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We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin

system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties;

instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of

freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of

interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard

model where the graph of the interactions is a set of quantum evolving variables. We show entanglement

between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its

entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss

analogues of trapped surfaces and gravitational attraction in this simple model.
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I. INTRODUCTION

The quest for a quantum theory of gravity involves
searching for a microscopic quantum theory whose low
energy limit is the known physics of general relativity,
dynamical space-time metrics whose evolution is governed
by the Einstein equations. Many approaches, like loop
quantum gravity [1], causal dynamical triangulations
(CDT) [2], spin foams [3] and group field theory [4],
expect that the quantum theory of gravity becomes mani-
fest at very high energy. That is, quantum analogs of
geometry and gravitational properties such as the quantum
Hilbert-Einstein action or Lorentz invariance are built into
the high energy theory. In different theories, various such
properties are present at the microscopic level: In loop
quantum gravity, for example, the state space is given in
terms of spin network basis states, understood as a discre-
tization of space see [5–7] and, in addition, embedded in 3-
dimensional space. The dynamics of the micro-states is
governed by the Hamiltonian constraint, obtained by the
canonical quantization of the Hilbert-Einstein action. In
spin foams or group field theory, the microscopic states
similarly are based on simplicial graphs or complexes
carrying algebraic geometric data, including the Lorentz
group. Depending on the model, a spin foam may be based
on states that are embedded complexes or combinatorial
(abstract, nonembedded graphs). In many models, the

states carry representations of the Lorentz group, while
the dynamics uses the Regge action, a discrete form of the
Hilbert-Einstein action. In CDT, the states are simplicial
combinatorial objects, again encoding microscopic
Lorentzian geometry, while the dynamics contains the
Regge action. Of course, the important question is how
many of these features survive at the low energy or con-
tinuum limit. Is the input of geometric and gravitational
properties at the microscopic level necessary for the con-
tinuum limit to be gravity? The answer is at present un-
clear. CDT results indicate that while certain properties
such as causality are important, others, including the gravi-
tational action, may not be [8]. In spin foams or group field
theory, it is not clear that the Lorentz group representations
on the microstates ensure the reappearance of the Lorentz
group in the continuum limit. As an alternative, one could
regard quantum gravity as an emergent phenomenon from
the low energy theory of a condensed matter system. In this
approach, the fundamental theory would have no micro-
scopic degrees of freedom, no gravity, no elements of the
Lorentz group, etc.
In recent years, there has been a growing attention to the

notion of gravity as an emergent phenomenon [9]. From
Aristotle to Philip Anderson, a long-standing tradition in
physics asserts that ‘‘the whole is more than the sum of its
parts’’ and that ‘‘more is different.’’. The emergent ap-
proach is concerned with the study of the macroscopic
properties of systems with many bodies. Sometimes, these
properties can be tracked down to the properties of the
elementary constituents. In recent years, though, there has
been a flourishing of novel quantum systems, which show
behaviors of the whole system that have no explanation in
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terms of the constituting particles, but instead of their
collective behavior and interaction. When the interaction
between the particles cannot be ignored, like in systems of
strongly interacting electrons, we see many novel and
beautiful properties: gauge fields can emerge as a collec-
tive phenomenon, strange quantum phase transitions hap-
pen, unusual forms of superconductivity and magnetism
appear, novel orders of the matter based on topological
properties of the system and featuring exotic statistics are
found.

In this sense, one can view the problem of quantum
gravity as a problem in statistical physics or condensed
matter theory: we know the low energy physics and are
looking for the correct universality class of the microscopic
quantum theory. By analogy to the Ising model for ferro-
magnetism, one can ask: What is the ‘‘Ising model’’ for
gravity? A number of such approaches to the problem have
recently been proposed, ranging from looking for gravity
analogues in condensed matter systems [10,11], to con-
densed matter systems with emergent graviton excitations
[12], and spin system models for emergent geometry
[13,14]. One can also view approaches such as CDT [2]
or matrix models [15] in this light. In comparison to the
quantum gravity approaches mentioned above, in the sys-
tems we will be investigating there is no straightforward
geometric content to the microscopic graph states. We
simply use a dynamical network of quantum relations to
describe a world without geometry, where locality is de-
termined by the presence of absence of quantum interac-
tions. It is perhaps best to think of this system as a quantum
information processor, with information more primary
than geometry, and geometry being the set of properties
such as geometric symmetries that we only expect to find
dynamically emergent at low energy.

An important issue in this direction of research in quan-
tum gravity is the dynamical nature of geometry in general
relativity. Normally, methods in condensed matter theory
use a fixed background, for example, a spin system on a
fixed lattice. The lattice determines the locality of the
interactions and hence is a discretization of geometry.
One can then worry that this direction of research is limited
to fixed background geometries. This is addressed in some,
but not all, of the above-mentioned approaches. For ex-
ample, CDT is based on path integral dynamics on an
ensemble of all lattices (each lattice is a regularization of
a Lorenzian geometry), thus providing a proper nonpertur-
bative approach to the problem. Elsewhere, ideas from
quantum information theory have been introduced to deal
with this problem [14,16,17].

An alternative direction, and the one we are pursuing in
the present article, is to make the lattice itself dynamical.
Two of the present authors proposed such a model for the
emergence of geometry in [13]. The basic idea was to
promote the lattice links to dynamical quantum degrees
of freedom and construct a Hamiltonian such that, at low
energy, the system ‘‘freezes’’ in a configuration with rec-

ognizable geometric symmetries, interpreted as the geo-
metric phase of the model. The present work revisits the
same idea but in a different model with two central prop-
erties:
(i) The model is a spin system on a dynamical lattice.
(ii) There are lattice and matter degrees of freedom. The

lattice interacts with the matter: matter tells geome-
try how to curve and geometry tells matter where to
go.

The starting point for the implementation of the above is
considerations of locality. Normally, locality is specified
by the metric g�� on a manifold M. Dynamics of matter

on ðM; g��Þ is given by a Lagrangian which we call local

if the interaction terms are between systems local accord-
ing to g��. A Lagrangian with nonlocal interaction terms is

typically considered unphysical. That is, the matter dy-
namics is made to match the given space-time geometry.
We will do the reverse and define geometry via the dynam-
ics of the matter. Our principle is that if particles i and j
interact, they must be adjacent. This is a dynamical notion
of adjacency in two ways: it is inferred from the dynamics
and, being a quantum degree of freedom, it changes dy-
namically in time. This amounts to a spin system on a
dynamical lattice and to interaction of matter with
geometry.
To summarize, we present a toy model for the emer-

gence of locality from the dynamics of a quantum many-
body system. No notion of space is presupposed.
Extension, separateness, distance, and all the spatial no-
tions are emergent from the more fundamental notion of
interaction. The locality of interactions is now a conse-
quence of this approach and not a principle. We will
promote the interaction terms between two systems to
quantum degrees of freedom, so that the structure of inter-
actions itself becomes a dynamical variable. This makes
possible the interaction and even entanglement between
matter and geometry.
This toy model is also a condensed matter system in

which the pattern of interaction itself is a quantum degree
of freedom instead of being a fixed graph. It can be
regarded as a Hubbard model where the strength of the
hopping emerges as the mean field value for other quantum
degrees of freedom.We show a numerical simulation of the
quantum system and results on the asymptotic behavior of
the classical system. The numerical simulation is mainly
concerned with the entanglement dynamics of the system
and the issue of its thermalization as a closed system. A
closed system can thermalize in the sense that the partial
system shows some typicality, or some relevant observ-
ables reach a steady or almost steady value for long times.
The issue of thermalization for a closed quantum system
and the foundations of quantum statistical mechanics
gained recently novel interest with the understanding that
the role of entanglement plays in it [18]. The behavior of
out of equilibrium quantum system under sudden quench,
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and the approach to equilibrium has been recently the
object of study to gain insight in novel and exotic quantum
phases like topologically ordered states.

From the point of view of quantum gravity, the interest-
ing question is whether such a system can capture aspects
of the dynamics encoded by the Einstein equations. We
start investigating in this direction by studying an analogue
of a trapped surface that may describe, in more complete
models, black hole physics. We discuss physical conse-
quences of the entanglement between matter and geometry.

The model presented here is very basic and we do not
expect it to yield a realistic description of gravitational
phenomena. What we would like to show is that such a
model can have an emergent, quantum-mechanical notion
of geometry (even if not smooth) and that locality is
derivative from dynamics; the extent to which such a
simple model may capture aspects of the Einstein equa-
tions is left to future work.

II. THE MODELWITH HOPPING BOSONS ON A
DYNAMICAL LATTICE

A. Promoting the edges of the lattice to a quantum
degree of freedom

We start with the primitive notion of a set of N distin-
guishable physical systems. We assume a quantum-
mechanical description of such physical systems, given
by the set fH i; Hig of the Hilbert spaces H i and
Hamiltonians Hi of the systems i ¼ 1; . . . ; N. This pre-
sumes it makes sense to talk of the time evolution of some
observable with support in H i without making any refer-
ence to space.

We choose H i to be the Hilbert space of a harmonic
oscillator. We denote its creation and destruction operators

by byi , bi, respectively, satisfying the usual bosonic rela-
tions. Our N physical systems then are N bosonic particles
and the total Hilbert space for the bosons is given by

H bosons ¼
ON
i¼1

H i: (1)

If the harmonic oscillators are not interacting, the total
Hamiltonian is trivial:

Hv ¼ XN
i¼1

Hi ¼ �X
i

�ib
y
i bi: (2)

If, instead, the harmonic oscillators are interacting, we
need to specify which is interacting with which. Let us
call I the set of the pairs of oscillators e � ði; jÞ that are
interacting. Then the Hamiltonian would read as

H ¼ X
i

Hi þ
X
e2I

he (3)

where he is a Hermitian operator on H i �H j represent-

ing the interaction between the system i and the system j.

