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We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating

spheres of matter, to study the evolution of anisotropic nonadiabatic radiating and dissipative distributions

in general relativity. Dissipation is described by viscosity and free-streaming radiation, assuming an

equation of state to model anisotropy induced by the shear viscosity. We match the interior solution, in

noncomoving coordinates, with the Vaidya exterior solution. Two simple models are presented, based on

the Schwarzschild and Tolman VI solutions, in the nonadiabatic and adiabatic limit. In both cases, the

eventual collapse or expansion of the distribution is mainly controlled by the anisotropy induced by the

viscosity.
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I. INTRODUCTION

In order to study astrophysical fluid dynamics one can
get complicated models incorporating realistic transport
mechanisms and equations of state. The simplest case
with mass, spherical symmetry, despite its simplicity, still
remains an interesting problem in numerical relativity,
especially when including dissipation. Dissipation due to
the emission of massless particles (photons and/or neutri-
nos) is a characteristic process in the evolution of massive
stars. It seems that the only plausible mechanism to carry
away the bulk of the binding energy of the collapsing star,
leading to a black hole or neutron star, is neutrino emission
[1]. Viscosity may be important in the neutrino trapping
during gravitational collapse [2–4], which is expected to
occur when the central density is of the order
1011–1012 g cm�3. Although the mean free path of the
neutrinos is much greater than for other particles, the
radiative Reynolds number of the trapped neutrinos is
nevertheless small at high density [5], rendering viscous
the core fluid [1,6].

Numerical relativity is expected to keep its power to
solve problems and generate new, interesting physics,
when dissipative distributions of matter are considered.
In fact, numerical methods in general relativity have
been proven to be extremely valuable for the investigation

of strong field scenarios (see [7] and references therein).
For instance, these methods and frameworks have
(i) revealed unexpected phenomena [8], (ii) enabled the
simulation of binary black holes (neutron stars) [9,10] and
(iii) allowed the development of relativistic hydrodynamic
solvers [11], among other achievements. Currently, the
main limitation for numerical relativity is the computa-
tional demand for three-dimensional evolution [12]. The
addition of a test bed for studying dissipation mechanisms
and other transport processes in order to later incorporate
them into a more sophisticated numerical framework
(Arnowitt-Deser-Misner [ADM] or characteristic) is a
necessity.
In this paper, we study a self-gravitating spherical dis-

tribution of matter containing a dissipative fluid. We follow
the method proposed in [13], which introduces a set of
conveniently defined ‘‘effective’’ variables (effective pres-
sure and energy density), where their radial dependence is
chosen on heuristic grounds. In essence this is equivalent to
going one step further from the quasistatic regime, and the
method has been named the postquasistatic approximation
(PQSA) after [14]. The essence of the PQSA was first
proposed in [15] using radiative Bondi coordinates, and it
has been extensively used by Herrera and collaborators
[16–23]. By quasistatic approximation we mean that the
effective variables coincide with the corresponding physi-
cal variables (pressure and energy density). However, in
Bondi coordinates the notion of quasistatic approximation
is not evident: the system goes directly from static to
postquasistatic evolution. In an adiabatic and slow evolu-
tion we can catch up that phase, clearly seen in noncomov-
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ing coordinates. This can be achieved using Schwarzschild
coordinates [14]. Here, we study radiating viscous fluid
spheres in the streaming out limit with the PQSA approach,
which allow us to depart from equilibrium in noncomoving
coordinates. These systems have been studied using the
method described in [15] for the radiative shear viscosity
problem and its effect on the relativistic gravitational
collapse [24–28]. We do not consider temperature profiles
to determine which processes can take place during the
collapse. For that purpose, transport equations in the re-
laxation time approximation have been proposed to avoid
pathological behaviors (see for instance [22] and referen-
ces therein). These issues will be considered in a future
investigation. In order to develop a numerical solver that
incorporates in a realistic way dissipation following the
Müller-Israel-Stewart theory [29–32] it is first necessary to
know, to the zeroth level of approximation, viscosity pro-
files like the ones presented in this investigation. The
physical consequences of considering dissipation by means
of an appropriate causal procedure have been stated ana-
lytically in several papers by Herrera and collaborators (see
for example [33–36]).

To the best of our knowledge, no author has undertaken
in practice the dissipative matter problem in numerical
relativity. Our purpose here is to show how viscosity
processes can be considered as anisotropy and how the
PQSA works in this context. Our results partially confirm
previous investigations [25,26]. The novelty here is in the
use of the PQSA to study dissipative scenarios. The results
indicate that an observer using radiation coordinates does
not ‘‘see’’ some details when shear viscosity is considered.
The final goal is to eventually study the same problem
using the Müller-Israel-Stewart theory for the dissipative
system, which is highly nontrivial in spherical symmetry.

