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We compute the contribution of kinks on cosmic string loops to stochastic background of gravitational

waves (SBGW). We find that kinks contribute at the same order as cusps to the SBGW. We discuss the

accessibility of the total background due to kinks as well as cusps to current and planned gravitational-

wave detectors, as well as to the big bang nucleosynthesis (BBN), the cosmic microwave background

(CMB), and pulsar timing constraints. As in the case of cusps, we find that current data from

interferometric gravitational-wave detectors, such as LIGO, are sensitive to areas of parameter space

of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds.
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I. INTRODUCTION

Topological defects are remnants of spontaneously bro-
ken local or global symmetries. The simplest and the most
well-known example of the former one is the Abrikosov-
Nielsen-Olesen flux tube [1], which originates from spon-
taneously broken Uð1Þ gauge symmetry. Most of the atten-
tion in the literature has been focused on defects
originating from broken gauge symmetries, since grand
unified theories have gauge symmetries which are even-
tually spontaneously broken down to the symmetry of the
standard model. Cosmic strings are one-dimensional topo-
logical defects predicted by a large class of unified theories
[2–4]. Cosmic strings were first considered as the seeds of
structure formation [5,6], however, later, it was discovered
that cosmic strings were incompatible with the cosmic
microwave background (CMB) angular power spectrum.
Cosmic strings can still contribute to structure formation,
but they cannot be the dominant source. Cosmic strings are
also candidates for the generation of other observable
astrophysical phenomena such as high energy cosmic
rays, gamma ray burst and gravitational waves [3,7–9].
Furthermore, recently it has been shown that in string-
theory-inspired cosmological scenarios cosmic strings
may also be generated [10]. They are referred to as cosmic
superstrings. This realization has revitalized interest in
cosmic strings and their potential observational signatures.
There are some important differences between cosmic
strings and cosmic superstrings. The reconnection proba-
bility is unity for cosmic strings [3,11]. Cosmic super-
strings, on the other hand, have reconnection probability
less than unity. This is a result of the probabilistic nature of
their interaction and also the fact that it is less probable for
strings to meet since they can live in higher dimensions
[12]. The value of p ranges from 10�3 to 1 in different
theories [13]. Cosmic superstrings could also be unstable,
decaying long before the present time. In this case, how-
ever, they may also leave behind a detectable gravitational-
wave signature [14].

In the early Universe, a network of cosmic strings
evolves toward to an attractor solution called the ‘‘scaling
regime.’’ In the scaling regime the statistical properties of
the network, such as the average distance between strings
and the size of loops at formation, scale with the cosmic
time. In addition, the energy density of the network re-
mains a small constant fraction of the energy density of the
Universe. For cosmic superstrings in the scaling regime,
the density of the network � is inversely proportional to the
reconnection probability p, that is � / p��. The value of
� is still under debate [15–17], and as a placeholder in our
analysis we assume that � ¼ 1.
The gravitational interaction of strings is characterized

by their tension �, or more conveniently by the dimen-
sionless parameterG�, whereG is Newton’s constant. The
current CMB bound on the tension is G�< 6:1� 10�7

[18,19]. It was first believed that gravitational radiation
from cosmic strings with G� � 107 would be too weak to
observe. However it was later shown that gravitational
radiation produced at cusps, which have large Lorentz
boosts, could lead to a detectable signal [20–22].
Gravitational radiation bursts from (super)strings could
be observable by current and planned gravitational-wave
detectors for values of G� as low as 10�13, which may
provide a test for a certain class of string theories [23].
Indeed, searches for burst signals using ground-based de-
tectors are already underway [24].
A gravitational background produced by the incoherent

superposition of cusp bursts from a network of cosmic
strings and superstrings was considered in [25]. In this
paper we extend this computation to include kinks, long-
lived sharp edges on strings that result from intercommu-
tations, and find that kinks contribute at almost the same
level as cusps. We investigate the detectability of the total
background produced by cusps and kinks by a wide range
of current and planned experiments. A similar calculation
for the case of infinite strings has been undertaken in the
recent paper [26]; see also [27].
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The organization of the paper is as follows: In Sec. II we
consider gravitational waves generated by cusps and kinks
in the weak field limit [28]. In this section we follow the
conventions of [20,21], and more details can be found in
these references. In Sec. III we derive the expression for
the stochastic background, which is a double integral over
redshift and loop length. In Sec. IV we evaluate the integral
analytically with certain approximations, which results in a
flat distribution for larger values of the frequency. Finally
in Sec. V we numerically evaluate the background and
discuss the observability by various experiment.

II. GRAVITATIONAL RADIATION

In this section we consider gravitational waves created
by cusps and kinks. For completeness we follow closely
the analysis in [20,21], and reproduce a number of their
results. We begin with a derivation for the metric pertur-
bation in terms of the Fourier transform of the stress-
energy tensor of the source. We then write the stress-
energy tensor for a relativistic string and compute its
Fourier transform. Using these results we then compute
the gravitational waveforms produced by cusps and kinks
on cosmic strings.