We wish to describe space as the system of relations
among the physical systems labeled by i. In a discrete setup
like ours, a commonly used primitive notion of the spatial
configuration of N systems can be provided by an adja-
cency matrix A, the N � N symmetric matrix defined as
follows:

Aij ¼
�
1 if i and j are adjacent

0 otherwise:
(4)

The matrix A is associated to a graph on N vertices whose
edges are specified by its the nonzero entries. Now, it is
clear that the set I of interacting nodes in the Hamiltonian
(3) also defines a graph G whose vertices are the N har-
monic oscillators and whose edges are the pairs e � ði; jÞ
of interacting oscillators. Here I is the edge set of G. We
want to promote the interactions—and thus the graph
itself—to a quantum degree of freedom.
To this goal, let us defineG as the set of graphsGwithN

vertices. They are all subgraphs of KN , the complete graph

on N vertices, whose NðN�1Þ
2 edges correspond to the (un-

ordered) pairs e � ði; jÞ of harmonic oscillators. To every
such pair e (an edge of KN) we associate a Hilbert space
H e ’ C2 of a spin 1=2. The total Hilbert space for the
graph edges is thus

H graph ¼
ONðN�1Þ=2

e¼1

H e: (5)

We choose the basis in H graph so that to every graph g 2
G corresponds a basis element inH graph: the basis element

je1 . . . eNðN�1Þ=2i � jGi corresponds to the graph G that

has all the edges es such that es ¼ 1. For every edge
ði; jÞ, the corresponding SUð2Þ generators will be denoted
as Si ¼ 1=2�i where �i are the Pauli matrices.
The total Hilbert space of the theory is

H ¼ H bosons �H graph; (6)

and therefore a basis state in H has the form

j�i � j�ðbosonsÞi � j�ðgraphÞi
� jn1; . . . ; nNi � je1; . . . ; eðNðN�1ÞÞ=2i: (7)

The first factor tells us how many bosons there are at every
site i (in the Fock space representation) and the second
factor tells us which pairs e interact. That is, the structure
of interactions is now promoted to a quantum degree of
freedom. A generic state in our theory will have the form

j�i ¼ X
a;b

�a;bj�ðbosonsÞ
a i � j�ðgraphÞ

b i; (8)

with
P

a;bj�a;bj2 ¼ 1. In general, our quantum state de-

scribes a system in a generic superposition of energies of
the harmonic oscillators, and of interaction terms among
them. A state can thus be a quantum superposition of
‘‘interactions.’’ For example, consider the systems i and j

QUANTUM BOSE-HUBBARD MODEL WITH AN EVOLVING . . . PHYSICAL REVIEW D 81, 104032 (2010)

104032-3



in the state

j�iji ¼
j10i � j1iij þ j10i � j0iijffiffiffi

2
p : (9)

This state describes the system in which there is a particle
in i and no particle in j, but also there is a quantum
superposition between i and j interacting or not. The
following state,

j�iji ¼
j00i � j1iij þ j11i � j0iijffiffiffi

2
p ; (10)

represents a different superposition, in which the particle
degrees of freedom and the graph degrees of freedom are
entangled. It is a significant feature of our model that
matter can be entangled with geometry.

An interesting interaction term is the one that describes
the physical process in which a quantum in the oscillator i
is destroyed and one in the oscillator j is created. The
possibility of this dynamical process means there is an
edge between i and j. Such dynamics is described by a
Hamiltonian of the form

Hhop ¼ �t
X
ði;jÞ

Pij � ðbyi bj þ bib
y
j Þ (11)

where

Pij � Sþði;jÞS
�
ði;jÞ ¼ j1ih1jði;jÞ ¼

�
1

2
� Sz

�
ði;jÞ

(12)

is the projector on the state such that the edge ði; jÞ is
present and the spin operators are defined as Sþði;jÞ ¼ j1i�
h0jði;jÞ and S�ði;jÞ ¼ j0ih1jði;jÞ. With this Hamiltonian, the

state Eq. (9) can be interpreted as the quantum superposi-
tion of a particle that may or may not hop from one site to
another. It is possible to design such systems in the labo-
ratory. For instance, one can use arrays of Josephson
junctions whose interactions are mediated by a quantum
dot with two levels.

We note that it is the dynamics of the particles described
byHhop that gives to the degree of freedom jei the meaning

of geometry [19]. The geometry at a given instance is given
by the set of relations describing the dynamical potentiality
for a hopping. Two points j, k can be ‘‘empty,’’ that is, the
oscillators j, k are in the ground state, but they can have a
spatial relationship consisting in the fact that they can
interact. For example, they can serve to have a particle to
hop from i to j, then to k, then to l. We read out the
structure of the graph from the interactions, not from the
mutual positions of particles.

In addition, Hhop tells us that it takes a finite amount of

time to go from i to j. If the graph is represented by a chain,
it tells us that it takes a finite amount of time (modulo
exponential decaying terms) for a particle to go from one
end of the chain to another. This results to a ‘‘space-time’’
picture (the evolution of the adjacency graph in time) with

a finite lightcone structure. The hopping amplitude is given
by t, and therefore all the bosons have the same speed. We
can make the model more sophisticated by enlarging the
Hilbert space of the links, and obtain different speeds for
the bosons. Instead of considering spins 1=2, consider an
S-level system. The local Hilbert space is therefore

H e ¼ spanfj0i; j1i; . . . ; jS� 1ig: (13)

Now consider the projector onto the s-th state on the link

ði; jÞ: PðsÞ
ij ¼ jsihsjij. We can define a new hopping term

whose amplitude depends on the level of the local system
in the following way:

Hhop ¼ � X
s;ði;jÞ

tsP
ðsÞ
ij � ðbyi bj þ bib

y
j Þ (14)

where the hopping amplitudes ts depend on the state s of
the system, and t0 ¼ 0. For instance, the ts can be chosen
larger for larger s. In this way, moves through higher level
links are more probable, and therefore the speed of the
particles is not constant. In the following, we will study the
model with just the two-level system.
Of course, we need a Hamiltonian also for the spatial

degrees of freedom alone. The simplest choice is simply to
assign some energy to every edge:

Hlink ¼ �U
X
ði;jÞ

�z
ði;jÞ: (15)

Finally, we want space and matter to interact in a way
that they can be converted one into another. The term

Hex ¼ k
X
ði;jÞ

ðS�ði;jÞ � ðbyi byj ÞR þ Sþði;jÞ � ðbibjÞRÞ (16)

can destroy an edge ði; jÞ and create R quanta at i and R
quanta at j, or, vice-versa, destroy R quanta at i and R
quanta at j to convert them into an edge.
The terms Hlink and Hex are so simple that we will not

expect them to give us any really interesting property of
how regular geometry can emerge in such a system. This is
the subject for a more refined and future work.
Nevertheless, this term has an important meaning because
the nature of the spatial degrees of freedom is completely
reduced to that of the quanta of the oscillators: an edge is
the bound state of 2R quanta. When in the edge form, the
quanta cannot hop around. When unbounded, they can hop
around under the condition that there are edges from one
vertex to another. One can replace the separation of the
fundamental degrees of freedom into bosons and graph
edges with a unified set of underlying particle ones, single
bosons and collections of 2R bound bosons. Therefore a
bound state of 2R quanta in the pair ðH i;H jÞ tells us

what physical systems are at graph distance one. The set of
such bound states as we vary j is the neighborhood of the
system i. This is the set of vertices j a free particle in i can
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hop to. The projector Pij has thus the meaning that the

hopping interaction must be local in the sense just defined.
Now we see that the termHex is not satisfactory because

exchange interactions are possible between any pair of
vertices, no matter their distance. So quanta that are far
apart can be converted in an edge between two points that
were very far just before the conversion. Moreover, also the
conjugate process is problematic, because it can easily lead
to a graph made of disconnected parts. We implement
locality by allowing exchange processes only between
points that are connected by some other short path of
length L. Note that this refers to the locality of the state
j�graphi at time t relative to the locality of the state at time
t� 1. Consider again the projector Pij on the edge ði; jÞ
being present. Its L-th power is given by

PL
ij ¼

X
k1;...;kl�1

Pik1Pk2k3 . . .PkL�1j: (17)

For every state j�i 2 H graph, we have that Pijj�i � 0 if

and only if there is at least another path of length L
between i and j. We can now modify the term Hex as
follows:

Hex ¼ k
X
ði;jÞ

ðS�ði;jÞPL
ij � ðbyi byj ÞR þ PL

ijS
þ
ði;jÞ � ðbibjÞRÞ:

(18)

In the extended S-level system, the exchange term is
modified as jðsþ 1ÞðmodSÞihsðmodSÞjði;jÞ � ðbibjÞR and

similarly for the Hermitian conjugate.
This was the final step that brings us to the total

Hamiltonian for the model which is

H ¼ Hlink þHv þHex þHhop: (19)

In the following, we consider the theory for L ¼ 2, which
is the strictest notion of locality for the exchange interac-
tion one can implement.

B. Discussion of the model

We can summarize the model in the following way. All
we have is matter, namely, the value of a function fi, where
the indexes i label different physical systems. We have
chosen fi to be the number of quanta of the i-th harmonic
oscillator. The bound state of a particle in i and a particle in
j has the physical effect that other particles in i and j can
interact. When there is such a bound state, we say there is
an edge between i and j. Then other particles at i and j can
interact; for instance, they can hop from i to j. The collec-
tion of these edges, or bound states, defines a graph which
we interpret as the coding of the spatial adjacency of the
particles (in a discrete and relational fashion). The physical
state of the many-body system is the quantum superposi-
tion of configurations of the particles and of the edges. The
system evolves unitarily, and particles can hop around
along the edges. But the distribution of the particles also

influences the edges because some particles at vertices i, j
can be destroyed (if i and j are nearby in the graph) to form
another edge, therefore making i and j nearer. The new
edge configurations then influence the motion of the par-
ticles and so on. We have a theory of matter interacting
with space. The intention of the model is to study to what
extent such dynamics captures aspects of the Einstein
equation and whether it (or a later extension of such a
spin system) can be considered as a precursor of the
gravitational force. From the condensed matter point of
view, this is a Hubbard model for hopping bosons, where
the underlying graph of the Hubbard model is itself a
quantum dynamical variable that depends on the motion
of the bosons. In the spirit of general relativity, the edges
(space) tell the bosons (matter) where to go, and the
bosons, by creating edges, tell the space how to curve.
We note that, in this theory, all that interacts has a local