In standard numerical relativity, in order to deal with
matter both in ADM 3þ 1 [37] and in the characteristic
formulations [11], Bondian observers have been used im-
plicitly. This has been noted recently, and the method has
been proposed as a test bed in numerical relativity [38].
The systematic use of local Minkowskian and comoving
observers in the PQSA, named Bondians, was used to
reveal a central equation of state in adiabatic scenarios
[39], and to couple matter with radiation [40]. Since
Bondian observers are a fundamental part of the PQSA
and all its applications in the characteristic formulation, we
are currently trying to transfer all the experience gained
using this approach to include more realistic effects in the
dynamics of the fluid using the ADM 3þ 1 formulation,
the most popular method in numerical relativity. Besides
introducing a more realistic time scale in the problem with
matter, the intention is to promote the PQSA (and any of its
applications) as a test bed in the ADM 3þ 1 and character-
istic approaches.

This paper is organized as follows: In Sec. II, we present
the field equations and matching conditions at the surface

of the distribution. We explain the PQSA and write a set of
surface equations, in Sec. III. In Sec. IV, we illustrate the
method presenting four simple models based on the
Schwarzschild and Tolman VI interior solutions. Finally,
we discuss the results in Sec. V.

II. FIELD EQUATIONS FOR BONDIAN FRAMES
AND MATCHING

To write the Einstein field equations we use the line
element in Schwarzschild-like coordinates

ds2 ¼ e�dt2 � e�dr2 � r2ðd�2 þ sin2�d�2Þ; (1)

where � ¼ �ðt; rÞ and � ¼ �ðt; rÞ, with ðt; r; �;�Þ �
ð0; 1; 2; 3Þ.
In order to get physical input we introduce the

Minkowski coordinates ð�; x; y; zÞ by [41]

d� ¼ e�=2dt; dx ¼ e�=2dr;

dy ¼ rd�; dz ¼ r sin�d�:
(2)

In these expressions � and � are constants, because they
have only local values.
Next we assume that, for an observer moving relative to

these coordinates with velocity ! in the radial (x) direc-
tion, the space contains
(i) a viscous fluid of density �, pressure p̂, effective

bulk pressure p� and effective shear pressure p�, and

(ii) unpolarized radiation of energy density 	̂.
For this moving observer, the covariant energy tensor in

Minkowski coordinates is thus

�þ 	̂ �	̂ 0 0
�	̂ p̂þ 	̂�p� �2p� 0 0
0 0 p̂�p� þp� 0
0 0 0 p̂�p� þp�

0
BBB@

1
CCCA:

(3)

Note that from (2) the velocity of matter in
Schwarzschild coordinates is

dr

dt
¼ !eð���Þ=2: (4)

Making a Lorentz boost and defining �p � p̂� p� , pr �
�p� 2p�, pt � �pþ p�, and 	 � 	̂ð1þ!Þ=ð1�!Þ we

write the field equations in relativistic units (G ¼ c ¼ 1)
as follows:

~� ¼ 1

8
r

�
1

r
� e��

�
1

r
� �;r

��
; (5)

~p ¼ 1

8
r

�
e��

�
1

r
þ �;r

�
� 1

r

�
; (6)
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pt ¼ 1

32


�
e��

�
2�;rr þ �2

;r � �;r�;r þ 2

r
ð�;r � �;rÞ

�

� e��½2�;tt þ �;tð�;t � �;tÞ�
�
; (7)

S ¼ � �;t

8
r
e�ð1=2Þð�þ�Þ; (8)

where the comma (,) represents partial differentiation with
respect to the indicated coordinate and the effective vari-
ables ~�, S, known as conservation variables as well, and ~p,
the flux variable,

~� ¼ �þ pr!
2

1�!2
þ 	; (9)

S ¼ ð�þ prÞ !

1�!2
þ 	 (10)

and

~p ¼ pr þ �!2

1�!2
þ 	: (11)

Equations (5)–(8) are formally the same as for an aniso-
tropic fluid in the streaming out approximation [26].

