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We propose a model with quantum bosons on the fcc lattice, which has a stable algebraic Bose liquid

phase at low energy. We show that this phase is described by emergent quantum gravity at the Gaussian

z ¼ 3 Lifshitz fixed point in 3þ 1 dimensions. The stability of this algebraic Bose liquid phase is

guaranteed by the gauge symmetry of gravitons and self-duality of the low-energy field theory. By tuning

one parameter in the lattice boson model we can drive a phase transition between the z ¼ 3 Lifshitz

gravity and another algebraic Bose liquid phase, described by gravity at the z ¼ 2 Lifshitz point.
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The challenge of finding a satisfactory theory of quan-
tum gravity has stimulated theoretical physics for many
decades. We expect that such a theory should make sense
of the quantum fluctuations of the space-time metric at
low-energy scales, while providing a quantum mechanical
completion of the system at short distances. Recently, a
new approach to this long-standing puzzle has been pro-
posed [1,2]. In this approach, gravity is treated using the
traditional path integral methods of quantum field theory,
but without assuming Lorentz invariance as a fundamental
symmetry at short distances. The gauge symmetries are
those space-time diffeomorphisms that preserve a pre-
ferred foliation of space-time by fixed time slices, gener-
ated by

�xi ¼ �iðxj; tÞ; �t ¼ �ðtÞ: (1)

In terms of the spatial metric gijðxk; tÞ, the shift vector

Niðxj; tÞ and the lapse function NðtÞ, the action is

S ¼ 1

�2

Z
dDxdtN

ffiffiffi
g

p ðLK � LVÞ;

LK ¼ X
i;j

KijK
ij � �

�X
i

Ki
i

�
2
;

(2)

where

Kij ¼ 1

2N
ð _gij �DiNj �DjNiÞ (3)

is the extrinsic curvature of the constant time slices in the
space-time foliation, Di is the covariant derivative defined
by gij, � and � are coupling constants, and the LV can be an

arbitrary local Lagrangian built from gij, its Riemann

tensor Ri
jk‘, and the covariant derivative Di, without the

use of time derivatives.
In this broader framework, new Gaussian fixed points of

the renormalization group (RG) are possible. These novel

fixed points are characterized by a dynamical scaling ex-
ponent z � 1 (which depends on the choices made in LV),
and they exhibit a Lifshitz-type scaling. Given the possi-
bility of such Lifshitz gravity fixed points, it is natural to
ask whether they can serve to provide an ultraviolet (UV)
completion of gravity, and whether the pattern of the RG
flow can restore z ¼ 1 and Lorentz invariance in the infra-
red (IR) regime, where the theory can be tested against
general relativity.
In this paper, we show that this new class of Lifshitz

gravity fixed points [1,2] with z ¼ 2 and z ¼ 3 in 3þ 1
dimensions can also emerge as infrared fixed points, in the
low-energy limit describing certain lattice systems. The
microscopic degrees of freedom of these systems are of the
conventional type familiar in condensed matter, but their
collective behavior leads at low energies to novel gapless
phases, described by the Lifshitz gravity fixed points. The
microscopic lattice degrees of freedom exhibit no gauge
symmetry: The foliation-preserving gauge invariance at
the Lifhitz gravity fixed points is entirely emergent in the
low-energy description of the lattice system. The more
fundamental physical objects on short length scales give
rise to the Lifshitz gravitons as their low-energy and long-
distance collective excitations.
An analogous mechanism, with an emergent U(1) gauge

symmetry, was realized previously in the quantum dimer
model on the cubic lattice. In this model, the short distance
excitations are spin singlet valence bond fluctuations,
while the long length-scale excitations are photons [3,4].
A similar photon phase can also be constructed in spin
models on the pyrochlore lattice [5,6]. Given these ex-
amples, it is natural to look for a lattice model whose
infrared behavior is controlled by the Lifshitz gravity fixed
points of [1,2].
It should be noted that there are two distinct ways in

which one can attempt to relate Lifshitz gravity to lattice
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models. In this paper, we work on a fixed rigid lattice, and
find degrees of freedom whose long-distance dynamics is
captured by the Gaussian fixed points of Lifshitz gravity.
The lattice is nondynamical. Alternatively, one can try to
obtain Lifshitz gravity as a continuum limit of a lattice
model defined as a sum over a suitable class of random
triangulations of space-time geometries. Here it is the
lattice itself that is dynamical, and no extra degrees of
freedom are invoked. The most promising candidate for
such a random lattice model is offered by the causal
dynamical triangulations (CDT) approach to quantum
gravity. In the CDT approach (see Ref. [7] for a review),
a summation over random lattices constrained to respect a
preferred foliation structure of space-time serves as a non-
perturbative definition of quantum gravity, and yields a
continuum limit with four macroscopic space-time dimen-
sions at long distances. It has been suggested in [8] (see
also the recent paper [9]) that the CDT approach might be
viewed as a lattice regularization of Lifshitz gravity.
Further evidence for this scenario comes from the qualita-
tive behavior of the spectral dimension of space-time,
which indicates that the model flows from a z ¼ 3 UV
fixed point to an z ¼ 1 fixed point at long distances [8].