interaction by definition. We defined locality using the
notion of neighborhood given by the set of systems inter-
acting with a given system [22]. We also note that, due to
quantum superpositions, matter and space can be en-
tangled. For this reason, the dynamics of the matter alone
is ruled by a quantum open system, the evolution for the
matter degrees of freedom is described no more by a
unitary evolution operator but by a completely positive
map. We can show that the entanglement increases with
the curvature. To fix the ideas, let us start with a flat
geometry represented by the square lattice as the natural
discretization of a two-dimensional real flat manifold. In
this model, a flat geometry with low density of matter can
be described by a square (or cubic) lattice with a low
density of bosons. This means that a particle is most of
the time alone in a region that is a square lattice. The model
will not then allow interaction between the particle and the
edges, and all that happens is a free walk on the graph. On
the other hand, when we increase the degree of the vertices
by adding more edges, we make interaction, and hence
entanglement, between edges and particles possible. This
corresponds to increasing the curvature. In a regime of very
weak coupling, k � t � U, �, entanglement will be pos-
sible only in presence of extremely strong curvature. From
the point of view of the dynamics of the quantum system,
this means that the evolution for the matter is very close to
unitary when curvature is low, while very strong curvature
makes the evolution for the particles nonunitary and there
will be decoherence and dissipation with respect to the
spatial degrees of freedom.
How does the graph evolve in time in such a model? The

quantum evolution is complex, and since the model is not
exactly solvable, numerical study is constrained to very
small systems. In the next section we simulate the system
with four vertices and hard-core bosons.
We can gain some insight from the analysis of the

classical model, regarding H as the classical energy for
classical variables. Since we delete edges randomly and
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build new edges as the result of a random walk of the
particles, and there is nothing in this model that favors
some geometry instead of others, we do not expect to
obtain more than random graphs in the limit of extremely
long times. Indeed, we can argue as follows. With the
exception of a very small number or graphs, all the other
graphs belong to the set of graphs in which one can—under
the evolution of our model—reach a ring. In practice, this
means that there is a configuration in which one deletes all
the edges without disconnecting the graph, and obtains
many particles. This means that, starting from a state
with zero particles, N vertices and L0 edges the number
of eligible edges for deletion is L0 � �N with some con-
stant � of order 1. So, as long as L0 >�N, the dynamical
equilibrium between the number of edges and particles is
realized when the rate of conversion of edges into particles
equals the one of conversion of particles into edges. Let r
be the number of edges destroyed (and pairs of particles
created). If we assume that the particles move much faster
than the edges, they will always be eligible for creating a
new edge. The rates will be then the same when L0 � r ¼
r which implies that at the dynamical equilibrium half of
the initial edges are destroyed. Consider the case of the
complete graph KN , with zero initial particles. The initial
number of edges is L0 ¼ NðN � 1Þ=2, and at long times,
the dynamical equilibrium is reached when r ¼ L0=2. A
similar reasoning can be applied to r instance, consider a
square lattice of N vertices with periodic boundary con-
ditions. In the state without particles, this is an eigenstate
of the Hamiltonian, and therefore its evolution is com-
pletely frozen. Nevertheless, if we add a pair of particles,
then all the other configurations of the graph can be
reached, including the ring immersed in a gas of many
particles. It turns out that the dynamical equilibrium is
reached when L0=2 ¼ N of the initial edges are destroyed.
The equilibrium state is obtained by deleting the edges
randomly, and thus we expect to obtain a random graph. In
order to obtain more interesting stable geometries, one has
to put other terms in the Hamiltonian, that involve more
edges together, meaning that curvature has a dynamical
importance. The rigorous treatment of the asymptotic evo-
lution of such graphs requires an analysis in terms of
Markov chains, and it is developed in the next section.

C. Trapped surfaces

Another feature of this model is that it allows for a very
good trapping of particles and light. Let us consider a
configuration of the system in which we have a region S
of the graph with NS vertices, that is highly connected, in
an almost complete way, and then connected to the rest of
the graph that can be a square or cubic lattice. We assume
to be in the large limit for the ratio r between the number of
edges in S and the number of edges between connecting S
to the rest of the graph. Initially there are no particles. The
region of the graph with ‘‘flat’’ geometry, that is, the square

lattice, is frozen. In the highly connected lump, edges will
start converting in particles. We have two time scales. The
time scale to reach the dynamical equilibrium between the
processes of destruction/construction of edges, and the
time scale for particles to escape from S. We assume that
r is large enough that the dynamical equilibrium is reached
well before S starts losing particles. As a matter of fact, the
region S will behave as the complete graph. Half of the
edges will convert in particles, and we will have a dynami-
cal equilibrium between a graph withOðN2

SÞ edges in a gas
of OðN2

SÞ particles. Other particles coming from outside

will get trapped inside S too, therefore increasing the
number of edges and particles within it. We want now to
show that not even light can escape from this region. First
of all, we want to have light propagating in our model. This
can be done by adding to the Hamiltonian the term of
Wen’s Uð1Þ theory for emerging light [23]. In the phase
where the couplings of the Uð1Þ theory are small with
respect the others, we can have electromagnetic waves
traveling on the graph. Now consider the state with very
low density of particles, and with a graph that is repre-
sented by the wave function� ¼ �A ��B. Here B is a set
of nB nodes such that nB � nA. The wavefunction �A is
chosen to be the one representing a 3D cubic lattice. The
wavefunction �B is instead chosen to be a very high
dimensional hypercubic lattice, with dimension D� nB.
Then one has to knit carefully the nodes in A with some of

those in B. We choose to knit them with just n2=DB of them,
representing their ‘‘surface’’ �B. To summarize, the wave
function in the region outside the surface represents a
discrete version of an Euclidean three-dimensional space.
Inside the surface, we still have an Euclidean space, but of
very high dimension. On such a lattice, which has a well-
defined geometry, the emergent light obeys the laws of
geometric optics. On the other hand, a general wave func-
tion � for the edges would not possess any definite geo-
metric meaning and the Wen’s model cannot even be
defined.
The speed of light c on this graph can be estimated using

the Lieb-Robinson bounds [24], and one can prove that c
has different values in the different mediums A, B and it is
proportional to the geometric dimension of the medium so
that we have cB=cA � nB. The argument about the asymp-
totic states shows that the number of edges in Bwill always
be of the order of nB. In the geometry we have chosen we
can make sense of an approximate notion of surface be-
tween the two regions; for this reason we can also make
sense of the angle between an incoming ray of light and the
normal to this surface. The Snell’s law of optics will imply
that the critical angle for total internal reflection is

�c ¼ sin�1 cB
cA

’ sin�1nB (20)

and therefore the probability of an emerging ray of light
from B is of the order of n�1

B . We see that light (and matter)

ALIOSCIA HAMMA et al. PHYSICAL REVIEW D 81, 104032 (2010)

104032-6



are trapped within the hypersurface in the large nB limit.
Eventually, some light can come out, and since the outer
graph, even though less dense, contains more vertices and
edges, eventually the region of space B has to evaporate.
The whole process is completely unitary. Nevertheless, the
emitted quanta of light and matter are entangled with the
spatial degrees of freedom (the edges) inside�B. But when
B has evaporated, there are still edges there, with a density
not much different from those outside �B. Therefore the
final state of the emitted quanta can be still entangled with
the degrees of freedom inside �B even if the ‘‘black hole’’
has evaporated. The spectrum of the emitted radiation
obtained by tracing out the spins in �B will therefore be
mixed, even though the whole process is unitary. The black
hole information paradox can be described in terms of
entanglement. Pairs of particles inside/outside the event
horizon are created and these pairs are entangled. The
density matrix of the particles outside the horizon is there-
fore mixed, because there is a classical mixture of the
particles coming from having to trace out all the degrees
of freedom inside the horizon to which we have no access.
The problem is that when the black hole disappears, there
is nothing for the particles to be entangled with, and the
mixture becomes a paradox. In our model, the particles are
entangled with the spatial degrees of freedom. The disap-
pearance of the black hole just means that the spatial
degrees of freedom acquire a particular configuration, but
the particles are still entangled with them, as in Eq. (10).

III. THE MODELWITH HARD-CORE BOSONS

A. Setting of the model

In this section, we study the model Eq. (19) when the
particles are hard-core bosons. In this model, only at most
one particle is allowed per site and the model can be
mapped onto a spin system. We are particularly interested
in the entanglement dynamics of the system. We have
performed a numerical simulation of the time evolution
of the model described by Eq. (19). Since we are interested
also in describing the quantum correlations in the reduced
density matrix, we have resorted to exact diagonalization.
In this way, we are able to compute the entanglement of the
matter degrees of freedom with respect to the spatial ones.
Of course, the simulation of a full quantum system is
heavily constrained by the exponential growth of the
Hilbert space. In this work, we have resorted to the simu-
lation of hard-core bosons: at most one particle is allowed
at any site. Hard-core bosons’ creation and annihilation
operators must thus satisfy the constraints

ðb̂yi Þ2 ¼ ðb̂iÞ2 ¼ 0 (21)

fb̂i; b̂yi g ¼ 1: (22)

With these constraints, the bosonic operators map into the
SUð2Þ generators

b̂ y
i $ Sþi (23)

b̂ i $ S�i (24)

b̂ y
i b̂i $

�
1

2
� Sz

�
i
: (25)

The local Hilbert space of a site i for a hard-core boson is
therefore that of a spin one-half: H hcb

i ’ C2. After the
projection onto the hard-core boson’s subspace, the model
becomes a purely spin 1=2 model. For a system with n
sites, the Hilbert space for the particles is thus the
2N-dimensional Hilbert space H bosons ¼ �N

i¼1H
hcb
i ’

C2�N . The Hilbert space for the spatial degrees of freedom
is still the 2NðN�1Þ=2-dimensional Hilbert space H graph ¼NNðN�1Þ=2

e¼1 H e. The total Hilbert space is thus the

2NðNþ1Þ=2-dimensional Hilbert space

H spins ¼ H bosons �H graph ’
ON
i¼1

H hcb
i

ONðN�1Þ=2

e¼1

H e:

(26)

As a basis for H spins we use the computational basis. The

basis is thus fji1; . . . ; iNðN�1Þ=2; j1; . . . ; jNig, where the first
NðN � 1Þ=2 indices ik label the edges of the graph, and the
remaining N indices jk label the vertices. Of course ik,
jk ¼ 0, 1 for every k.
After the projection onto the hard-core boson’s space

H spins, the model Hamiltonian becomes thus the spin one-

half Hamiltonian (for �i uniform):

H1=2 ¼ �U
X
ði;jÞ

Szði;jÞ ��
XN
i¼1

�
1

2
� Sz

�
i

� t
X
ði;jÞ

Pij � ðSþi S�j þ S�i Sþj Þ

� k
X
ði;jÞ

ðS�ði;jÞP2
ij � ðSþi Sþj Þ þ P2

ijS
þ
ði;jÞ � ðS�i S�j ÞÞ:

(27)

Let us examine the model in some limits. When the ex-
change term is vanishing, k ¼ 0, the model has particle
number conservation

½H1=2; N̂� ¼ 0; N̂ ¼ X
i

byi bi (28)

and therefore it has a Uð1Þ symmetry, corresponding to the
local transformation at every site given by

jc i ! Y
l

ei�by
l
bl jc i; � 2 ½0; 2�Þ (29)

while the total system with k � 0 does not have particle
conservation because particles can be created or destroyed
by means of the exchange term with the edges. Moreover,
the k ¼ 0 system is self-dual at � ¼ 0 under the trans-
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formation bi ! byi . For every separable state of the form
jc i ¼ ji1; . . . ; iNðN�1Þ=2i � jc ibosons, the system is just the

usual Hubbard model on the graph specified by the basis
state ji1; . . . ; iNðN�1Þ=2i. In the limit of �U positive and

very large, all the edges’ degrees of freedom are frozen in
the j1i state. The model becomes a Bose-Hubbard model
for hard-core bosons on a complete graph.