At this point, for the sake of completeness, we write the
effective viscous pressures in terms of the bulk viscosity � ,
the volume expansion �, the shear viscosity �, and the
scalar shear �

p� ¼ ��; (12)

p� ¼ 2ffiffiffi
3

p ��; (13)

where

� ¼ 1

ð1�!2Þ1=2
�
e��=2

�
�;t

2
þ !!;t

1�!2

�

þ e��=2

�
�;r

2
!þ 1þ!2

1�!2
!;r þ 2!

r

��
(14)

and

� ¼ � ffiffiffi
3

p �
�

3
� e��=2

r

!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
�
: (15)

We have four field equations for five physical variables
(�, pr, 	, !, and pt) and two geometrical variables (� and
�). Obviously, we require additional assumptions to handle
the problem consistently. However, we discuss first the
matching with an exterior solution and the surface equa-
tions that govern the dynamics.

We describe the exterior space-time by the Vaidya met-
ric

ds2 ¼
�
1� 2MðuÞ

R

�
du2 þ 2dudR

� R2ðd�2 þ sin2�d�2Þ; (16)

where u is a timelike coordinate so that u ¼ constant
represents, asymptotically, null cones open to the future,
and R is a null coordinate (gRR ¼ 0). The relationship at
the surface between the coordinates ðt; r; �;�Þ and
ðu; R; �;�Þ is

u ¼ t� r� 2M ln

�
r

2M
� 1

�
; R ¼ r: (17)

The exterior and interior solutions are separated by the
surface r ¼ aðtÞ. In order to match both regions on this
surface we use the Darmois junction conditions.
Demanding the continuity of the first fundamental form,
we obtain

e��a ¼ 1� 2M
Ra

(18)

and

�a ¼ ��a: (19)

From now on the subscript a indicates that the quantity is
evaluated at the surface. Now, instead of writing the junc-
tion conditions as usual, we demand the continuity of the
first fundamental form and the continuity of the indepen-
dent components of the energy-momentum flow [42]. This
last condition guarantees the absence of singular behaviors
on the surface. It is easy to check that

p̂ a ¼ p�a þ 2p�a
; (20)

which expresses the discontinuity of the radial pressure in
the presence of viscous processes.
Before proceeding with the description of the method it

is convenient to rewrite some equations and introduce one
equation of state.
Defining the mass function as

e�� ¼ 1� 2m=r; (21)

and substituting (21) into (5) and (8) we obtain, after some
arrangements,

dm

dt
¼ �4
r2

�
dr

dt
pr þ 	ð1�!Þð1� 2m=rÞ1=2e�=2

�
:

(22)

This equation, known as the momentum constraint in the
ADM 3þ 1 formulation, expresses the power across any
moving spherical shell.
Equation (7) can be written as T

�
1;� ¼ 0 or equivalently,

after a lengthy calculation
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~p ;r þ ð~�þ ~pÞð4
r3 ~pþmÞ
rðr� 2mÞ þ 2

r
ð~p� ptÞ

¼ e��

4
rðr� 2mÞ
�
m;tt þ 3m2

;t

r� 2m
�m;t�;t

2

�
: (23)

This last equation corresponds to a generalization of the
hydrostatic support equation, that is, the Tolman-
Oppenheimer-Volkoff equation. It can be shown that
Eq. (23) is equivalent to the equation of motion for the
fluid in conservative form in the standard ADM 3þ 1
formulation [38]. Equation (23) leads to the third equation
at the surface (see next section); up to this point is com-
pletely general within spherical symmetry.

To close this section we have to mention that we assume
the following equation of state [26] for nonadiabatic mod-
eling [43]:

pt � pr ¼ Cð~pþ ~�Þð4
r3 ~pþmÞ
ðr� 2mÞ ; (24)

where C is a constant.

III. THE POSTQUASISTATIC APPROXIMATION
AND THE SURFACE EQUATIONS

Feeding back (9) and (11) and using (21) into (5) and (6),
these two field equations may be formally integrated to
obtain

m ¼
Z r

0
4
r2 ~�dr; (25)

which is the Hamiltonian constraint in the ADM 3þ 1
formulation and

� ¼ �a þ
Z r

a

2ð4
r3 ~pþmÞ
rðr� 2mÞ dr; (26)

the polar slicing condition, fromwhere it is obvious that for
a given radial dependence of the effective variables, the
radial dependence of the metric functions becomes com-
pletely determined.

As defined in [14] the postquasistatic regime is a system
out of equilibrium (or quasiequilibrium; see [34]) but
whose effective variables share the same radial dependence
as the corresponding physical variables in the state of
equilibrium (or quasiequilibrium). Alternatively, we can
say that the system in the postquasistatic regime is charac-
terized by metric functions of the static (quasistatic) re-
gime. The rationale behind this definition is not difficult to
catch: we look for a regime which, although out of equi-
librium, it is the closest to quasistatic evolution.