A. Calculation of metric perturbations

Gravitational waves from a source can be calculated
using the weak field approximation [28],

g�� ¼ ��� þ h��; (1)

where ��� is the Minkowski metric with positive signature

and h�� is the metric perturbation. In the harmonic gauge,

g����
�� ¼ 0, the linearized Ricci tensor is

R�� ’ 1

2
@�@

�h��: (2)

Substituting into Einstein’s equations yields

R�� � 1

2
g��R ’ 1

2

�
@�@

�h�� � 1

2
���@�@

�h

�

¼ �8�GT ��; (3)

where R is the Ricci scalar, T �� is the energy-momentum

tensor of matter, and h ¼ ���h
��. Defining �h�� ¼ h�� �

1
2���h further simplifies Eq. (3),

@�@
� �h�� ¼ �16�GT ��; (4)

which is a wave equation with a source term. We can
rewrite this equation in the frequency domain as

ðw2 þr2Þ �h��ð ~x; wÞ ¼ �16�GT ��ðx; wÞ; (5)

where

�h ��ð ~x; wÞ ¼
Z

dteiwt �h��ð ~x; tÞ: (6)

Equation (5) can be solved by using Green’s function for
the operator w2 þr2, which is

G ð ~x� ~x0; wÞ ¼ eiwj ~x� ~x0j

j ~x� ~x0j : (7)

Therefore metric perturbations are given by

�h��ð ~x; wÞ ¼ �16�G
Z

d3x0Gð ~x� ~x0; wÞT ��ð ~x0; wÞ

¼ �16�G
eiwj ~xj

j ~xj T ��ð ~k; wÞ; (8)

where ~k ¼ wx̂ and

T ��ð ~k; wÞ ¼ 1

T

Z T

0
dt

Z
d3x0eiðwt� ~k� ~x0ÞT ��ð ~x0; tÞ; (9)

where T is the fundamental period of the source. Equation
(8) relates energy-momentum tensor to gravitational
waves. The next step is to calculate the energy-momentum
tensor of cusps and kinks on cosmic strings.

B. Energy-momentum tensor of cosmic strings

In the thin wire approximation, the dynamics of strings
is described by the Nambu-Goto action [3,7]

S ¼ ��
Z

d	d

ffiffiffiffiffiffiffiffi��

p
; (10)

where 
 and 	 are world-sheet coordinates and � is the
string tension. � is the determinant of the induced metric

�ab ¼ ���@aX
�@bX

�; (11)

where a and b denote world-sheet coordinates. The equa-
tion of motion following from Eq. (10) is

ð@2	 � @2
ÞX� ¼ 0: (12)

The solution must also satisfy Virasoro conditions

_X � _X þ X0 � X0 ¼ 0 and _X � X0 ¼ 0; (13)

where dot and prime denote derivatives with respect to 	
and
, respectively. If we define
� ¼ 	� 
, the equation
of motion becomes

@þ@�X� ¼ 0; (14)

which is solved by left- and right-moving waves,

X� ¼ 1

2
ðX�

þð
þÞ þ X��ð
�ÞÞ: (15)

Furthermore Virasoro conditions in Eq. (13) simplify to

_X 2� ¼ 1; (16)

where dot now represents the derivative with respect to the
(unique) argument of the functions X

�
�. We require that

X�ð
; 	Þ is periodic in 
 with period l, which is the length
of the loop. This implies that the functions X�

� are periodic
functions with the same period. The period in t is l=2 since
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X�ð
þ l=2; 	þ l=2Þ ¼ X�ð
; 	Þ. The energy-
momentum tensor corresponding to the Nambu-Goto ac-
tion can be calculated by varying Eq. (10) with respect to
the metric, which yields

T ��ðxÞ ¼ �2
�S

����

¼ �
Z

d	d
ð _X� _X� � X0�X0�Þ�ð4Þðx� XÞ

¼ �

2

Z
d
�d
þð _X�

þ _X�� þ _X�� _X��Þ�ð4Þðx� XÞ:
(17)

Inserting this expansion into Eq. (9) gives us the energy-
momentum tensor in momentum space

T ��ðkÞ ¼ �

Tl

Z
d
�d
þ _X

ð�
þ _X�Þ�e�ði=2Þðk�Xþþk�X�Þ; (18)

where we define

_X
ð�
þ _X�Þ� ¼ 1

2
ð _X�

þ _X�� þ _X�� _X�þÞ: (19)

The nice property of Eq. (18) is that two integrals can be
calculated independently,

I��ðkÞ �
Z l

0
d
� _X�

�e�ði=2Þk�X� ; (20)

and the energy-momentum tensor can be expressed in
terms of I�� as follows:

T ��ðkÞ ¼ �

l
Ið�þ I�Þ� ; (21)

where we used Tl ¼ l
2 . In the following subsection we

calculate I
�
� for cusps and kinks.