It is a typical feature of the richness of the Hubbard
model that summing the potential and kinetic term gives a
model with an incredibly rich physics. Depending on the
interplay between potential and kinetic terms, it can ac-
commodate metal-insulator transitions, ferromagnetism
and antiferromagnetism, superconductivity and other im-
portant phenomena. The richness of the model comes from
the interplay between wave and particle properties. The
hopping term describes degrees of freedom that behave as
‘‘waves,’’ whereas the potential term describes particles
[25]. As is well known, the model is not solvable in two
dimensions. The present model is even more complicated
by the fact that the graph itself is a quantum variable. It is
therefore extremely difficult to extract results from such a
model. The hopping term in t favors delocalization of the
bosons in the ground state, while the chemical potential �
is responsible for a finite value of the bosonic density � in
the ground state given by

� ¼ 1

N

X
i

hbyi bii: (30)

The strength of j�j determines how many bosons are
present in the ground state. For �> 0, a large value of �
determines � ¼ 1, meaning that the ground state has a
boson at every site, whereas for �< 0, a large value of
� means there are no bosons in the ground state � ¼ 0. In
any case, there is no possibility for hopping and this
situation describes what is called a Mott insulator. On the
other hand, for k ¼ 0 and t > �, the hopping dominates
and the system is in a superfluid phase. The nonvanishing
expectation value in the ground state is that of the average
hopping amplitude per link

� ¼ 2

NðN � 1Þ
X
i;j

hbyi bji: (31)

We expect this situation to hold even for the weakly
interacting system t � k � 0. As in the Hubbard model,
there should be a quantum phase transition between the
Mott insulator and the superfluid phase for a critical value
of �=t. An extensive numerical simulation of the ground
state properties of the model is necessary to understand if,
for k � 0, such transition belongs to the same universality
class or a different one. It would also be interesting to
understand whether there is a Lieb-Mattis theorem for such
a system, namely, that there are gapless excitations in the
thermodynamic limit for the system of spins one-half.

It should also be evident that depending on the interplay
between potential and kinetic energy, the ground state of
the system is entangled in the bipartition edges-particles.
Starting instead from some separable initial state, the
unitary evolution induced by H1=2 will entangle states

initially separable.

B. Numerical analysis

We have analyzed several aspects of the dynamics of the
system in two different situations. The ‘‘insulator’’ case is
the one in which the potential energies are dominant over
the kinetic terms: U ¼ � ¼ 1; t ¼ k ¼ 0:1. The second
situation is when the kinetic terms are much stronger, the
so called ‘‘superfluid’’ case: U ¼ � ¼ 0:1; t ¼ k ¼ 1. We
have studied numerically the entanglement dynamics of
the model, using as figures of merit (i) the entanglement
between particles and edges expressed by the von
Neumann entropy SðtÞ of the density matrix reduced to
the system of the particles, (ii) the entanglement per site j
expressed by the von Neumann entropy sjðtÞ of the density
matrix reduced to the system of just one site, and (iii) the
concurrence CðtÞ between a pair of edges, or particles or
the particle-edge pair. This expresses the entanglement
between these two degrees of freedom alone.
We have simulated the system described by H1=2 with

N ¼ 4 sites, which is 210 dimensional. We have labeled the
sites i ¼ 1; . . . ; 4 starting from the lower left corner of a
square and going clockwise. The basis states for the system
are jJ1J2J3J4; e14e12e23e34e24e13i with Ji, ekl ¼ 0, 1. By
direct diagonalization of the Hamiltonian, we compute the
time evolution operator UðtÞ ¼ e�iHt. Starting from an
initial state �ð0Þ, the evolved state is �ðtÞ ¼ UðtÞ�UyðtÞ.
The entanglement SðtÞ as a function of time between
particles and edges is obtained by tracing out the spatial
degrees of freedom; we obtain the reduced density matrix
for the hard-core bosons: �hcbðtÞ ¼ Trgraph�ðtÞ. The evo-

lution for the subsystem is not unitary but described by a
completely positive map. The entanglement is computed
by means of the von Neumann entropy for the bipartition
H ¼ H bosons �H graph, so we have

SðtÞ ¼ �Trð�hcbðtÞ log�hcbðtÞÞ: (32)

The single-site entanglement sjðtÞ is instead obtained by

tracing out all the degrees of freedom but the site j and then
computing the von Neumann entropy of such a reduced
density matrix. Finally, the last figure of merit to describe
the entanglement dynamics of the model is the two-spins
concurrence CðtÞ defined in [26]. We define the 	ðtÞ re-
duced system of any two spins in the model, i.e., an edge-
edge pair, or an edge-particle pair or a particle-particle pair.
The entanglement as function of time between the two
members of the pair is given by

C ð	ðtÞÞ � maxð0; ffiffiffiffiffiffi

1

p � ffiffiffiffiffiffi

2

p � ffiffiffiffiffiffi

3

p � ffiffiffiffiffiffi

4

p Þ; (33)
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where 
i’s are the eigenvalues (in decreasing order 
1 >

2 > 
3 > 
4) of the operator 	ðtÞð�y � �yÞ		ðtÞ�
ð�y � �yÞ.

There are other important quantities to understand the
time evolution of the model. We have computed the ex-
pectation value of the particle number operator Sþi S�i ¼
j1ih1ji at the site i, the link operator Pij, and the vertex

degree operator Di ¼
P

k�iPik, whose expectation value
gives the expected value for the number of edges connected
to the vertex i. The last important quantity is the fidelity
F ðtÞ :¼ jhc ð0Þjc ðtÞij of the state jc ðtÞi with the initial
state jc ð0Þi. This quantity gives a measure of how much
the state at the time t is similar to the initial state.

The simulations have been carried out using two initial
states jc 1i, jc 2i. The state jc 1i is the basis state describ-
ing the complete graph K4 without particles: jc 1i ¼
j0000111111i. In Fig. 1 the result of the simulation is
shown using jc 1i as initial state, and for the model where
the on-site potential energy is bigger than the kinetic en-
ergies, that is, in the insulator phase: U, �> t, k. Because
of the very high symmetry of the Hamiltonian in the initial
subspace, the system is basically integrable and we can
indeed see a short recurrence time. Because of the initial
symmetry of the state and the fact that no more than one
particle is allowed at every site, the system is very con-
strained and it is integrable. The entangling power of the
Hamiltonian is elevated, and despite the fact that the over-

lap with the initial state is very high, the entanglement is
non-negligible. The expectation value of every link is the
same because of symmetry. For such an initial state, there
is no qualitative difference other than different time scales
between the insulator and superfluid case.
The time evolution starting from a just less symmetric

state is far richer. The state jc 2i ¼ j0000111101i is the
basis state describing the square with just one diagonal, and
again no initial particles. As anticipated, we have studied
the model for two sets of parameters. The case (a) is the
insulator case with parameters � ¼ U ¼ 1; t ¼ k ¼ 0:1.
The case (b), or superfluid case has parameters � ¼ U ¼
0:1; t ¼ k ¼ 1.
Insulator case (a).—In the graph, Fig. 2(a) are plotted

the time evolutions of hD1ðtÞi, hD2ðtÞi which have initial
values of hD1ð0Þi ¼ 3, hD2ð0Þi ¼ 2. The oscillations of
these operators are damped as well, and the system is
thermalizing towards a state which represents an homoge-
neous graph. It is very remarkable to see the phenomenon
of eigenstate thermalization in such a small system.
Recently, there has been a revival in the study of how
quantum systems react to a sudden quench in the context
of equilibration phenomena in isolated quantum systems,
and our results are showing indeed that for such an isolated
quantum system, the reduced system can thermalize due to
the entanglement dynamics [18,27]. In Fig. 2(b) are plotted
the expectation value of the link operators P12, P24 as a
function of time In the initial state jc 2i we have
hc 2jP12jc 2i ¼ 1, hc 2jP24jc 2i ¼ 0. The evolution of
hP12ðtÞi is almost periodic, but we see that on the other
hand the oscillations of hP24ðtÞi are damping and the
system is thermalizing. The behavior of the P13 operator
is complementary to P24 and at long times
limt!1hP24ðtÞ � P13ðtÞi ¼ 0. In Fig. 2(c) we plotted the
entanglement per site measured by the von Neumann
entropy sjðtÞ as a function of time. The sites considered

are again j ¼ 1 and j ¼ 4. The two quantities split in two
separated bands. Naively, one would expect that the verti-
ces with higher degree are more entangled, but it is not so.
Comparing with Fig. 2(a) we see that the degrees hD1ðtÞi,
hD4ðtÞi cross several times and have the same time average.
Surprisingly, the vertex with consistent higher entangle-
ment is the one that started with a higher degree at time
zero, when the system was in a separable state. The system
has a memory of the initial state that is revealed in the
entanglement dynamics. This means that there are some
global conserved quantities that are not detected by any
local observable, but are instead encoded in the entangle-
ment entropy, which is a function of the global wave
function. The thermalization process is also shown in the
behavior of the fidelity F ðtÞ that presents damped oscil-
lations, see Fig. 2(d). The behavior of the von Neumann
entropy SðtÞ in Fig. 2(d) shows that the reduced system of
the particles is indeed evolving as an open quantum sys-
tem. Though some of the observables are thermalizing, the