In condensed matter systems, gapless bosonic excita-
tions are usually Goldstone modes of certain spontane-
ously broken continuous symmetry. For instance, the
phonon modes of solids are the Goldstone modes of trans-
lation symmetry, and the magnons are the Goldstone
modes of the broken spin rotation symmetry in the mag-
netic ordered phase. There has been a lot of interest re-
cently in finding bosonic phases with gapless excitations
which do not originate from breaking a symmetry, and
which do not require fine-tuning. Such phases are referred
to as the algebraic Bose liquid (ABL) phases, because the
boson density correlation falls off algebraically in space
and time. An ABL phase is defined and characterized by its
low-energy field theory. Searching for stable ABL phases,
or more generally Bose metal phases, is one of the active
fields in condensed matter theory [10–15]. The photon
phase of the quantum dimer model mentioned above is a
well-understood stable ABL phase which was first studied
in a high-energy community and then widely applied to
condensed matter systems, especially fractionalized states
of strongly correlated systems [16,17].

Can we find other examples of ABL phases, especially
in three spatial dimensions? In Refs. [10,11], a novel ABL
phase with z ¼ 2 dispersion was proposed in a quantum
boson model on the face centered cubic (fcc) lattice with
only local boson hopping and density repulsion. Although
the microscopic model only has the lattice point group
symmetry and the U(1) global symmetry corresponding
to the conservation of the total boson number, a gauge
symmetry similar to linearized diffeomorphisms emerges
at low energies. We will review the low-energy effective
field theory of this model below, and show that it is given

by the Lifshitz gravity of Ref. [1] at the z ¼ 2 Gaussian
fixed point. In the lattice construction, the z ¼ 2 dispersion
is protected by the gauge symmetry which emerges at low
energy and by the microscopic discrete symmetries of the
underlying degrees of freedom, and the stability of this
ABL phase is guaranteed by its self-duality. In this work,
we show that by turning on one extra density repulsion
term in the model proposed in Refs. [10,11], one can drive
a phase transition between the z ¼ 2 phase mentioned
above and another stable z ¼ 3 phase. We will show that
this z ¼ 3 phase is also a stable ABL phase, with a self-
dual structure at low energy. The field theory of this ABL
phase is identical to the z ¼ 3 Lifshitz gravity of Ref. [2] at
the Gaussian fixed point.
We start with describing the full Hamiltonian of our

lattice boson model. This model is defined on the fcc
lattice: The physical quantities will be defined on both
the sites and the unit square faces of a cubic lattice. We
denote each site of the cubic lattice by ~r ¼ ðrx; ry; rzÞ, and
each unit square in the ð{̂; |̂Þ plane by ~r� {̂

2 � |̂
2 , with i, j ¼

x, y, z. As our dynamical variables, we assign three boson
numbers ðnxx; nyy; nzzÞ on each site of a cubic lattice, and

one boson number nij to each face in the {̂ |̂ plane of the

cubic lattice. The corresponding creation and destruction

operators will be denoted by byii, bii, b
y
ij and bij. The

microscopic Hamiltonian contains the following terms:

H ¼ Ht þHv þHu þHv0 ;

Ht ¼ ��t1Hsp � �t2Hpp;

Hv;x̂link ¼ Vð2nxx;~r þ 2nxx;~rþx̂ þ nxy;~rþðx̂=2Þþðŷ=2Þ
þ nxy;~rþðx̂=2Þ�ðŷ=2Þ þ nxz;~rþðx̂=2Þþðẑ=2Þ
þ nxz;~rþðx̂=2Þ�ðẑ=2Þ � 8 �nÞ2;

Hu ¼ X
~r

X
ii

u1
2
ðnii;~r � �nÞ2

þX
i<j

u2
2
ðnij;~rþð{̂=2Þþð|̂=2Þ � �nÞ2;

Hv0 ¼ X
~r

V0ðnxx;~r þ nyy;~r þ nzz;~r � 3 �nÞ2:

(4)

Ht include all the local boson hoppings.Hsp is the hopping

between each site and its adjacent plaquettes, Hsp ¼P
~r;i;j;kb

y
kk;~rbij;~r�ð{̂=2Þ�ð|̂=2Þ þ H:c:, while Hpp is the hopping

between two nearest neighbor plaquettes (Fig. 1a). The
exact values of the amplitudes �t1, �t2 are unimportant, and
we will tentatively take both of them at the same order of
magnitude �t1, �t2 � �t. Hv is a large density-density interac-
tion between bosons, Hv;x̂link in Eq. (4) is the part of Hv

associated with one link along the x̂ direction; it is a sum of
the boson numbers on the two sites and the four faces
sharing this link, and �n is the average boson filling on
each quantum state. Contributions to Hv for links along ŷ
and ẑ directions are defined analogously. Hu is a small
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repulsive interaction between each flavor of bosons on both
sites and faces, with u1 generally not equal to u2. Finally,
Hv0 is another on-site repulsive interaction on each site of
the cubic lattice. The lattice structure and the distribution
of the boson number is shown in Fig. 1(a).