1. Cusps

Let us start with the geometrical interpretation of
Eq. (16). It tells us that _X� trace a unit sphere centered
at the origin, which is called Kibble-Turok sphere.
Integrating _X� and using the periodicity, we get

Z l

0

_X�ð
�Þd
� ¼ 0; (22)

which implies that _X� cannot lie completely in a single
hemisphere and therefore they intersect at some point(s).
We choose our parametrization and the coordinate system
such that the intersection occurs at the parameters 
� ¼ 0
at the origin, that is X

�
�ð0Þ ¼ 0. X�ð
�Þ and _X�ð
�Þ can

be expanded around 
� ¼ 0

X
�
�ð
�Þ ¼ l

�
�
� þ 1

2
€X
�
�
2� þ 1

6
X
ð3Þ�
� 
3� (23)

_X
�
�ð
�Þ ¼ l

�
� þ €X

�
�
� þ 1

2
X
ð3Þ�
� 
2�; (24)

where l
�
� ¼ _X

�
�ð0Þ. We can easily find the shape of X

�
� at

	 ¼ 0 (
� ¼ �
),

X�ð
; 	 ¼ 0Þ ¼ 1

2
ðX�

þð
Þ þ X��ð�
ÞÞ

¼ 1

4
ð €X�

þ þ €X��Þ
2 þ 1

12
ðXð3Þ�

þ þ Xð3Þ�� Þ
3:

(25)

In order to visualize the shape of the string around the
origin, we can choose the coordinate system such that

(
€~Xþ þ €~X�) lies on the x-axis, and define x ¼ 1

4 j €~Xþ þ
€~X�j
2. Let us also denote the direction of ~Xð3Þ

þ þ ~Xð3Þ
� by

ŷ, which is not necessarily orthogonal to x̂. If we define

y ¼ 1
12 jXð3Þ�

þ þ Xð3Þ�� j
3, we see that y / x3=2, which has a

sharp turn at x ¼ 0, which is referred to as cusp. We can
calculate I�� for cusps using the expansion in Eq. (23). First
of all, we note that the first term of Eq. (24) is pure gauge; it
can be removed by a coordinate transformation.
Furthermore imposing the Virasoro condition in Eq. (16)
gives

l� � €X� ¼ 0; and l� � Xð3Þ
� ¼ � €X2�: (26)

When the line of sight k is in the direction of l we have
k ¼ wl, which gives �ik � X� ¼ i

6w
€X2�
3�. If we plug in

the expansion in Eq. (23) into Eq. (20) we get

I
�
�ðkÞ ¼ €X

�
�
Z l

0
d

eði=12Þw €X2

�

3 ¼ 2�i €X�

�
3�ð1=3Þð 112wj €X2�jÞ2=3

:

(27)

Replacing w with 2�f gives

I��ðkÞ ¼ C�
�f�ð2=3Þ; (28)

T ��ðkÞ ¼ �

l
jfj�ð4=3ÞCð�

þ C�Þ� ; (29)

where C
�
� ¼ i ð32�=3Þ

1=3

�ð1=3Þ
€X
�
�

j €X�j4=3 . Finally we need to estimate

j €X�j ¼ j €X�j. Since X� is periodic with period l, _X ex-
panded as

_Xð
�Þ ¼
X
n

cne
ið2�=lÞn
� ; (30)

where the expansion coefficients cn are constrained by
j _X�j ¼ 1. If the string is not too wiggly, cn is nonvanish-
ing for only small n, therefore we can estimate j €X�j � 2�

l .

Combining all the pieces together and neglecting decimal
points in the numerical coefficient, we express the trace of
the metric perturbations as

hðcÞðfÞ � j �h��j ¼ G�l2=3

r
jfj�ð4=3Þ: (31)

We can express r as a function of z
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r ¼ 1

H0

Z z

0

dz0

H ðz0Þ �
1

H0

’rðzÞ; (32)

where H0 is the Hubble constant today and H ðzÞ is the
Hubble function given by

H ðzÞ ¼ ð�Mð1þ zÞ3 þ�Rð1þ zÞ4 þ��Þ1=2: (33)

The numerical values for the constants in this equation are
�M ¼ 0:25, �R ¼ 4:6� 10�5, �� ¼ 1��R ��M,
and H0 ¼ 73 km=s=Mpc. Note that f in Eq. (31) is the
frequency of the radiation in the frame of emission. In
order to convert it to the frequency we observe today, the
effect of the cosmological redshift must be included. The
frequency in the frame of emission, f, is related to the
frequency we observe now, fnow, by the relation f ¼ ð1þ
zÞfnow. After redshifting properly,1 Eq. (31) becomes

hðcÞðf; z; lÞ ¼ G�H0l
2=3

ð1þ zÞ1=3’rðzÞ
jfj�ð4=3Þ; (34)

where we dropped the subscript ‘‘now.’’