FIG. 1 (color online). Simulation of the system H1=2 for N ¼
4. The initial state is �1 ¼ jc 1ihc 1j where jc 1i ¼
j0000111111i, that is, there are no particles and all edges are
present. The parameters for this simulation are U ¼ � ¼ 1, t ¼
k ¼ :1. In the figure are plotted the quantities hSþi S�i i (red line),
F ðtÞ (blue line), SðtÞ (black line), PijðtÞ,DiðtÞ=3 (green line) as a
function of time. Revivals of the expectation value of the link
operator coincide with revivals in the fidelity with the initial
state. The initial value of the entanglement is Sð0Þ ¼ 0 because
the initial state is separable. Notice that even though the fidelity
is F ðtÞ * 0:85, the state has a non negligible entanglement.
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FIG. 2 (color online). The initial state of this numerical integration is jc 2i ¼ j0000111101i, the parameters are in the insulator
phase, U ¼ � ¼ 1, t ¼ k ¼ 0:1. The temporal scale is in units of @, on a range of 104 seconds. The diagonalization of the full system
has been performed by means of Householder reduction. (a) Time evolution of hD1ðtÞi, hD4ðtÞi. The damping of the oscillations is a
sign of thermalization. (b) Expectation values hP12ðtÞi, hP24ðtÞi. The latter observable is thermalizing. (c) Von Neumann entropy siðtÞ
for the sites i ¼ 1, 2. We see that the entanglement dynamics is split in two different bands. The two vertices are only distinguished by
the initial degree. (d) Entanglement evolution SðtÞ and overlap with the initial state F ðtÞ. The damping of F ðtÞ is a clear sign of
thermalization. The entanglement SðtÞ between particles and edges shows the entangling power of the system. (e) Expectation value of
the particle operators at two different sites i ¼ 1, 4. (f) Concurrence CðtÞ as a function of time of the particles on the site i ¼ 2with the
edge (2, 4)(blue). Again we notice a damping of oscillations. Instead, the concurrence between the site 1 and the link 5 (red) is
identically zero.
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FIG. 3 (color online). The initial state of this numerical integration is jc 2i ¼ j0000111101i, the parameters are in the superfluid
phase, U ¼ � ¼ 1, t ¼ k ¼ 0:1. The temporal scale is in units of @, on a range of 104 seconds. The diagonalization of the full system
has been performed by means of Householder reduction. (a) Time evolution of hD1ðtÞi, hD4ðtÞi. The oscillations have constant
amplitude and the system does not present signs of thermalization. (b) Expectation values of the link operators P14, P24. There is no
sign of thermalization. The two values belong to two different bands depending on the initial value of the operator. (c) Von Neumann
entropy siðtÞ for the sites i ¼ 1, 2. We see that the entanglement dynamics is split in two different bands. The two vertices are only
distinguished by the initial degree and the splitting is more marked than in the insulator case. Compare the result with the higher
overlap of the operatorsDijðtÞ. (d) Entanglement evolution SðtÞ and overlap with the initial stateF ðtÞ. Again the plots show no signs of

thermalization. The behavior ofF ðtÞ implies very long recurrence times. (e) Expectation value of the particle operators at two different
sites i ¼ 1, 4. (f) Time evolution of concurrence CðtÞ. In blue is plotted the concurrence between the vertex i ¼ 2 and the edge (2, 4)
for the superfluid case. Unlike the insulator case, the behavior of CðtÞ does not show any sign of thermalization. The concurrence
between the site 1 and the link 5 is identically zero, as in the insulator case.
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entanglement dynamics does not show any damping. In
Fig. 2(e) is shown the time evolution of the expectation
values of the number operators NiðtÞ ¼ Sþi S�i ðtÞ at the

vertices i ¼ 1, 4. The vertices are distinguished by the
initial state of the graph, namely, by their degree. The

average number of particles per site is NiðtÞ � 0:05. This
means that particles are basically involved in virtual crea-
tion/annihilation processes through which the graph ac-
quires a dynamics. The next graphs show that the
entanglement dynamics is all but trivial. The following
Fig. 2(f) shows the time evolution of the concurrence
CðtÞ between the vertex i ¼ 2 and the edge (2, 4) which
is in the state j0i at the initial time. We see deaths and
revivals of entanglement, and the damping of the oscilla-
tion signals again some thermalization.

Superfluid case (b).—In this case, the kinetic terms k, t
are dominant over the potential terms U, �. The dynamics
of this model for these parameters is completely different.
We do not have any sign of thermalization. The degree
expectation values hD1ðtÞi, hD2ðtÞi have a similar oscillat-
ing behavior with an even higher overlap, see Fig. 3(a). The
link operators P14, P24, shown in Fig. 3(b) oscillate with no
damping and are almost completely overlapped. To such
distinct behavior with respect to the insulator case, we find
a very strong similarity in the behavior of the entanglement
per site siðtÞ (see Fig. 3(c) where, again, and in a more
pronounced way, there is a splitting in two bands depend-
ing on the initial state of the system, and not on the degree
[or other interesting observables] of the system during the
time evolution). As in the insulator case, the vertex that
started off with a higher degree is constantly more en-
tangled than the one that started off with a lower degree,
even if in the initial state they are both separable states and
during the evolution all the relevant observables overlap
strongly and have the same time averages. This phenome-
non again reveals how the entanglement contains global
information on the state of the system that is not revealed in
the usual local observables one looks at. The entanglement
between edges and particles has a similar behavior than in
the insulator case, but it is an order of magnitude greater,
which is consistent with the fact that now the terms that
couple edges and particles (and thus create entanglement)
are larger. The superfluidity is revealed also in the behavior
of the fidelity F ðtÞ that shows no sign of thermalization
with constant amplitude of oscillations, see Fig. 3(d). The

average number of particles per site is now NiðtÞ � 0:52
and is homogeneous (Fig. 3(e)). Particles are delocalized
over the quantum graph with a nonvanishing expectation
value. The concurrence CðtÞ in Fig. 3(f) confirms that there
is no thermalization in the system.

To conclude this section, we have studied the model
Eq. (19) in the case of hard-core bosons. The usual
Hubbard model with hard-core bosons on a fixed graph
presents two quantum phases at zero temperature: an in-
sulator phase, when the potential energy of the electrons is

dominant, and a superfluid phase, when the kinetic energy
is dominant. In our model, the graph interacts with the
electrons and the graph degrees of freedom are themselves
quantum spins that can be in a superposition. We have
studied numerically the entanglement dynamics of the
system with four vertices starting from a separable state.
The evolution with insulator parameters shows typical
signs of thermalization in some of the relevant observables.
Moreover, the entanglement dynamics reveals a memory of
the initial state that is not captured in the observables. The
behavior of the dynamics of the superfluid system is com-
pletely different, in the fact that there is no apparent
thermalization. The memory effect revealed by the entan-
glement dynamics is present in an even more pronounced
way. There are many open questions to be answered: how
the entanglement spectrum behaves and what it reveals of
the system, what is the phase diagram of the model at zero
temperature in the thermodynamic limit, and a systematic
study of the correlation functions in the model. We barely
started studying the features of this model that presents
formidable difficulties, but that promises to be very rich.

IV. MARKOV CHAINS ANALYSIS OF THE MODEL

In this section, we develop a general method to describe
the evolution of graphs. We regard Eq. (19) as the
Hamiltonian for a classical model and consider a configu-
ration of the system with a fixed number of edges and
particles. The sum of these two quantities is a constant of
the evolution. Moreover, it is safe to assume that almost all
edges can be potentially converted in particles. The reason
is simple: fixing the number of vertices, every connected
graph (up to isomorphism) can be obtained by deleting and
adding edges that are part of triangles. With this approxi-
mation, we expect that at long times a dynamical equilib-
rium is established between particles and edges. When
considering the classical model, we can disregard super-
positions and look at the dynamics as a discrete-time
process with characteristics described as follows. For sim-
plicity, we focus on the complete graph KN ¼
ðVðKNÞ; EðKNÞÞ, with set of vertices VðKNÞ and set of
edges EðKNÞ. Note that this constraint is not necessary,
since we can start from any graph containing a triangle.
The process simply needs at least one triangle in order to
run. The process, starting from time t ¼ 0, can be inter-
preted as a probabilistic dynamics gradually transforming
the complete graph into its connected spanning subgraphs.
These are subgraphs on the same set of vertices. Methods
from the theory of Markov chains appear to be good
candidates to study such a dynamics. We identify with a
‘‘graph of graphs’’ the phase space representing all pos-
sible states of the system considered. In this way a random
walk on the graph, driven by appropriate probabilities, will
allow us to study the behavior of the Hamiltonian, at least
restricting ourselves to the classical case. Thus, the
Hamiltonian transforms graphs into graphs. The Markov
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chain method suggests different levels of analysis: a level
concerning the support of the dynamics; a level concerning
the distribution of particles. At the first level, we are
interested in studying graph theoretic properties of the
graphs/objects obtained during the evolution, if we disre-
gard the movement of the particles. This consists of study-
ing expected properties of the graphs obtained by running
the dynamics long enough. It is important to remark that
the presence of particles does not modify the phase space,
which, if we start from KN , is the set of all connected
graphs. The graphs obtained cannot have more edges than
the initial one. Notably, particles only alter the probability
of hopping between elements of the phase space. At the
second level, we are interested in studying how the parti-
cles are going to be distributed on the vertices of the single
graphs, and therefore in what measure the particles deter-
mine changes on the graph structure and consequently
modify the support of the dynamics. When considering
only the support, the Hamiltonian for the classical model
determines the next process:

(i) At time step t ¼ 0, we delete a random edge ofG0 �
KN and obtain G1.

(ii) At each time step t 
 1, we perform one of the
following two operations on Gt:

(1) Destroy a triangle: We delete an edge randomly
distributed over all edges in triangles of Gt. A
triangle is a triple of vertices fi; j; kg together with
the edges fi; jg; fi; jg; fj; kg.

(2) Create a triangle: We add an edge randomly dis-
tributed over all pairs fi; jg =2 EðGtÞ such that fi; kg,
fj; kg 2 EðGtÞ for some vertex k.