If we first take V0 ¼ 0, this model will reduce to the
model constructed in Refs. [10,11]. When Hv is dominant,
it separates the Hilbert space into a high-energy subspace
and a low-energy subspace. The low-energy subspace is
subject to a local constraint: The sum in the bracket in Hv

vanishes for every link. If we define a symmetric tensor Eij

as Eii; ~r ¼ �ð�1Þ ~r2ðnii;~r � �nÞ, Eij;~rþð{̂=2Þþð|̂=2Þ ¼ ð�1Þ~r �
ðnij;~rþð{̂=2Þþð|̂=2Þ � �nÞ (i � j) this local constraint can be

compactly written as

X
i

riEij ¼ 0: (5)

Here and throughout the paper, ri denotes the lattice
derivative: rifð ~rÞ ¼ fð~rþ {̂Þ � fð ~rÞ. Equation (5) simply
states that Eij is covariantly conserved, or divergence-free.

The canonical conjugate variables of nij on the lattice

are the phase angles �ij of the boson creation operators:

bij � e�i�ij . They satisfy the commutation relation

½nab; �cd� ¼ i�ac�bd, a � b, c � d. Using �ij, we intro-

duce a symmetric tensor field Aij as Aii;~r ¼ �ð�1Þ~r�ii;~r
and Aij;~rþð{̂=2Þþð|̂=2Þ ¼ ð�1Þ~r�ij;~rþð{̂=2Þþð|̂=2Þ for i � j. Under

the discrete symmetries of time reversal T, lattice trans-

lations Tk̂ along k̂, and spatial reflection transformations

Pk̂;s, the components of Aij transform as

T: t ! �t; Aij ! �Aij;

Tk̂: ~r ! ~rþ k̂; Aij ! �Aij;

Pk̂;s: rk̂ ! �rk̂; Aik ! �Aik; i � k;

Aij ! Aij; i � k; j � k;

Aii ! Aii:

(6)

Notice that we define Pk̂;s to be the site-centered reflection

of the lattice, where the origin is located at one of the sites
of the cubic lattice. The transformation of Eij is almost the

same as Aij, except that Eij is even under time reversal.

The local constraint on Eij Eq. (5) can be interpreted as a

Gauss constraint, associated with a partially fixed gauge
symmetry. It will generate the following gauge symmetries
on Aij:

Aij ! Aij þrifj þrjfi: (7)

Of course, this gauge symmetry was absent in the micro-
scopic Hamiltonian Eq. (4): It only emerges in the low-
energy Hilbert subspace with constraints imposed by Hv.
This mechanism is analogous to the way in which the
emergent U(1) gauge symmetry appears in the photon
phase of the 3d quantum dimer models [3,4] and similar
spin models [5,6]. If we interpret Aij as small fluctuations

of the metric tensor gij around the flat background,

gij � �ij þ Aij; (8)

the emergent gauge symmetry in Eq. (7) corresponds to the
linearized form of the foliation-preserving diffeomor-
phisms Eq. (1) of Lifshitz gravity, with �iðx; tÞ � fi.
The low-energy dynamics of this system has to be

invariant under the gauge transformation Eq. (7). The
lowest-order gauge invariant dynamics is generated at the
eighth-order perturbation of �t=V, which can be written as

Heff ¼
X
~r

�X
i�j

t1 cosðRijijÞ~r �
X

i�j;j�k;k�i

t2 cosðRijikÞ~r;

Rijij ¼
X

a;b;c;d;k

� �ijk�kab�kcdrarcAbd; i � j;

Rijik ¼
X

a;b;c;d

�jab�kcdrarcAbd; i � j;

j � k; k � i:

(9)

FIG. 1 (color online). (a) The lattice structure of this model,
with the coordinates of site, link and plaquette. The term Hv;x̂link

in Eq. (4) involves all the sites and plaquettes denoted with solid
circles in this figure. The Ht term contains flavor-dependent
boson hopping between sites and adjacent plaquettes (the Hsp

term in Eq. (4)), and also between nearest neighbor plaquettes
(the Hpp term). (b) the ring exchange term �t1 cosðBzzÞ in

Eq. (10), which includes eight boson hoppings.
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With our identification of Aij as the metric fluctuations

around the flat metric, Rijij and Rijik represent the six

independent components of the linearized curvature tensor
of gij. It is convenient to introduce another rank-two

symmetric tensor Bij as Bii ¼ 1
2 �ijkRjkjk and Bij ¼

�Rikjk. Bij defined this way is also covariantly constant:

riBij ¼ 0. The transformation of Bij under the discrete

lattice symmetries of Eq. (6) is the same as for Aij. The

definition of Bij on the lattice is given in the Appendix. In

geometric terms, Bij are simply the components of the

linearized Einstein tensor Rij � 1
2Rgij of the metric (8).