2. Kinks

Calculation of kink radiation is similar to the cusp case.
The form of I�þ is the same as the cusp result. I�� has a
discontinuity at the cusp point and needs a different treat-
ment. Let us describe the kink (at 
� ¼ 0 and X� ¼ 0) as
a jump of the tangent vector from l�1 to l�2 . At the first order
one can replace approximate _X�� by l

�
1 for 
� < 0 and l

�
2

for 
� > 0. At this approximation, one gets

I��ðkÞ ¼
Z l=2

�l=2
d
� _X��e�ði=2Þk�X� ’ 2i

w

�
l�1

l1 � k̂
� l�2

l2 � k̂
�
;

(35)

where we dropped two oscillatory terms. The exact value
of Eq. (35) depends on the sharpness of the kink, l1 � l2
[29], however we will assume that the average value of this
quantity is of order one. Combining this result with I

�
þ we

get the frequency distribution of the radiation from a kink
as

hðKÞðf; z; lÞ ¼ G�l1=3H0

ð1þ zÞ2=3’rðzÞ
f�5=3: (36)

It is important to note that in the derivation of Eqs. (34) and
(36) we assumed that the line of sight k� is in the direction
of the motion of the cusp or kink, l�. It is easy to show that

I� [Eq. (20)] decay exponentially with the angle between
k and l [21]. Therefore Eqs. (34) and (36) are valid for
angles smaller than

m ¼ 1

ðflð1þ zÞÞ1=3 : (37)

We implement this condition with a �-function in the
amplitude.

III. STOCHASTIC BACKGROUND

The stochastic gravitational background [25] is given by

�gwðfÞ ¼ 4�2

3H2
0

f3
Z

dz
Z

dlh2ðf; z; lÞd
2Rðz; lÞ
dzdl

; (38)

where hðf; z; lÞ is given in Eqs. (34) and (36) and d2Rðz;lÞ
dzdl is

the observable burst rate per length per redshift, which will
be defined below. We take the number of cusps (kinks) to
be one per loop. (We will discuss how the number of cusps
or kinks affects the stochastic background of gravitational
waves [SBGW] in Sec. IV.) If we define the density (per
volume) of the loops of length l at time t as nðl; tÞ, the rate
of burst (per loop length per volume) can be expressed as
nðl;tÞ
l=2 , where l=2 factor is the fundamental period of the

string. However, this is not the observable burst rate since
we can observe only the fraction of bursts that is beamed
toward us. Including this fraction we obtain

dR

dldz
¼ H�3

0 ’VðzÞð1þ zÞ�1 2nðl; tÞ
l

�ðz; f; lÞ; (39)

where ð1þ zÞ�1 comes from converting emission rate to
observed rate, and H�3

0 ’VðzÞ follows from converting

differential volume element to the corresponding function
of redshift z,

dV ¼ 4�a3ðtÞr2dr ¼ 4�H�3
0 ’2

rðzÞ
ð1þ zÞ3H ðzÞdz � H�3

0 ’VðzÞdz;
(40)

where aðtÞ is the cosmological scale factor. �ðz; f; lÞ is the
fraction of the bursts we can observe. Geometrically the
radiation from a cusp will be in a conic region with half
opening angle m [Eq. (37)] and outside the cone it will
decay exponentially. To simplify the calculation we as-
sume that the radiation amplitude vanishes outside this
conic region, which will be implemented by a � function.
We can express the corresponding solid angle in terms of
the opening angle by using the following relation:

�m ¼ 2�ð1� cosmÞ ’ �2m: (41)

Thus the probability that the line of sight is within this solid
angle is

�m

4�
’ 2m=4; (42)

1One should note that replacing f in Eq. (31) with ð1þ zÞfnow
is not correct, since this replacement will scale the argument and
the amplitude of hðcÞðfÞ by a factor of 1

1þz , which is the reflection
of the fact that the measure of Fourier integral is not dimension-
less. Since redshifting should change the argument but not the
amplitude, one needs to multiply the result by 1þ z so that the
amplitude remains the same. Equivalently, one can define the
logarithmic Fourier transform, as discussed in Ref. [20], such
that the measure of the transform becomes dimensionless.
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which is referred to as the beaming fraction of the cusp. We
combine the cutoff for large angles and beaming effect into

�ðz; f; lÞ � 2mðz; f; lÞ
4

�ð1� mðz; f; lÞÞ: (43)

It is important to note that cusps are instantaneous events,
and it is possible to observe their radiation only if the line
of sight happens to be inside the cone of radiation. The
beaming fraction, Eq. (42), which is proportional to 2m, is
the fraction of the time the line of sight is inside the cone of
radiation. In contrast, kinks radiate continuously—as kinks
travel around a string loop they radiate in a fanlike pattern.
Therefore the radiation cone of a kink will sweep a strip of
width 2m and an average length � on the surface of the
unit sphere as it travels around the cosmic string loop. That
is, the probability of observing radiation from a kink is

�c
m

4�
’ 2m�

4�
¼ m

2
: (44)

For kinks the cutoff for large angles and beaming factor
that enters the rate is therefore