This process is equivalent to a random walk on a graph
GN whose vertices are all connected graphs. Each step is
determined by the above conditions. The Hamiltonian
gives a set of rules determining the hopping probability
of the walk. The theory of random walks on graphs is a
well-established area of research with fundamental appli-
cations now ranging in virtually every area of science [28].
The main questions to ask when studying a random walk
consist of determining the stationary distribution of the
walk and estimating temporal parameters like the number
of steps required for the walk to reach stationarity. The
stationary distribution at a given vertex is intuitively re-
lated to the amount of time a random walker spends
visiting that vertex. In our setting, the walker is a classical
object in a phase space consisting of all connected graphs
with the same number of vertices. Figure 4 is a drawing of
G4, the configuration space of all connected graphs on four
vertices. This is a graph whose vertices are also graphs.
The initial position of the walker is the vertex correspond-
ing to K4.

The graph GN (N 
 2) is connected and bipartite. The
number of vertices of GN equals the number of connected
labeled graphs on N vertices. We need labels on the
vertices to distinguish between isomorphic graphs. From

the adjacency matrix of a graph G, we can construct the
transition matrix TðGÞ inducing a simple random walk on
G: ½TðGÞ�i;j ¼ 1=dðiÞ if fi; jg 2 EðGÞ and ½TðGÞ�i;j ¼ 0,

otherwise. Here, dðiÞ :¼ jfj: fi; jg 2 EðGÞgj is the degree
of a vertex i. Notice that the degrees of the vertices in GN

are not uniform, or, in other words, GN is not a regular
graph. In fact, the degree of the vertex corresponding to
KN , which is the number of edges in this graph, is much
higher than the degree of the graphs without triangles. In
Fig. 4, it is easy to see thatK4 has degree 6 and that the path
on 4 vertices, drawn in the bottom-right corner of the
figure, has only degree 2.
The evolution of a random walk is determined by apply-

ing the transition matrix to vectors labeled by the vertices
encoding a probability distribution on the graph. The law

ðTðGÞTÞtvðiÞ0 ¼ vt gives a distribution on VðGÞ at time t,

with the walk starting from a vertex i. The vector vðiÞ0 is an

element of the standard basis of RN . The vector vt ¼
ðvð1Þt ; vð2Þt ; . . . ; vðNÞ

t ÞT is a probability distribution, being vðiÞt
the probability that the walker hits vertex i at time t. The
distribution � ¼ ðdðiÞ=2jEðGÞj: i 2 VðGÞÞ is the station-
ary distribution, that is TðGÞ� ¼ �. If G is connected and

nonbipartite then limt!1ðTðGÞTÞtvðiÞ0 ¼ � [28]. The sta-

tionary distribution is independent of the initial vertex.
Therefore, a walk on GN can start from any vertex and
the asymptotic dynamics remains the same. It is simple to
see that GN is bipartite. Then a random walk does not
converge to a stationary distribution, but it oscillates be-
tween two distributions with support on the graphs with an
odd and an even number of edges, respectively. In fact, for

FIG. 4 (color online). The graph G4. The number of vertices is
38 and 72 edges. The number of vertices of Gn is exactly the
number dn of connected labeled graphs on n vertices. The

number dn satisfies the recurrence n2
n
2ð Þ ¼ P

kkdk2
n�k
2ð Þ [40].

The walker starts from the vertex corresponding to the graph
K4. Even when we add particles, the graph Gn remains the
support of the dynamics. The vertices of Gn are the possible
states of classical evolution. In the quantum evolution, we have a
weighted superposition of vertices.
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a bipartite graph G with VðGÞ ¼ A [ B, we have the fol-

lowing: limt!1;evenðTðGÞTÞtvðiÞ0 ¼ �even with ½�even�i ¼
dðiÞ=jEðGÞj if i 2 A and ½�even�i ¼ 0, otherwise; analo-

gously for limt!1;oddðTðGÞTÞtvðiÞ0 ¼ �odd. For instance, it

follows that the stationary distribution of a random walk
starting from any vertex of G4 oscillates between the two
distributions

�odd ¼ ð 0|{z}
1

; 1=12; . . . ; 1=12|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
6

; 0; . . . ; 0|fflfflffl{zfflfflffl}
15

; 1=24; . . . ; 1=24|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4

; 1=36; . . . ; 1=36|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
12

Þ

and

�even ¼ ð1=12|{z}
1

; 0; . . . ; 0|fflfflffl{zfflfflffl}
6

; 5=72; . . . ; 5=72|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4

; 1=31; . . . 1=31|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
3

; 5=72; . . . ; 5=72|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
8

; 0; . . . ; 0|fflfflffl{zfflfflffl}
4

; 0; . . . ; 0|fflfflffl{zfflfflffl}
12

Þ:

In particular, for �odd,
P

i: dðiÞ¼6½�odd�i ¼ 1
2 ,P

i: dðiÞ¼4½�odd�i ¼ 1
6 ,

P
i: dðiÞ¼2½�odd�i ¼ 1

3 ; for �even,P
i: dðiÞ¼6½�odd�i ¼ 1

12 ,
P

i: dðiÞ¼5½�odd�i ¼ 5
6 ,P

i: dðiÞ¼2½�odd�i ¼ 1
12 . Now, what is the most likely struc-

ture of a graph/vertex of GN in which the random walker
will spend a relatively large amount of time? In other
words, where are we going to find the walker if we wait
long enough and what are the typical characteristics of that
graph or set of graphs? From the above description, one
may answer this question by determining the stationary
distribution of the walk in GN . We do not have immediate
access to this information, because we do not know the
eigenstructure of TðGNÞ. For this reason, we need some
way to go around the problem. We can still obtain proper-
ties of the asymptotics by making use of standard tools of
random walks analysis. In particular, as a first step, we are
able to estimate the number of edges in the most likely
graph in GN . Even if this information is not particularly
accurate and it is far from being sufficient to determine the
graphs, it still can give an idea of their structure. The
probability �ðGÞ that the walk will be at a given graph G
after a large number of time steps is given, up to a small
error term, by the stationary distribution � of the walk. As
we have mentioned above, �ðGÞ is given by the number of
possible transitions from G in the walk, divided by a
normalizing constant E which is independent of G.
Based on this, it is possible to find the expected number
of edges in a graph visited by the walk. We will provide
here a sketch of the proof. A more extensive discussion is
in the Appendix. In total there are

N
2

� �
k

0
@

1
A

graphs with N vertices and k edges. By some of the
classical results in the theory of random graphs [29] we
know that for k 
 ð1þ�Þ logN

N , the probability that a random
graph is connected converges to 1 as N grows. Let us recall
briefly that a random graph is a graph whose edges are
chosen with a fixed probability, equal and independent
for each pair of vertices. The probability that a graph is

visited by our walk will have k edges is given byP
VðGNÞ: jEðGNÞj¼k�ðGNÞ, where the sum is in fact taken

over all connected graphs with k edges. In order to estimate
this sum we must know how much �ðGNÞ can vary.
However by the results mentioned earlier �ðGNÞ cannot
be larger than

N
2

� �
=E

and not smaller than ðN � 1Þ=E, since that is the largest
and smallest number of edges in a connected graph, and
every transition in the walk can be associated with an edge
in the current graph. Hence, the probability that the graph
will have k edges will lie between

N
2

� �
k

0
@

1
A N

2

� �
=E

and

N
2

� �
k

0
@

1
AðN � 1Þ=E:

However for large N and k this value is completely domi-
nated by the first term, which is of order 2N

2
=N for

k ¼ N
2

� �
=2:

A more careful use of these estimates shows that the
expected number of edges will be close to

N
2

� �
=2� N2=4:

Furthermore these results will hold true for any walk where
the ratio between probabilities for the most and least likely
graphs is not exponentially large in N. This observation
tells us that the most likely graphs obtained during the
process tend to have less edges than regular objects as
latticelike graphs. The number of edges in a square lattice
with n2 vertices is 2nðnþ 1Þ. For a cubic lattice on n3

vertices this number is 3nðnþ 1Þ2, from the general for-
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mula dnðnþ 1Þd�1, where d is the dimension of the lattice.
It seems natural to try to establish a relation between our
walk and random graphs. After a first analysis, such a
relation does not appear obvious. In fact, the walk on GN

is based upon a locality principle which is not usually
defined when considering random graphs. An attempt to
implement this principle for random graphs would consist
in constructing Erdös-Renyi graphs starting from a random
tree instead of the empty graph, that is, the graph with zero
edges. A random tree ensures connectivity. Each pair of
vertices at distance two is then joined with a probability p.
If we keep adding and deleting edges, we obtain a dynam-
ics similar to the one induced by our Hamiltonian. It is
important to observe that the differences with the standard
notion of random graph are essentially two: vertices at
distance larger than 2 cannot be joined with a single step
of the process; there is an additional probability of deleting
edges.

Let us keep in mind that so far we have not considered
particles. Indeed, we have studied only a random walk on
GN, where this is the space of objects obtained by deleting
and adding edges that form triangles. However, our
Hamiltonian describes an evolution including particles.
Each edge deletion creates two particles sitting at the end
vertices of the deleted edge. These particles are free to
move in the graph. Creation of another edge will depends
on the number of particles. Only when two particles are
located on two different vertices at distance two from each
other, then we have a nonzero probability of creating an
edge between such vertices and therefore creating a new
triangle. Including particles, we can define the following
process:

(i) At time step t ¼ 0, we delete a random edge of
G0 :¼ KN and obtain G1.

(ii) At each time step t 
 1, we perform one of the
following two operations on Gt:

(1) Destroy a triangle: We delete an edge randomly
distributed over all edges in triangles of Gt. When
deleting an edge we create two (indistinguishable)
particles. Each particle is located on a vertex of the
graph according to the stationary distribution over
Gtþ1. This reflects the assumption that the particles
thermalize.

(2) Create a triangle: With a certain probability, we add
an edge fi; jg =2 EðGtÞ such that fi; kg, fj; kg 2 EðGtÞ
for some vertex k. The probability of adding this
edge is proportional to the probability of finding a
particle at vertex i and a particle at vertex j at the
same time t. When adding an edge, we destroy two
particles: specifically, the particles located in the
two end vertices.