A. The PQSA protocol

We outline here the PQSA approach:
(1) Take an interior solution to Einstein’s field equa-

tions, representing a fluid distribution of matter in
equilibrium, with static solutions

�st ¼ �ðrÞ; pst ¼ pðrÞ:

(2) Assume that the r dependence of ~� and ~p is the same
as that of �st and pst, respectively.

(3) Using Eqs. (25) and (26), with the r dependence of ~p
and ~�, one gets m and � up to some functions of t,
which will be specified below.

(4) For these functions of t one has three ordinary
differential equations (hereafter referred to as the
surface equations), namely,

(a) Equation (4) evaluated at r ¼ a;
(b) Equation (22) evaluated at r ¼ a;
(c) Equation T�

1;� ¼ 0 evaluated at r ¼ a.

(5) Depending on the kind of matter under considera-
tion, the system of surface equations described
above may be closed with the additional information
provided by the transport equation and/or the equa-
tion of state for the anisotropic pressure and/or
eventual additional information about some of the
physical variables evaluated on the surface of the
boundary (e.g. the luminosity).

(6) Once the system of surface equations is closed, it
can be integrated for any initial data.

(7) Feeding back the result of integration in the expres-
sions for m and �, these two functions are com-
pletely determined.

(8) With the input from point 7, and using the field
equations, together with the equation of state and/
or transport equation, all physical variables can be
found everywhere inside the matter distribution.

As it should be clear from the above, the crucial point in
the algorithm is the system of equations at the surface of
the distribution. We specify it in the next section.

B. Surface equations

Evaluating (22) at the surface and using the boundary
condition (20), the energy loss is given by

_ma ¼ �4
a2	að1� 2ma=aÞð1�!aÞ: (27)

Hereafter, the overdot indicates d=dt and the a subscript
indicates that quantity is evaluated at the surface r ¼ aðtÞ.
The evolution of the boundary is governed by Eq. (4)

evaluated at the surface

_a ¼ ð1� 2ma=aÞ!a: (28)

Scaling the total mass ma, the radius a and the timelike
coordinate by the initial mass maðt ¼ 0Þ � mað0Þ,
A � a=mað0Þ; M � ma=mað0Þ; t=mað0Þ ! t;

and defining

F � 1� 2M

A
; (29)
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� � !a; (30)

E � 4
a2	að1��Þ; (31)

the surface equations can be written as

_A ¼ F�; (32)

_F ¼ F

A
½ð1� FÞ�þ 2E�: (33)

Equations (32) and (33) are general within spherical
symmetry.

We need a third surface equation to specify the dynamics
completely for any set of initial conditions and a given
luminosity profile EðtÞ. For this purpose we can use the
field Eq. (7) or the conservation Eq. (23), written in terms
of the effective variables, which is clearly model
dependent.

IV. EXAMPLES

We illustrate the PQSA method with four examples
based on the Schwarzschild and Tolman VI interior solu-
tions. Additionally, we consider two corresponding adia-
batic models, that is, without free-streaming but
anisotropic (viscous). Although greatly simplified, the
adiabatic models lead to nontrivial results, which allow
to understand our results better.

A. Schwarzschild-like model I: nonadiabatic

We consider here a very simple model inspired by the
well-known Schwarzschild interior solution [44]. We take

~� ¼ fðtÞ; (34)

where f is an arbitrary function of t. The expression for ~p
is

~pþ 1
3 ~�

~pþ ~�
¼

�
1� 8


3
~�r2

�
h=2

kðtÞ; (35)

where k is a function of t to be defined from the boundary
condition (20), which now reads, in terms of the effective
variables, as

~p a ¼ ~�a�
2 þ 	̂að1þ�Þ2: (36)

Thus, (35) and (36) give

~� ¼ 3ð1� FÞ
8
a2

; (37)

~p ¼ ~�

3

�
SF

h=2 � 3c S�

c S�� SF
h=2

�
; (38)

with

� ¼ ½1� ð1� FÞðr=aÞ2�h=2;
where h ¼ 1� 2C and

S ¼ 3ð�2 þ 1Þð1� FÞ þ 2Eð1þ�Þ;
c S ¼ ð3�2 þ 1Þð1� FÞ þ 2Eð1þ�Þ:

Using (21) and (26) it is easy to obtain expressions for m
and �:

m ¼ maðr=aÞ3; (39)

e� ¼
�
SF

h=2 � c S�

2ð1� FÞ
�
2=h

: (40)

In order to write down explicitly the surface equations for
this example, we evaluate the Eq. (23) at the surface,
obtaining