�ðKÞðz; f; lÞ � mðz; f; lÞ
2

�ð1� mðz; f; lÞÞ: (45)

Inserting this result into Eq. (38) gives the background
radiation �gwðfÞ as a double integral over l and z, which

needs to be evaluated numerically. Finally we need to
discuss the form of the loop density, nðl; tÞ in Eq. (39).
To do this, it is convenient to first convert the cosmic time t
to a suitable function of redshift z using the following
relation:

dz

dt
¼ �ð1þ zÞH0H ðzÞ; (46)

which can be integrated to give

t ¼ H�1
0

Z 1

z

dz0

ð1þ z0ÞH ðz0Þ ¼ H�1
0 ’tðzÞ: (47)

Below we discuss the two main contending scenarios for
the size of cosmic string loops.

A. Small loops

Early simulations suggested that the size of loops was
dictated by gravitational backreaction. In this case the size
of the loops is fixed by the cosmic time t, and all the loops
present at a cosmic time t are of the same size�t. The value
of � is set by the gravitational backreaction, that is � /
�G� (in Sec. V we parametrize � by � ¼ ��G� where �
is a parameter we scan over). The constant � is the ratio of
the power radiated into gravitational waves by loops to
G�2. Numerical simulation results suggest that �� 50.
Therefore the density is of the form

nðl; tÞ / ðp�G�Þ�1t�3�ðl� �tÞ; (48)

where p is the reconnection probability. The overall coef-

ficient is estimated by simulations (for a review, see [3])
which show that the density in the radiation domination era
is about 10 times larger than the one in the matter domi-
nation era. This behavior of the density can be imple-
mented by a function, cðzÞ, which converges to 10 for
z 	 zeq and to 1 for z � zeq. Therefore the density can

be written as

nðl; tÞ ¼ cðzÞðp�G�Þ�1t�3�ðl� �tÞ; (49)

where [20]

cðzÞ ¼ 1þ 9z

zþ zeq
: (50)

Such a distribution simplifies the calculation of SBGW
since the l-integral in Eq. (38) can be evaluated trivially
to yield

�gwðfÞ ¼ 4�2

3H2
0

Z
dz

Z
dlh2ðf; z; lÞd

2Rðz; lÞ
dzdl

¼ 2cG��2H1=3
0

3p�1=3�f1=3

�
Z

dz
cðzÞ’V�ð1� ½fð1þ zÞ�’t
�1=3Þ

ð1þ zÞ7=3’2
r’

10=3
t

: (51)

For kinks, we have a similar integral,

�K
gwðfÞ ¼ 4cG��2H1=3

0

3p�2=3�f2=3

�
Z

dz
cðzÞ’V�ð1� ½fð1þ zÞ�’t
�1=3Þ

ð1þ zÞ8=3’2
r’

11=3
t

:

(52)

We analytically evaluate the integrals in Eqs. (51) and (52)
in Sec. IV with certain approximations, and perform nu-
merical integration in Sec. V.

B. Large loops

Recent simulations [30–32] suggest that the size of the
loops is set by the large-scale dynamics of the network, and
that the gravitational backreaction scale is irrelevant. It is
important to emphasize that the sizes of large loops, which
are set by the value of �, are still under debate.
References [30,31] suggest lower values of �, whereas in
Ref. [32] it is found that the loop production functions have
peaks around� � 0:1. The dependence of SBGWon� can
be found in Sec. IV. In order to contrast the large loop and
the small loop cases, we adopt � ¼ 0:1 for numerical
computations.
For long-lived loops, the distribution can be calculated if

a scaling process is assumed (see [3]). In the radiation era it
is
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nðl; tÞ ¼ �rt
�ð3=2Þðlþ�G�tÞ�ð5=2Þ; l <�t; t < tteq ;

(53)

where �r � 0:4��1=2, and � is a parameter related to the
correlation length of the network [22]. The numerical value
of � is found in numerical simulations of radiation era
evolution to be about 15 (see Table 10.1 in [3]). The upper
bound on the length arises because no loops are formed
with sizes larger than �t. For t > teq (the matter era) the

distribution has two components, loops formed in the
matter era and survivors from the radiation era. Loops
formed in the matter era have lengths distributed according
to

n1ðl; tÞ ¼ �mt
�2ðlþ �G�tÞ�2;

�tteq � �G�ðt� tteqÞ< l < �t; t > tteq ;
(54)

with �m � 0:12� , with � � 4 (see Table 10.1 in [3]). The
lower bound on the length is due to the fact that the
smallest loops present in the matter era started with a
length �teq when they were formed and their lengths

have since decreased due to gravitational-wave emission.
Additionally there are loops formed in the radiation era
that survive into the matter era. Their lengths are distrib-
uted according to

n2ðl; tÞ ¼ �rt
1=2
eq t�2ðlþ �G�tÞ�ð5=2Þ;

l < �tteq � �G�ðt� tteqÞ; t > tteq ;
(55)

where the upper bound on the length comes from the fact
that the largest loops formed in the radiation era had a size
�teq but have since shrunk due to gravitational-wave

emission.
The cusp spectrum has been calculated in [25] and the

result shows that the spectrum is flat for larger2 values of f.
Later we will show that this is also the case for kink
spectrum. This is rather unexpected since �ðfÞ has an

explicit f�4=3 and f�1=3 dependence for cusps and kinks,
respectively. The only other f dependence comes from the
� functions. In the following section we show analytically
that the f dependence coming from the� function is of the

form f4=3 and f1=3 for cusps and kinks, respectively, so that
the spectrum is indeed flat for large values of the frequency
f.