Notice that the probability of deleting an edge is inde-
pendent of the number of particles in the graph and their
locations. On the other side, the probability of adding an
edge is fundamentally connected to the number of parti-

cles. Higher is the number of particles in the graph Gt 2
VðGNÞ and higher is the probability of adding edges. The
process exhibits a conservative behavior since the number
of particles is always

2
N
2

� �
� jEðGtÞj: (34)

So, the dynamics is again equivalent to a random walk on
the graph GN . This time the random walk is not a simple
random walk, since the probability of each step is deter-
mined by the above conditions. In the transition matrix
TðGNÞ we can have ½TðGNÞ�i;j � ½TðGNÞ�i;k � 0, when-

ever j � k. This fact gives different nontrivial weights on
the edges of GN . The transition matrix of the walk is then
not necessarily symmetric and we need a normalization
factor to keep it stochastic (i.e., the sums of the elements in
each row is 1). Whenever an edge is deleted two particles
are created. In the simplest version of our model all parti-
cles are distinguishable and at each time step of the walk all
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FIG. 5 (color online). (a) Plot of the logarithm of the average
number of particles Np as a function of the number of steps. The

initial conditions were complete graphs with N vertices, KN ,
with hopping probability Ph ¼ 1 and interacting probability
Pi ¼ 0:1. (b) In this plot we have the same quantity of (a),
logðNpðNÞÞ, plotted as a function of the graph size N at long

times (when at equilibrium). (c) Plot of the equilibrium degree
distributions for each graph KN . The hopping and interaction
probabilities for each simulation are Ph ¼ 1 and Pi ¼ 0:1 re-
spectively. The distributions are obtained averaging over 60
simulations. At equilibrium, we obtain Poisson distributions

centered on N
2 , as shown in Fig. (6(b)), and variance QðNÞ ¼ffiffiffi

N
p
2 , as shown in Fig. (6(a)). This agrees with standard results of

the theory of random graphs.
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particles are redistributed according to a random walk on
each graph/vertex of GN . By Eq. (34), there are N2p

possible particle configurations. By the standard behavior
of a random walk, particles will tend to cluster at vertices
with high degree. For this model the state of the walk will
consist both of the current graph G and the vector x of
positions of all particles. Here the number of possible
transitions will depend both on the structure of G, as
before, and the number of particles. Since the number of
particle configurations grows rapidly while the number of
edges decreases, the walk will concentrate on connected
graphs with few edges, rather than the denser graphs
favored by the model without particles. If we make a rough
estimate of the number of states corresponding to graphs
with

N
2

� �
=2

edges, we see that they are fewer than +++NðN2Þ2ðN2Þ and that
the number of states corresponding to graphs with OðNÞ
edges are more than Nð2��ÞðN2Þ, for any � > 0. A comparison
argument like the one used for the case without particles
then shows that the expected number of edges for a graph/
vertex will be oðN2Þ. It has to be noted that an ad hoc
tuning of the deletion probability for each edge should
plausibly allow to obtain sparser or denser graphs. We
have give a rough bound on the number of edges in a
typical graph obtained via the Hamiltonian in Eq. (19).
The bound does not contradict the possibility that such a
graph has an homogeneous structure like a lattice.
Additionally to the number of edges, it may be worthwhile
to have some information about cliques. A clique is a
complete subgraph. Cliques are then the densest regions

in a graph. Knowing the size of the largest cliques gives a
bound on the maximum degree and clearly tells about the
possibility of having dense regions. In the Appendix we
will prove that the growth of the largest cliques is loga-
rithmic with respect to the number of vertices. This behav-
ior also occurs for random graphs.
Numerical simulations were performed to obtain infor-

mation on the behavior of the classical system under differ-
ent initial conditions. We are going to discuss the case of
the complete graphKN as initial state. Complete graphs are
interesting for several reasons. First of all, every edge of
KN is eligible for interaction. This implies that edges
rapidly transform in particles. As we can see in Fig. 5(a),
the number of particles increases rapidly until it reaches an
equilibrium value ~N0ðNÞ. The number of steps to reach the
equilibrium distribution is the same for all the graph sizes,
and is of the order of the inverse of the only time scale
introduced, given by �P�1

i . It is interesting to understand
the equilibrium distribution of the degree for the various
graphsKN . To obtain a better shape for this distribution, we
increased the number of simulations from 30 to 60. The
result can be seen in Fig. 5(b). We find that the distribution
is Poisson (De is the degree), as it is for random graphs:

PNðDeÞ ¼ 1

R
e�ðððDe�fðNÞÞ2Þ=QðNÞÞ

where R is a normalization constant. In Fig. 6 we find that
the function fðNÞ is, for the graph KN , given by

fðNÞ ¼ N

2
;

while the function QðNÞ is
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FIG. 6 (color online). (a) Plot of the average values of the equilibrium degree distributions of Fig. (5) (c). The red line is the fit, given
fðNÞ ¼ N

2 . This agrees perfectly with the various KN . (b) Plot of the variance of the equilibrium degree distributions of Fig. (5) (c). The

red line is the fit, giving QðNÞ ¼
ffiffiffi
N

p
2 .
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QðNÞ ¼
ffiffiffiffi
N

p
2

:

It has to be noted that this result agrees for large N with the
combinatorial proof in the last section.

V. CONCLUSIONS

The work presented here was motivated by the possibil-
ity that the answer to the problem of quantum gravity lies
in the direction of emergent gravity, and, in particular, in a
condensed matter perspective to emergent gravity. Along
these lines, in previous work [13,14], quantum graphity
was proposed and analyzed, a background independent
spin system for emergent locality, geometry and matter.
The quantum states of this system are dynamical graphs
whose connectivity represents locality. The Hamiltonian of
[13] is not unitary: the Universe starts at a high energy
configuration (nonlocal) and evolves to a low energy one
(local). This has clear limitations when applied to a cos-
mological context. The present model was originally in-
tended as an energy-conserving version of [13], in which
graph edges can be deleted, matter created and vice versa.
The Hamiltonian we used is essentially an extension of the
Hubbard model to a dynamical lattice.

In our system, the basic building blocks of the theory are
not events, but quantum physical systems Si, represented
by a finite-dimensional Hilbert space H i and a
Hamiltonian Hi. That is, instead of an event, we have the
space of all possible states of Si and the dynamical rules for
the time evolution of these. The aim is to study the relation-
ships among the Si and find geometry as the emerging
structure imposed by these relationships, independently of
their state. In fact, what we have can be considered as a
unification of matter and geometry to matter only. Certain
configurations (bound states) of matter play the role of
spatial adjacency in the dynamical sense that they will
determine whether interaction of other particles is allowed
or not. In that sense, geometry is not fundamental but
rather a convenient way to simplify the fundamental evo-
lution of matter. From the condensed matter point of view,
we have presented a Hubbard model in which the particles
hop on a graph whose shape is determined by the motion of
the particles and it is itself a quantum variable.

We simulated the quantum system for a complete graph
with four vertices and hard-core bosons and we analyzed
the entanglement dynamics of the system, including the
one between the particle and edge degrees of freedom. We
argued that for the weakly interacting system, entangle-
ment and loss of unitarity for the reduced system can be
seen in presence of very high curvature. Moreover, the
eigenstate thermalization of the model is studied under
two different sets of parameters. Thermalization occurs
when potential energy dominates over kinetic energy.

The model discussed in this paper has some features of
other models studied in a diversity of contexts and with

different purposes. The first central aspect is a quantum
dynamics involving a set of graphs. Quantum evolution on
graphs is a subject of study related to spin systems, as a
generalization of spin chains (see the review by Bose [30]),
and quantumwalks on graphs, where a particle undergoes a
Schrödinger dynamics hopping between the vertices (see
the review by Kempe [31]) where, at each time step, a
particle is in a superposition of different vertices. Of
course, the main difference with respect to our model is
in the fact that in our model the graph is evolving in time as
part of the system’s evolution. Focusing on another area, it
may be interesting to highlight a parallel with the work of
Gudder [32], who studied discrete-space-time building on
ideas of Bohm [33]. In the model described by Gudder, the
graph is interpreted as a discrete phase space in which the
vertices represent discrete positions which a particle can
occupy, and the edges represent discrete directions that a
particle can propagate. This setting was primarily intro-
duced to describe the internal dynamics of elementary
particles. From this perspective, each particle is associated
to a graph: vertices represent quarklike constituents of a
particle and edges represent interaction paths for gluons
which are emitted and absorbed by the vertices. Another
aspect of our model is that we have many particles evolv-
ing at the same time. In the mathematical literature there is
a growing number of examples of random walks with
multiple particles/agents. A recent paper by Cooper et al.
[34] studied properties of multiple random walks on a
(fixed) graph assuming that the interaction between parti-
cles gives rise to various phenomena, like particles sticking
together, annihilating each other, etc. It is important to
mention that there are differences between walks with a
single agent and walks with many agents. For instance,
there are various settings in which k random walks visit all
the nodes of a graph in expectation �ðkÞ-times faster than
the case of a single walker [35]. Works addressing random
walks on evolving graphs have been considered only re-
cently, motivated by robotic exploration of the Web
[36,37].
In a unitary system for cosmological evolution, the

interesting question to ask is whether the system has
long-lived metastable states. We studied this question rig-
orously, using analysis in terms of Markov chains, and also
gave an intuitive argument, in both cases finding that
dynamical equilibrium is reached when, starting from
zero initial particles, half the initial number of edges are
destroyed. In the model, there is a candidate configuration
for a toy mechanism for attraction. A toy trapped surface
can be modeled as the boundary of a region containing a
highly connected subgraph. There is no singularity. To
probe this region one can use Wen’s Hamiltonian for light
[38], with a coupling that is just a perturbation of the initial
Hamiltonian. We found that, in the limit of a large number
of vertices inside the highly connected region, only a ray
perfectly normal to the surface can escape.
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An important issue to emphasize before closing this
paper is that our model assumes the existence of a notion
of time and of time evolution as given by a Hamiltonian, as
opposed to the constrained evolution of canonical pure
gravity. It is a general question for all condensed matter
approaches to quantum gravity whether such evolution is
consistent with the diffeomorphism invariance of general
relativity. While it is not possible to settle this question
without first knowing whether the condensed matter micro-
scopic system has a low energy phase which is general
relativity, we can make a few comments, as well as point
the reader to more extensive discussion of this issue else-
where [17,39]. In general, there are two possible notions of
time: the time related to the g00 component of the metric
describing the geometry at low energy and the time pa-
rameter in the fundamental microscopic Hamiltonian. Let
us call the first geometric time and the second fundamental
time. In our geometrogenesis context, it is clear that the
geometric time will only appear at low energy, when
geometry appears. The problem of the emergence of geo-
metric time is the same as the problem of the emergence of
space, of geometry. The constrained evolution of general
relativity, often called ‘‘time does not exist,’’ refers to
geometric time. By making the geometry not fundamental,
we are able to make a distinction between the geometric
and the fundamental time, which opens up the possibility
that, while the geometric time is a symmetry, the funda-
mental time is real. It is important to note that the relation
between geometric and fundamental time is nontrivial and
that the existence of a fundamental time does not neces-
sarily imply a preferred geometric time. We also note that,
in the presence of matter in general relativity, a proper time
can be identified. The particular system studied here has
matter and in that sense it is perhaps more natural that it
also has a straightforward notion of time.