Now the full low-energy Hamiltonian reads

H ¼ Hu þHeff

¼ X
~r

X
ii

u1
8
E2
ii; ~r þ

X
i<j

u2
2
E2
ij;~r �

X
i

t1 cosðBiiÞ ~r

�X
i�j

t2 cosðBijÞ~r: (10)

t1 and t2 are both at the order of��t8=V7. Physically t1 and
t2 terms correspond to high-order hoppings of bosons. For
instance the t1 term stands for the eighth-order hopping
process depicted in Refs. [10,11] and Fig. 1(b). We want to
emphasize that the Hamiltonian Eq. (4) is not fine-tuned, in
the sense that one is allowed to turn on small local pertur-
bations of any kind that are compatible with the global
symmetry of Eq. (4), and the low-energy Hamiltonian will
always take the same form as Eq. (10).

The Hamiltonian in Eq. (10) has a continuum limit
Gaussian field theory, which characterizes an ABL phase.
In the field theory we replace the lattice derivative ri by
the continuum limit derivative @i, and expand the cosines
in Heff at its minima � cosðBijÞ �B2

ij=2 to the leading

nontrivial order (a spin-wave expansion). After we replace
Eij by Eij � _Aij, the resulting Gaussian field theory is

described by the following Lagrangian,

L ¼ X
i

1

2u1
ð _AiiÞ2 þ t1

2
B2

ii þ
X
i<j

1

2u2
ð _AijÞ2 þ t2

2
B2

ij:

(11)

The dispersion of the collective modes can be solved
straightforwardly, and the result is quadratic, implying z ¼
2. Importantly, the linear dispersion is ruled out by the
gauge symmetry and the lattice symmetries; no other terms
more relevant than those in Eq. (11) are allowed. The termsP

i�jEiiEjj and
P

i�jBiiBjj are in principle allowed by the

symmetry of the system, but it will not change the z ¼ 2
dispersion. For instance, the

P
i�jEiiEjj term can be in-

duced with the V 0 term in Eq. (4), while
P

i�jBiiBjj can be

induced with even higher-order boson ring exchange.
It is now easy to see that the theory in Eq. (11), together

with the constraint of Eq. (5), is equivalent to the Gaussian
limit of the z ¼ 2 Lifshitz quantum gravity proposed in

[1,2]. Indeed, setting Ni ¼ 0 as our gauge choice in
Lifshitz gravity yields Eq. (5) as the equation of motion,
from varyingNi in the action given in Eq. (2). Furthermore,
the most general potential term SV in the z ¼ 2 Lifshitz
gravity Lagrangian in 3þ 1 dimensions is a sum of two
terms,

SV ¼ X
i;j

�1RijR
ij þ �2R

2; (12)

while the kinetic term SK takes the form in Eq. (2). One
difference between the lattice system and the field theory
Eq. (12) is that, the lattice system does not have the O(3)
spatial rotation symmetry, therefore the low-energy field
theory deduced from our lattice model does not automati-
cally acquire this O(3) symmetry. However, one can tune
the parameters in Eq. (4) to restore the O(3) symmetry in
the low-energy limit, and then the field theory will be
identical to Eq. (2) plus SV . Interestingly, if we tune the
microscopic parameters to achieve the O(3) symmetry, the
ABL phase picks out the special case of the Lifshitz gravity
models, satisfying the additional property of detailed bal-
ance in the sense of [1,2], with a fixed value of the coupling
� in Eq. (2). Extending the relationship beyond this sim-
plest case requires that the additional terms

P
i�jBiiBjj

and
P

i�jEiiEjj mentioned above are also generated.

Having established the map between the low-energy
continuum Hamiltonian of the lattice boson model and
the Hamiltonian of z ¼ 2 Lifshitz gravity, a few comments
are in order:
(i) In Lifshitz gravity with the full foliation-preserving

diffeomorphism invariance of Eq. (1), one additional
global constraint follows from the variation of NðtÞ
in the action Eq. (2). Since NðtÞ is only a function of
time, this yields an integral constraint, equivalent to
the vanishing of the total Hamiltonian on physical
states. Not imposing the �t ¼ �ðtÞ invariance as a
gauge symmetry would eliminate this Hamiltonian
constraint. In the lattice approach, the integral
Hamiltonian constraint does not seem to be neces-
sary for self-consistency; however, we could con-
sider imposing it in addition to the local constraint
given in Eq. (5), thus reproducing the full set of
symmetries of the minimal version of Lifshitz
gravity.