Before we start calculating the SBGW, we should men-
tion a crucial observation due Damour and Vilenkin [20].
SBGW generated by a network of cosmic strings includes
bursts which occur infrequently, and the computation of
�gwðfÞ should not be biased by including these large rare

events (i.e. events with low rate). If the loop density is
taken of the form given in Eq. (48), the rate is specified by
the redshift only. Therefore the condition on the rate can be

implemented by a cutoff on redshifts such that large events
for which the rate is smaller than the relevant time scale of
the experiment are excluded (see Eq. (6.17) of [20]).
However, when loops are large the situation is more com-
plicated because at any given redshift there are loops of
many different sizes given in Eqs. (53) and (54). This case
has been dealt with in [25] as follows: instead of integrat-
ing over the variables l and z in Eq. (38) one integrates over
h and z where h is defined in Eqs. (34) and (36) and
imposes the cutoff limit on the h integral. The cutoff is
defined as

Z 1

h�
dh

Z
dz

d2R

dzdh
¼ f; (56)

where d2R
dzdh ¼ d2R

dzdl
dl
dh . Equation (56) is solved for h� and

used to exclude rare events using the following integral
[instead of Eq. (38)]:

�gwðfÞ ¼ 4�2

3H2
0

f3
Z h�

0
dhh2

Z
dz

d2R

dzdh
: (57)

This procedure removes large amplitude events (those with
strain h > h�) that occur at a rate smaller than f. Figure 1
shows the spectrum for kinks and cusps for small loops.
For the top curves (red and green) we have G� ¼ 2�
10�6, p ¼ 10�3, and � ¼ 10�4, whereas for the bottom
two curves (blue and pink) G� ¼ 10�7, p ¼ 5� 10�3

and � ¼ 1 (� � �
�G� ). Figure 2 shows the spectrum for

large loops. For the top curves (blue and pink), which are
almost identical, we have G� ¼ 10�7 and p ¼ 5� 10�3,
whereas for the bottom two curves (red and green) G� ¼
10�9 and p ¼ 5� 10�2. Here we note that for f 	 H0

G� ,

the spectrum is flat for both cusps and kinks.
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FIG. 1 (color online). Kink and cusp spectrum for small loops:
(a) G� ¼ 2� 10�6, p ¼ 10�3 and � ¼ 10�4, (b) G� ¼ 10�7,
p ¼ 5� 10�3 and � ¼ 1.

2In the following section we show that the spectrum is flat for

f 	 H0
ffiffiffiffiffi
zeq

p
� for small loops and for f 	 H0

ffiffiffiffiffi
zeq

p
G�� for large loops.
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IV. ANALYTICAL APPROXIMATION FOR THE
STOCHASTIC BACKGROUND

In this section we evaluate the spectrum analytically and
show that the spectrum is constant for large values of f.
Our main goal is to discuss the dependence of the spectrum
on the parametersG�, � � �

�G� , and p for small loops and

G� and p for large loops. We limit our discussion to large
values of f, for which the spectrum gets the dominant
contribution from the loops in the radiation era. Matter
era loops contribute to the lower frequency part of the
spectrum.3 Since we want to get an estimate of the spec-
trum we will neglect the complications arising from re-
moving rare burst. In the radiation domination era,

z > zeq ¼
ffiffiffiffiffiffiffi
�R

p ’ 5440, the Hubble function in Eq. (33),

can be approximated as

H ðzÞ ’ ffiffiffiffiffiffiffi
�R

p
z2 ¼ z2

2
ffiffiffiffiffiffi
zeq

p : (58)

The cosmological functions that appear in the stochastic
background radiation formula can be approximated as

’tðzÞ ¼
Z 1

z

dz0

ð1þ z0ÞH ðz0Þ ’
Z 1

z

dz0

z0H ðz0Þ ’
ffiffiffiffiffiffi
zeq

p
z�2;

(59)

’rðzÞ ¼
Z z

0

dz0

H ðz0Þ ¼
Z zeq

0

dz0

H ðz0Þ þ
Z z

zeq

dz0

H ðz0Þ ’ 3:6;

(60)

’VðzÞ ¼ 4�’2
r

ð1þ zÞ3H ðzÞ ’ 325
ffiffiffiffiffiffi
zeq

p
z�5: (61)

