ 0:764 580 5 and 	1 ¼ �=2, and spin
parameters �1 ¼ �2 ¼ 1.
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the total angular momentum, and the method M6 from
Nacozy’s approach to the four integrals [34]. Although
these corrections are all based on the idea of least-squares
corrections, there are explicit differences that each of the
four methods M1, M2, M3, and M5 gives only the least-
squares correction to the sum of the squares of the errors of
these integrals (except the energy integral for M5), while
M6 does one to an individual integral, and M4 can rigor-
ously maintain the two integrals of the total energy and the
magnitude of the total angular momentum during numeri-
cal integrations. In addition, the correction of M6 except
any of the leading five corrections pulls the numerical
solution back to the real integral hypersurface along the
shortest path.

The PN contributions, the spin effects, and the classifi-
cation of orbits are regarded as three important sources for
affecting the effectiveness of these manifold correction
methods. Any or all of these corrections can remain as
the accuracy of the total energy and the magnitude of the
total angular momentum at the level of the machine epsilon
for the pure Kepler case. However, the manifold correc-
tions M1, M2, and M3 have only minor effects on control-
ling the errors of these conserved quantities when the pure
orbital part to 3PN contributions is considered. In particu-
lar, the spin effects make the manifold corrections M1, M2,
and M3 useless. Even Nacozy’s approach M6 can hardly
work well for chaotic eccentric orbits. In all cases tested,
M4 is confirmed to be the best manifold correction in
drastically enhancing the quality of orbit integrations. On
the other hand, these three sources lead to different com-
putational efficiency of the above-mentioned corrections.
The additional computational cost of each of the six cor-
rection needs is negligibly small when the spin effects are
turned off. It is still valid to those except M4 and M5 for
the spin effects included. In this case, the limited number
of iterations for solving the two scaling factors, as one of
the time-saving techniques, is necessarily applicable to M4
or M5. Thus, the correction M4 requires a little but not

much expensive additional computational cost. A point to
note is that chaotic eccentric orbits become easier in the
application of this correction than quasicircular regular
orbits.
Inversely, the correction M4 can exert some influences

to an integrated orbit as compared with the case without
correction. These influences may refer to a 3-dimensional
view of the orbit, its projection onto a certain plane, the
power spectra, the FLIs, and the Lyapunov exponents.
When integration time of a regular orbit is not long, they
should not be apparently different between the corrected
case and the uncorrected one. However, for the chaotic
case the manifold correction gives rise to the amplification
of both the FLIs and the Lyapunov exponents compared
with the uncorrected counterparts. The amplification is not
spurious. This shows sufficiently that the manifold correc-
tion can maintain some dynamical features, and be viewed
as a powerful tool to get rid of Lyapunov’s orbital insta-
bility and to suppresses the fast growth of the errors.
According to the above-mentioned main points, we

generally recommend the addition of the manifold correc-
tion M4 to a low-order integration algorithm as a fast and
high-precision device with which to simulate the orbital
evolution of spinning compact binaries. Using this treat-
ment and the FLIs, we give the phase space scan for chaos
and further check the result of [15] to see that there is no
universal rule on the relationship between the transition to
chaos and single varying physical parameter or initial
condition when other fixed dynamical parameters and
initial conditions have different choices.
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