(ii) In [1,2], a fully interacting nonlinear version of
Lifshitz gravity has been proposed, and it was ar-
gued that models with z > 1 naturally flow in the IR
to z ¼ 1, under the influence of relevant terms in SV .
The most relevant terms are R—the Einstein-Hilbert
term responsible for z ¼ 1, and �—the cosmologi-
cal constant term. In the self-interacting Lifshitz
gravity theory, such terms are always expected to
be generated under RG, and one might wonder why
they do not automatically arise in the lattice model.
The resolution of this puzzle is simple: The micro-
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scopic structure of our lattice model implies that at
the z ¼ 2 Gaussian fixed point, the discrete symme-
tries of Eq. (6) will hold. It turns out that these
symmetries not only prevent the relevant terms R
and � from being generated, they are also incom-
patible with turning on the self-interaction coupling
of the full nonlinear Lifshitz gravity.

(iii) One should be more careful with the naive expan-
sion of the cosine functions appearing in Eq. (10).
The way we constructed the low-energy Hamil-
tonian from the microscopic degrees of freedom,
the Aij variables are compact, with radius 2�. This

compactification does not have a direct analogy in
Lifshitz gravity. Moreover, it can lead to topologi-
cal excitations, which in turn cause tunnelling be-
tween different minima of the cosine functions in
Eq. (4). Just like in the case of compact QED in 2þ
1 dimensions, the compactification has the poten-
tial to destroy the gapless excitations when it is
relevant.

The relevance or irrelevance of the compactification and
topological excitations can be most naturally studied in the
dual picture. The low-energy Hamiltonian of this ABL
phase can be schematically written as H ¼ E2 þB2, E
and B are both symmetric, covariantly constant tensors
with six independent components, which suggests a self-
dual structure exchanging E and B. The dual field hij and

the dual momentum �ij are defined as

E ij ¼ �iab�jcdrarchbd; Bii ¼ 2�ii;

Bij ¼ �ijði � jÞ: (13)

Notice that all the derivatives are lattice derivatives, and hij
and �ij are defined on the sites and plaquettes of the cubic

lattice (for details, see the Appendix). One can check the
commutator and verify that hij and �ij are canonical

conjugate variables, ½�ij; hkl� ¼ i�ik�jl i � j, k � l, and

we can replace �ij by _hij. Under this duality transforma-

tion, Eij and Bij are exchanged, and the dual low-energy

continuum limit field theory is precisely the same as the
original model. Therefore, this ABL phase is self-dual with

the dual gauge symmetry hij ! hij þ @i ~fj þ @j ~fi in the

continuum limit. Because of the compactness of Aij, Eij

and hij both take discrete eigenvalues, therefore at the

microscopic level the dual Lagrangian allows for the peri-

odic potential Ôv � cosð2�hijÞ which we refer to as the

vertex operator. However, this vertex operator violates the
dual continuum limit gauge symmetry of the ABL phase,

and hence the correlation function between Ôv vanishes at

a distance larger than V=�t. Thus, Ôv is irrelevant at the
ABL Gaussian fixed point.

The degrees of freedom in the z ¼ 2 ABL phase indeed
match the count of degrees of freedom in z ¼ 2 Lifshitz
gravity [1]: In addition to the two transverse-traceless

polarizations of the graviton, there is an additional ‘‘scalar
graviton’’ mode. In the lattice model, these three polar-
izations appear as independent collective modes of the
Hamiltonian in Eq. (10). The scalar mode corresponds to
the scale factor of the spatial metric. It was shown in [2]
that in classical Lifshitz gravity, the scalar graviton can be
eliminated by extending the gauge invariance to include an
anisotropic Weyl symmetry, introduced first in [1] (and
further studied in [18]). In 3þ 1 dimensions, this requires
the dynamical exponent to be z ¼ 3, freezes the coupling
constant � in the action (2) to be � ¼ 1=3, and requires that
the spatial part LV of the action be conformally invariant.
At the microscopic level of our lattice model, the elimi-

nation of the scalar graviton can be arranged simply by
turning on Hv0 in Eq. (4), When both Hv and Hv0 are
dominant, the constraint on Eij in the low-energy subspace

becomes

X
i

riEij ¼ 0;
X
i

Eii ¼ 0: (14)

Thus, Eij is now not only symmetric and covariantly con-

stant, but also traceless. This tracelessness constraint can
be interpreted as the Gauss constraint associated with
gauge fixing of another gauge symmetry, which acts on
Aij via

Aij ! Aij þ �ij’; (15)

where ’ is an arbitrary scalar field. Now the trace of Aij

becomes an unphysical gauge degree of freedom, so there
are only two gapless modes at low energy.
The new gauge symmetry in Eq. (15) will turn out to be

the anisotropic Weyl invariance of Lifshitz gravity men-
tioned above, here in the linearized approximation around
the Gaussian z ¼ 3 fixed point. In order to see that the new
constraint is forcing the model to z ¼ 3 at low energies,
note that the low-energy Hamiltonian is also modified by
turning on V0. Let us assume the dynamical term can be
written as