We first consider the small loop case, for which the ex-
pression for SBGW reduces to an integral over redshift
given in Eqs. (51) and (52). Inserting the result in Eqs. (59)
–(61) into Eq. (51) we get

�gw;RðfÞ / G�

p�1=3f1=3

Z zmax

zeq

dz

z2=3
�

�
1�

�
fz1=2eq �

H0z

��ð1=3Þ�

/ G�

p
; (62)

where we dropped a term with 1=f dependence since it is
small in the large f limit, and the subscript R reminds us
that this is the contribution from radiation era loops. The
upper limit of the integration, zmax, is the redshift at the
time of the creation of the strings, which depends on the
energy scale of the phase transition. The result in Eq. (62)

is valid for
z1=2eq

� � f
H0

< zmax

�z1=2eq

, for which the upper limit of

the integral is set by the � function. If f
H0

> zmax

�z1=2eq

, the

integral does not depend on f and the frequency depen-
dence of �gw;RðfÞ is given by the prefactor, which has

f�1=3 behavior. For kinks we get

�K
gw;RðfÞ /

G�

p�2=3f2=3

Z zmax

zeq

dz

z1=3
�

�
1�

�
fz1=2eq �

H0z

��ð1=3Þ�

/ G�

p
: (63)

Equations (62) and (63) show that for
z1=2eq

� � f
H0

the spec-

trum is constant and it scales with G�=p. The amplitude
does not depend on the parameter �, however the spectrum
shifts to the right linearly in �.
This result is in perfect agreement with Fig. 1. For the

bottom curves G�
p ¼ 2� 10�5 where as G�

p ¼ 2� 10�3

for the top curves, which have 2 orders of magnitude larger
amplitude, exactly agreeing with the figure. Furthermore,
the top curves (� ¼ 10�4) are shifted to the right compared
to the bottom curves (� ¼ 1) by about 4 orders in f as
predicted by our results above.
Now we consider large loops in the radiation domination

era, for which the density nðl; tÞ is given in Eq. (53), where
t is to be replaced with’tðzÞ=H0. Substituting the results in
Eqs. (59)–(61) into Eq. (38) we get
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FIG. 2 (color online). Kink and cusp spectrum for large loops:
(a) G� ¼ 10�7 and p ¼ 5� 10�3, (b) G� ¼ 10�9 and p ¼
5� 10�2.

3It is relatively easier to verify this in the case of small loops. If
one limits the redshift integration in Eqs. (62) and (63) to matter
domination and uses the corresponding approximate cosmologi-
cal functions, it is found that �ðfÞ depends on the negative
powers of f, which are negligible for large f. The same argu-
ment also applies to the large loop case.
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�gw;RðfÞ ¼ AðfÞ
Z

dz
Z

dl
zðlzÞ�ð1=3Þ

ðlz2 þ ��Þð5=2Þ �
�
1� 1

fzl

�

��

�
�

z2
� l

�

¼ AðfÞ
Z z�

zeq

dz
Z �=z

1=f
du

u�ð1=3Þ

ðuzþ ��Þ5=2 ; (64)

where we define

AðfÞ ¼ 165c�2�2�R

pz1=4eq H3=2
0 �2f1=3

; (65)

with � ¼ G��
� and � ¼ �

ffiffiffiffiffi
zeq

p
H0

(� � 0:1 for large loop case)

and the dummy integration variable u ¼ lz. The upper
limit of the z integral, z�, will be set by requiring �=z >
1=f, that is, z < f�. If f < zmax=�, we have

�ðfÞ ¼ AðfÞ
Z �=f

zeq

dz
Z �=z

1=f
du

u�1=3

ðuzþ ��Þ5=2

¼ AðfÞ
Z �=zeq

1=f
du

Z �=u

zeq

dz
u�ð1=3Þ

ðuzþ ��Þ5=2

¼ � 2

3
AðfÞ

Z �=zeq

1=f

du

u4=3

�
1

ð�þ ��Þ3=2

� 1

ðuzeq þ ��Þ3=2
�
: (66)

If 1
f <

��
zeq

¼ G��
H0

ffiffiffiffiffi
zeq

p , we can split the integration range

½1=f; �=zeq
 in the second integral into ½1=f; ��=zeq

and ½��=zeq; �=zeq
 and neglect uzeq and �� respectively

in these two integrals. Combining all terms and keeping the
lowest order in � we get

�gw;RðfÞ ¼ AðfÞ
�
2f1=3

ð��Þ3=2 �
18z1=3eq

11ð��Þ11=6
�

¼ 330c�2�1=2�R

pz1=4eq H3=2
0 �2�3=2

’ 3:2� 10�4

ffiffiffiffiffiffiffiffi
G�

p
p

;

f >
3:6� 10�18

G�
Hz: (67)

The calculation for the case of kink is very similar to cusp
case, following the same steps we get

�K
gw;RðfÞ ’ 3:2� 10�4

ffiffiffiffiffiffiffiffi
G�

p
p

; f >
3:6� 10�18

G�
Hz;