The toy model we presented here is very basic and there
are several features we do not expect to see yet. For
instance, there is nothing in the Hamiltonian to encourage
the system to settle in metastable states that are regular
graphs. Emergence of geometric symmetries such as
Friedmann-Robertson-Walker symmetries was not a goal
at this stage but can be incorporated in future work by
additional terms in the Hamiltonian as in [13], or possibly
also by introducing causality restrictions as in [2]. Finally,
we believe that this model is interesting from the con-
densed matter point of view. Condensed matter systems
are always defined on a given lattice. In this model, the
lattice itself is a quantum variable. Such a model, like the
spin model of Eq. (27) can be realized experimentally in a
system of quantum dots. We believe this is a novel way to
think of condensed matter systems and, in perspective,
potentially fruitful for the study of novel quantum phases.

There are many potential generalizations and extensions
of the model. Such extensions concern primarily the phase
space and the nature of the particles. One possible general-

ization is to allow each edge to introduce a new vertex as a
midpoint, possibly by absorbing particles. This gives ho-
meomorphic graphs but with a growing phase space. The
models could also be modified by allowing the degrees of
the vertices to influence how the edges and the particles
interact. A consequence would be a dynamical graph in
which different regions are modified with different speeds.
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APPENDIX

The following general result is useful to study the ran-
dom walks described in the paper:
Theorem VII.1 LetG be a graph drawn from any random

walk on GN with stationary distribution �. Assume that
there exists �< 2 such that

gð�Þ ¼ max
G;H2VðGNÞ

½��G
½��H < eN

�
: (35)

Then
(1)

EðjEðGÞjÞ ¼ 1

2

N
2

� �
þ oð1Þ;

(2) for

t 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N� N

2

� �s
;

Prob

���������jEðGÞj � 1

2
N2

��������>t

�
� 8 expð�N�Þ:

Proof We will prove the theorem by proving a deviation
bound for

Prob

���������jEðGÞj � 1

2

N
2

� ���������>t

�
in terms of t.
Let

At ¼
�
G:

��������jEðGÞj � 1

2

N
2

� ���������� t

	
:
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Note that At contains both connected and disconnected
graphs.

Let C be a function from the set of all graphs on N
vertices to the set f0; 1g. Specifically, let

CðGÞ :¼
�
1 ifG is connected;
0 otherwise:

Let CðN; tÞ denote the probability that a graph drawn
uniformly at random from At is connected. The probability
that a graph drawn from the random walk belongs to At isP

G2At
CðGÞ½��G; likewise for G =2 At. We will now bound

the quotient between these two probabilities. It is well
known, see e.g. [29], that

CðN; tÞ ¼ 1þ oð1Þ
for, e.g., t < N=2. ThenP

H=2At

CðHÞ½��HP
G2At

CðGÞ½��G � gð�Þ

P
H=2At

CðHÞ
P

G2At

CðGÞ � gð�Þ j �Atj
jAtjCðN; tÞ

� gð�Þ j �Atj
jAtjð1þ oð1ÞÞ � 2gð�Þ j

�Atj
jAtj :

(36)

This can be written as

2gð�Þ PN;t

1� PN;t

; (37)

where

PN;t ¼ j �Atj=2
N
2

� �

is the probability that a binomial random variable with
distribution

Bin

�
N
2

� �
;
1

2

�

deviates more than t from its expectation. Using the
Chernoff bound we have then

PN;t � 2 exp

0
BBB@�2t2

N
2

� �
1
CCCA:

If

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N� N

2

� �s

we can thus bound (37) as

2gð�Þ PN;t

1� PN;t

� 2gð�Þ4 exp

0
BBB@�2t2

N
2

� �
1
CCCA

¼ 8gð�Þ expð�2n�Þ ¼ 8 expð�N�Þ:
(38)

Since the denominator in the first step of Eq. (36) is less
than 1 we have the following bound for our walk:

Prob ½H =2 At� �
X
H=2At

CðHÞ½��H � 8 expð�N�Þ: (39)

For our range of � the value of t is

o

�
N
2

� ��

which means that for a graph from At the number of edges
is

1

2

N
2

� �
þ oð1Þ

and the contribution to the expected number of edges from
graphs not in At is between zero and

N
2

� �
8 expð�N�Þ:

This is oð1Þ. Thus the total expectation is

1

2

N
2

� �
þ oð1Þ:

Corollary VII.2 Let G be a graph drawn from a simple
random walk on GN . Then

EðjEðGÞjÞ ¼ 1

2

N
2

� �
þ oð1Þ

ProofWe know that the underlying graph of this random
walk is bipartite and that in the asymptotic limit the sta-
tionary distribution oscillates between �even and �odd de-
pending on whether we have taken an even or an odd
number of steps. However if we start a new walk by not
changing the graph in the first time step with probability
1=2, the new stationary distribution will be

� ¼ 1

2
ð�even þ �oddÞ: (40)

Since we are looking at graphs with N vertices, dðiÞ is at
most

N
2

� �

and not less than N � 2. Hence,
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gð�Þ � N2 � N

2n� 4
;

and the corollary follows from Theorem VII.1.
Note that here we only used the fact the walk converges

towards a stationary distribution on GN and that gð�Þ is
bounded by a polynomial in N for this walk. The same
result holds for any form of walk on GN for which gð�Þ is
not exponential in N.

Let us recall that a random event happens asymptotically
almost surely, or a.a.s, if the probability for the event is 1�
oð1Þ. A clique in a graph is a subgraph isomorphic to the
complete graph. The clique number of a graph G, denoted
by !ðGÞ, is the number of vertices of the largest clique in
G.

Theorem VII.3 Let G be a graph drawn from a simple
random walk on GN. Then there exist constants c1 < c2
such that a.a.s the clique number !ðGÞ satisfies

c0 logðNÞ � c1 � !ðGÞ � c0 logðNÞ þ c2:

Proof It is well known, see, e.g., Chapter 11 of [29], that
the expected clique number of a uniform random graph
with edge probability 1

2 is

2

log2
logðNÞ ¼ c0 logN

and that the following concentration bounds hold

Prob ½!ðGÞ � c0 logN 
 r�<N�r; (41)

Prob ½c0 logN �!ðGÞ 
 r�<N�b2ðr�2Þ=2c: (42)

We can now proceed in the same way as in the proof of
Theorem VII.I using the set

Bu
t ¼ fGj!ðGÞ � c0 logNgj � tg

to give a bound on the upper tail probability and

Bl
t ¼ fGjc0 logN �!ðGÞgj � tg

for the lower tail probability, together with the bound on
gð�Þ from the proof of Corollary VII.2 and the concentra-
tion bounds from the inequalities (41) and (42). This gives
the following inequalities:

Prob ½!ðGÞ � c0 logN 
 r�< c1
NðN � 1Þ
N � 2

N�r (43)

Prob ½c0 logN �!ðGÞ 
 r�<NðN � 1Þ
N � 2

N�b2ðt�2Þ=2c: (44)

We can now use these inequalities to bound the contribu-
tions to the expected clique number. A clear but lengthy
calculation can show that the contributions from the two
tails are asymptotically bounded by two constants, giving
us the bound stated in the theorem.

A rigorous analysis of the expected number of edges
when we consider particles will be more difficult, since the

model corresponds to a random walk on a directed graph,
i.e., a graph in which edges have a direction. This is
associated to an adjacency matrix which is not necessarily
symmetric. There are transitions where, e.g., an edge is
deleted and the particle distribution changes so that the
endpoints of the edge do not have any particles on them,
thus making the readdition of the edge impossible in the
next step. However, for states with a large number of
particles, such as any graph with less than

1

2

n
2

� �

edges, the vast majority of transitions will be reversible, as
it is in the case without particles.
Let us consider the number of possible transitions from a

state ðG;xÞ defined as follows: here G has n vertices, t
edges which are part of triangles, s edges with endpoints at
distance 2, and p indistinguishable particles. If we assume
that there are particles at all vertices we have three types of
transitions which can be explicitly enumerated:
(1) There are

nþ p� 1
p

� �

transitions which correspond to redistributing the
particles without changing G.

(2) There are

t
nþ p
pþ 1

� �

transitions which correspond to deleting an edge and
redistributing the pþ 1 particles.

(3) There are

s
nþ p� 2
p� 1

� �

transitions which correspond to adding an edge and
redistributing the p� 1 particles.

Only the number of transitions of the last type is affected
by the assumption that there are particles at all vertices.
If

p � c
1

2

n
2

� �

we can estimate

nþ p� 1
p

� �

as
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nþ p� 1
p

� �
� pn�1

n!

�
1þ nðn� 1Þ

2p
þOðp�2Þ

�

� pn�1

ðn=eÞn
�
1þ 1

c
þOðp�2Þ

�

� en

n

�
p

n

�
n�1

�
1þ 1

c
þOðp�2Þ

�

� en

n

�
c
n� 1

2n

�
n�1

�
1þ 1

c
þOðp�2Þ

�

� O
�ðceÞn

n

�
:

Inserting this into the numbers of transitions given above
shows that for this model the maximum degree of the
transition graph is bounded from above by a simple ex-
ponential, and the minimum degree is of course still greater
than a multiple of n. According to Theorem 1 this is not
sufficient to change the expected number of edges from
being

1

2

n
2

� �
:

In order to make this analysis fully rigorous it is also
necessary to show that the states with unoccupied vertices
do not make a significant contribution, which will be
lengthy but mostly a technical issue.
The discussion for a case with distinguishable particles

will be very similar but

nþ p� 1
p

� �

will be replaced by np which is large enough to escape
Theorem 1. These counts also give an easy way to imple-
ment a simulation algorithm for both models: just pick
uniformly among all the possible transitions from the
current state. If we do not consider particles or consider
indistinguishable particles, the degrees of the vertices in
the graphs will be close to those of random graphs with
probability 1=2. This is more or less for the same reason
that Theorem 1 works. The number of ‘‘typical’’ graphs in
Gðn; 12Þ is so large that their behavior will still control these
models.
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