Heff0 ¼
X
~r

X
i

�t3 cosðaCiiÞ~r �
X
i�j

t4 cosðbCijÞ~r; (16)

where CijðAklÞ is a linear functional of Akl. This new tensor

Cij must be invariant under the gauge transformations of

Eq. (7) as well as Eq. (15). The tensor of the lowest order in
derivatives satisfying this requirement is the (linearized
form of the) Cotton tensor [1,2]:

C ij ¼ �iklrk

�
Rjl � 1

4
R�jl

�
: (17)

Here Rjl ¼
P

kRjklk, R ¼ P
jRjj are the linearized Ricci

curvature and scalar curvature, respectively. Under the
lattice symmetries of Eq. (6), the Cotton tensor transforms
as
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T: Cij ! �Cij;

Tk̂: Cij ! �Cij;

Pk̂;s: Cik ! Cik; i � k;

Cij ! �Cij; i � k; j � k;

Cii ! �Cii:

(18)

One can straightforwardly verify that Cij is gauge invariant,
symmetric, traceless and covariantly constant:

C ij ¼ Cji;
X
i

Cii ¼ 0;
X
i

riCij ¼ 0: (19)

The definition of Cij on the lattice is given in the Appendix.
From our microscopic Hamiltonian, the effective low-
energy term Heff0 can only emerge at a fairly high order
of perturbation. For instance, the t3 term can be generated
at order 32 in �t=V. Now the full low-energy Hamiltonian
reads

H ¼ Hu þHeff

¼ X
~r

X
ii

u1
2
E2
ii; ~r þ

X
i<j

u2
2
E2
ij;~r �

X
i

t3 cosðCiiÞ~r

�X
i�j

t4 cosð2CijÞ~r: (20)

Since Cij involves three spatial derivatives, after the spin-

wave expansion � cosðbCijÞ � b2C2ij=2, the ABL phase

which is described by the continuum limit Gaussian field
theory of Hamiltonian in Eq. (20) has collective excitations
with the z ¼ 3 dispersion. Notice that the lattice symmetry
does not require t3 ¼ t4, but the ratio t3=t4 can be tuned by
the ratio �t1=�t2 on the lattice.

In [2], a nonlinear self-interacing z ¼ 3 Lifshitz gravity
has been constructed. In this construction, the nonlinear
Cotton tensor plays a central role, with SV / CijCij. When

t3 ¼ t4, the low-energy Hamiltonian of the ABL phase is
identical to the Gaussian point of the z ¼ 3 Lifshitz gravity
of [2]. This emergent theory is gauge invariant not only
under linearized foliation-preserving diffeomorphisms, but
also under the z ¼ 3 version of the anisotropic Weyl trans-
formation [1,2,18].

Are the gapless z ¼ 3 modes of this model stable when
Aij are treated as compact variables? To address this ques-

tion, it is again convenient to go to the dual formalism. The
continuum limit Hamiltonian takes the schematic form
H ¼ E2 þ C2, and the fact that Eij and Cij are both sym-

metric, traceless and covariant tensors strongly suggests
this theory also has a self-dual structure. To prove the self-

duality, we define dual variables ~hij and ~�ij as

Eij ¼ Cijð~hklÞ; ~�ii ¼ 1

2
CiiðAklÞ;

~�ij ¼ CijðAklÞ; i � j:
(21)

Here we have treated Cij as a linear functional of the tensor
field Aij or ~hij. Unlike hij defined previously, ~hii are

defined on the dual lattice sites, which are the centers of

the unit cubes, and ~hij are defined on the dual plaquettes,

which are the links of the original lattice (for details, see
the Appendix). For instance, a link along the ẑ direction is a
dual plaquette in the x̂ ŷ plane. Again, one can straightfor-

wardly verify that ~hij and ~�ij are a pair of conjugate

variables, and Eij and Cij are exchanged under duality.

The dual graviton ~hij of this ABL phase enjoys the same

gauge symmetry as Aij, hence the vertex operator Ôv �
cosð2�~hijÞ is irrelevant. Therefore the z ¼ 3 ABL phase is

also a stable gapless phase.
This self-duality structure completes the argument of the

stability of both the z ¼ 2 and z ¼ 3 ABL phases in this
model. The self-duality can also be proved in the Euclidean
space-time, in the same way as the duality of ordinary
classical statistical mechanics models [19]. If the dual
theory of a lattice gauge model did not have a large enough
gauge symmetry, one would have to fine-tune the system to
get a gapless ABL state. The most well-understood ex-
ample is the compact QED in 2þ 1 dimensions, where the
dual theory is a U(1) rotor model without gauge symmetry.
In that case, the vertex operator which corresponds to the
monopoles in space-time will destroy the gapless photon
phase. Another example studied recently is the quantum
plaquette model with gauge symmetry Aij ! rirj’. The