(68)

which is identical to the cusp result. Equations (67) and

(68) show that the distribution is flat for f > 3:6�10�18

G� Hz

and its amplitude scales with
ffiffiffiffiffiffiffiffi
G�

p
=p, which is in excel-

lent agreement with Fig. 2. The flat value of the spectrum
for the top curves (G� ¼ 10�7 and p ¼ 5� 10�3) is
2:1� 10�5 and for the bottom curve (G� ¼ 10�9 and p ¼

5� 10�2) is 2:1� 10�7. These results are to be compared
with the analytical results 2:0� 10�5 and 2:0� 10�7 pre-
dicted by Eqs. (67) and (68).
It is important to note that, in this paper we assume that

the number of kinks, N, is order of 1. This assumption
enters in the estimation j €X�j � 2�

l , and if there are N kinks

on strings, it needs to be replaced by j €X�j � 2�
l=N . The

replacement of l with l=N should also be done in the
opening angle of the cone of the radiation, Eq. (37), which
will result in a nontrivial dependence on N. However we
can simply convert the resultant expression to the one we
calculated in Eq. (52) by defining � ¼ �0N. Since we have
shown that � has the effect of moving the spectrum hori-
zontally, one effect of having N kinks will be shifted
spectrum compared to one kink spectrum. The other effect
will be an overall scaling of the spectrum by 1=N.

V. PARAMETER SPACE CONSTRAINTS AND
RESULTS

In this section we discuss certain experimental bounds
on SBGW. For the case of large loops the parameters are
G� and p, and for small loops the parameters are G�, �,
and p. It is important to note that the nontrivial dependence
on p follows from excluding rare bursts as described in
Eqs. (56) and (57) [if rare events were included �ðfÞ
would simply scale with 1=p].
Accessible regions corresponding to different experi-

ments and bounds are shown in Fig. 3. The shaded regions,
from darkest to lightest, are: LIGO S4 [33] limit, LIGO S5
[34], LIGO H1H2 projected sensitivity (cross-correlating
the data from the two LIGO interferometers at Hanford,
Washington, [H1 and H2]), and AdvLIGO H1H2 projected
sensitivity. All projections assume 1 yr of exposure and
either LIGO design sensitivity or advanced LIGO sensi-
tivity tuned for binary neutron star inspiral search. The
solid black curve corresponds to the big-bang nucleosyn-
thesis (BBN) [35] bound, the dot-dashed curve to the
pulsar bound [36], the þs to the projected pulsar sensitiv-
ity, the circles to the bound based on the cosmic microwave
background (CMB) and matter spectra [37], the �s to the
projected sensitivity of the LIGO burst [22] search, and the
�-curve to the LISA projected sensitivity [38]. The BBN
and CMB bounds are integral bounds, i.e. they are upper
limits for the integral of�ðfÞ over lnf, therefore a model is
excluded if it predicts an integral larger than the limit. On
the other hand, the pulsar and LIGO bounds apply in
specific frequency bands, thus a model is excluded if it
has �ðfÞ larger than the limit (or projected sensitivity) for
any f in the range of the pulsar or LIGO experiments. The
range of the redshift integral in Eq. (38) must be chosen
properly for a given experiment. For the BBN bound, the
integration is performed for z > 5:5� 109. Similarly, for
the bound based on the CMB and matter spectra, the
integration is performed for z > 1100. First, we note that
smaller values of p are more accessible, which follows
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from the fact that the loop density is inversely proportional
to p. This makes cosmic superstrings more accessible than
field theoretical strings. Second, we note that the LIGO
stochastic search constrains the large G�, small � part of
the parameter space, whereas the pulsar limit constrainsthe
large G� and large � part of the parameter space.
Similarly, the LIGO burst bound applies to the large G�
and intermediate � part of the parameter space. Therefore
the large G� part of the parameter space is covered by
these three experiments. Furthermore since they also over-
lap for large G� and intermediate �, in the case of detec-
tion, the two LIGO searches could potentially confirm each
other. We also see that the BBN and CMB bounds are not
very sensitive to �: the corresponding curves are rather
vertical in ��G� plane. This result is in perfect agree-
ment with our results [Eqs. (62) and (63)] that show
�ðfÞ / G�=p, which does not depend on �. For the case
of large loops, the gravitational-wave background is sig-
nificantly larger than the small loop one; see Figs. 1 and 2.
Therefore more of the parameter space is accessible to the

current and proposed experiments, as depicted in the right
bottom panel of Fig. 3. The strongest constraint is the
pulsar bound, which rules out cosmic (super)string models
with G�> 10�12 and p < 8� 10�3. This bound also
rules out field theoretical strings (p ¼ 1) with G�> 2�
10�9. One can compare these results with the case where
only cusps are included [25]. In that case cosmic (super)
string models with G�> 10�12 and p < 3� 10�3 and
field theoretical strings with G�> 10�9 are ruled out.
This result illustrates that kinks contribute to SBGW at
the same order as cusps.
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