dual theory of the plaquette model does have a gauge
symmetry, but this symmetry is not strong enough to
protect the gapless ABL phase [20].
In Ref. [21], gravitonlike collective modes were also

obtained through a quantum boson model on the lattice, but
the relation of such lattice models to Lifshitz gravity was
not noticed. It is worth emphasizing that in our context, the
Lifshitz-type graviton Hamiltonian in Eq. (20) can be
derived without any fine-tuning from a simple boson model
of Eq. (4) through perturbation theory, and both the z ¼ 2
and z ¼ 3 ABL phase are stable due to their self-dual
nature.
Besides the difference in the dispersion, the z ¼ 2 and

z ¼ 3 phases also have different algebraic correlations. For
instance, in the z ¼ 2 phase the equal-time density fluc-
tuation correlation falls off as

h�nð0Þ�nð ~rÞi � hBð~hÞ0Bð~hÞ~ri � 1

r5
; (22)

while for the z ¼ 3 phase this correlation falls off as

h�nð0Þ�nð ~rÞi � hCð~hÞ0Cð~hÞ~ri � 1

r6
: (23)

(In these two equations, the flavor dependence of the
correlation has been ignored for simplicity.)
In the original Hamiltonian, the z ¼ 2 and z ¼ 3 phases

were obtained by dialing a small versus large value of the
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coupling V0 in Hv0 . As a result, by increasing V 0 one can
drive a phase transition between these two ABL phases
with different dynamical scalings. Compared to the z ¼ 2
phase, the z ¼ 3 phase has one extra gauge symmetry, of
anisotropic Weyl transformations (15). Therefore, if we
start with the z ¼ 3 phase, this phase transition will be
reminiscent of the Higgs transition. In the quantum dimer
model, the U(1) gauge symmetry is Higgsed by condensing
the dimer vacancies that carry U(1) gauge charge. The
phase transition can be described by the rotor Hamil-

tonian Hr ¼ �t cosð ~r�� ~AÞ [22], where � is the phase
angle of the dimer vacancy creation operator c � ei�.
After the condensation of c , the gauge field A	 acquires

a longitudinal mode by absorbing the Goldstone mode of
c , which makes the gauge field an ordinary gapped vector
field.

In our case, the transition between the two ABL phases
can also be intuitively described as closing the gap of the
trace mode of Eij, which can be described by condensing ’

in Eq. (15). Since all the gauge symmetries in Eq. (7) are
still preserved after the transition, the condensate of ’
should not violate Eq. (7). With these observations, this
transition can be described by the following Lagrangian,

L ¼ 1



_’2 �X

i�j

t1 cosðr2
i ’þr2

j’� RijijÞ

� X
i�j;j�k;k�i

t2 cosðrjrk’� RijikÞ þ � � � (24)

The condensation of ’ changes the spectrum from two z ¼
3 modes of Aij and one gapped mode of ’ to three z ¼ 2

modes of Aij, in a generalization of the ordinary Higgs

transition to the scalar mode of Lifshitz gravity. When ’ is
ordered, this Lagrangian restores the ring exchange terms
in Eq. (10) of the z ¼ 2 phase; when ’ is disordered, after
integrating out ’ one should recover the phase which is
invariant under the transformations in Eqs. (7) and (15).
The z ¼ 3 ABL phase is then the only candidate. From
the condensed matter perspective, the phase transition in
Eq. (24) is beyond the ordinary Ginzburg-Landau para-
digm, because neither one of the two phases can be char-
acterized by a local order parameter. More thorough RG
studies for Eq. (24) are required to determine the nature of
this transition.

One interesting question to ask is whether we can obtain
relativistic gravitons, with a linear dispersion, from the
lattice. In Ref. [11], it was proposed that a long-range
interaction can change the dispersion to z ¼ 1, but a local
theory leading to z ¼ 1 gravitons at long distances is still
unavailable. As was discussed in Ref. [11] and Ref. [23], a
Chern-Simons like term AijBij can lead to a linear disper-

sion, but this term is only gauge invariant up to a boundary
term; therefore, it cannot be generated in the same way as
the t1 and t2 terms in Eq. (10) through perturbation theory.
One possibility is to generate this term by coupling the

graviton field Aij to a matter field with a gapless boundary

state, just like the CS term for a U(1) gauge field can be
generated by coupling the gauge field to a massive Dirac
fermion with edge states.
In addition to the linear dispersion, another meaningful

goal is to obtain the full nonlinear Lifshitz gravity of self-
interacting gravitons, instead of the linearized theory at the
Gaussian fixed point. As we pointed out in our comment
(ii) below Eq. (12), this difficulty is intimately related to
the existence of the discrete symmetries in Eq. (6), implied
by the microscopic dynamics of the lattice model. These
symmetries do not allow the natural self-interaction cou-
pling of Lifshitz gravity [1,2] to be turned on. It is an
interesting challenge to see if our framework can be ex-
tended so that its discrete symmetries no longer prevent the
self-interaction of gravitons. Note that the discrete sym-
metries of Eq. (6) act naturally on the Aij variables repre-

senting the fluctuations around the fixed flat background,
but they do not appear to have a geometrically natural
extension to the full metric gij. Thus, they are associated

with the fixed flat spatial geometry, here represented by the
fixed flat fcc lattice. These background-dependent discrete
symmetries indeed played an important role in our con-
struction of Lifshitz gravity from a lattice system: They
prevented the Einstein-Hilbert term and the cosmological
constant term from being generated, allowing the z ¼ 2
and z ¼ 3 ABL phases to be stable at low energies. Since
the full nonlinear Lifshitz gravity of [1,2] does not require
a choice of a preferred flat background, it is natural to
speculate that attempts to turn on the self-interaction of
gravitons in our lattice framework may ask for the under-
lying lattice itself to become dynamical. We will leave
these topics to future studies.
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APPENDIX: TENSOR FIELDS ON THE LATTICE

On the lattice, �zz on site ~r is defined as

2�zz;~r ¼ ð�1Þ~rð�yy;~rþx̂ þ 2�yy;~r þ �yy;~r�x̂ þ �xx;~rþŷ

þ 2�xx;~r þ �xx;~r�ŷ � 2�xy;~rþðx̂=2Þþðŷ=2Þ
� 2�xy;~r�ðx̂=2Þþðŷ=2Þ � 2�xy;~rþðx̂=2Þ�ðŷ=2Þ
� 2�xy;~r�ðx̂=2Þ�ðŷ=2ÞÞ ¼ Bzz: (A1)

The ring exchange cosðBzzÞ corresponds to the high order
of boson hopping depicted in Fig. 1(b). �yz on plaquette

~rþ ŷ
2 þ ẑ

2 reads
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�yz;~rþðŷ=2Þþðẑ=2Þ ¼ ð�1Þ ~r �ð�yz;~rþx̂þðŷ=2Þþðẑ=2Þ
þ 2�yz;~rþðŷ=2Þþðẑ=2Þ þ�yz;~r�x̂þðŷ=2Þþðẑ=2Þ
þ �xx;~r þ�xx;~rþŷþ �xx;~rþẑ þ�xx;~rþŷþẑ

� �xy;~rþðx̂=2Þþðŷ=2Þ � �xy;~r�ðx̂=2Þþðŷ=2Þ
� �xy;~rþẑþðx̂=2Þþðŷ=2Þ � �xy;~rþẑ�ðx̂=2Þþðŷ=2Þ
� �xz;~rþðx̂=2Þþðẑ=2Þ ��xz;~r�ðx̂=2Þþðẑ=2Þ
� �xz;~rþŷþðx̂=2Þþðẑ=2Þ ��xz;~rþŷ�ðx̂=2Þþðẑ=2ÞÞ

¼Byz: (A2)

The tensor field defined this way satisfies
P

iriBij ¼ 0.

The relation between Eij and hij is the same as that

between Bij and Aij.

The dual variable ~�ii is defined on the dual sites, which
are the centers of the cubes, and ~�ij with i � j is located

on the links ~rþ k̂
2 , with k � i, k � j. ~�xx on the dual site

~rþ x̂
2 þ ŷ

2 þ ẑ
2 is defined as

2 ~�xx;~rþðx̂=2Þþðŷ=2Þþðẑ=2Þ ¼ �Bxz;~rþŷþðx̂=2Þþðẑ=2Þ
þBxz;~rþðx̂=2Þþðẑ=2Þ
þBxy;~rþẑþðx̂=2Þþðŷ=2Þ
�Bxy;~rþðx̂=2Þþðŷ=2Þ ¼ Cxx: (A3)

~�xy on the link ~rþ ẑ
2 is defined as

2 ~�xy;~rþðẑ=2Þ ¼ �2Byz;~rþðŷ=2Þþðẑ=2Þ þ 2Byz;~r�ðŷ=2Þþðẑ=2Þ
þByy;~rþẑ �Byy;~r �Bzz;~rþẑ þBzz;~r

�Bxx;~rþẑ þBxx;~r ¼ 2Cxy: (A4)

Cij defined this way is symmetric, traceless, and cova-

riantly constant. The relation between Eij and the dual

variable ~hij is identical to that between ~�ij and Aij, after

exchanging sites with cubes, and plaquettes with links. On
the lattice, the divergence of Cij readsX
i

riCix ¼ Cxx;~rþðx̂=2Þþðŷ=2Þþðẑ=2Þ � Cxx;~r�ðx̂=2Þþðŷ=2Þþðẑ=2Þ

þ Cxy;~rþŷþðẑ=2Þ � Cxy;~rþðẑ=2Þ þ Cxz;~rþẑþðŷ=2Þ
� Cxz;~rþðŷ=2Þ: (A5)
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