_� ¼ ½8EF��2 þ 10�2F� 6E�þ 2E�2 þ 3�4

� 8E2 � 9�2F2 � 6�4Fþ 8E�3 þ 3F2�4

þ 4E2�þ 4E2�2 þ 4 _EAþ 6FE�� 2F�2E

� 8F�3EÞ=ð2AðF� 1ÞÞ: (41)

It is interesting to note that this equation is the same as in
the isotropic case (pr ¼ pt). This is a direct consequence
of the chosen equation of state combined with incompres-
sibility of the fluid; it is not a general result, as we will see
for the next models. Equation (41), together with (32) and
(33), constitute the system of differential equations at the
surface for this model. It is necessary to specify one the
luminosity as a function of t and the initial data. We choose
E to be a Gaussian

E ¼ E0e
�ðt�t0Þ2=�2

;

with E0 ¼ Mr=
ffiffiffiffiffiffiffiffi
�


p
, t0 ¼ 5:0 and � ¼ 0:25, which cor-

responds to a pulse radiating awayMr ¼ 1=10 of the initial
mass.
We solve Eqs. (32), (33), and (41) using a fourth order

Runge-Kutta method. The physical variables
ð�; p;!; �; 	Þ are obtained from the field Eqs. (5)–(8)
and the equation of state (24). Note that we have to use
Eqs. (14) and (15) and some additional numerical work to
determine �. We take as initial conditions Að0Þ ¼ 5,
Mð0Þ ¼ 1, �ð0Þ ¼ �0:1, with h ¼ 0:99.
Figure 1 shows the evolution of the radius of the distri-

bution. Figures 2–6 display the physical variables
ð�; pr; pt; !; 	Þ, Figs. 7 and 8 the kinematic variables �
and �, and Fig. 9 the shear viscosity �, for different
regions. It is evident that the emission of energy decreases
the energy density and the shear viscosity, but increases the
pressure; while the collapse is briefly accelerated. It is
interesting to note that after the Gaussian emission the
distribution recovers staticity slowly, probably in a quasi-
static regime. In this model pt > pr, which means

2
ffiffiffi
3

p
��> 0 (h ¼ 0:99). It is important to mention that in

this model, a shear viscosity �> 0 is only possible if we
choose the negative root in (15). Physically meaningful
values of shear viscosity (�> 0) are obtained for regions
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r=a � 0:6 ! 1. This means that the inner core is not
viscous but anisotropic. The rest of the kinematic variables
(� and �), shown in Figs. 7 and 8, follow the evolution of
the radius of the distribution, with � (�) decreasing (in-
creasing) faster as the radius decreases at a faster rate for
4 & t & 6.

B. Schwarzschild-like model II: adiabatic

We construct this model with the same effective varia-
bles and metric functions as the aforestudied model I, but
now the radiation flux is zero everywhere; therefore this
model is adiabatic. Obviously we do not need now an
equation of state because all physical variables are deter-
mined algebraically from the field equations. However

some measure of tangential stress at the surface is required
to evolve the system. We opt for a tangential pressure equal
to the radial pressure just at the surface, ptja ¼ prja. The
third surface equation in this case is

_� ¼ � 1

2A
ð4h�2F��2Fþ hF� 6�4Fþ 3h�4F

� F� 3h�4 � 4h�2 � 3�2 þ 1� hþ 6�4Þ:
(42)

Observe that this expression explicitly depends on the
anisotropic parameter h. In this case we integrate the
system for the initial conditions Að0Þ ¼ 5, Mð0Þ ¼ 1 and
� ¼ �0:01. Figure 10 shows the radius of the distribution
for different values of h. Figures 11 and 12 display the
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radial velocity and the shear viscosity for h ¼ 0:9. In this
case anisotropy manifests clearly at the surface. As long as
pt is greater than pr the collapse accelerates. The same
occurs for 0:7 � h � 1:0, as we go deeper in the distribu-
tion the inner shells collapse faster. The effective gravita-
tion is therefore enhanced by the anisotropy induced by the
viscosity. Inner regions have a greater shear viscosity in
this model (� 10–105 times the values found in model I).

C. Tolman VI-like model III: nonadiabatic

In this subsection we revise the model obtained from
Tolman’s solution VI [45]. Let us take

�� ¼ g

r2
; (43)

~p ¼ gKð1� 9�ðr=aÞ
ffiffiffiffiffiffiffiffiffi
4�3h

p
Þ

3ðK=I � 9�ðr=aÞ
ffiffiffiffiffiffiffiffiffi
4�3h

p
Þhr2 ; (44)

where K and I are defined as

K ¼ 8� 3hþ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3h

p
; I ¼ 8� 3h� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3h

p
:

g and � are functions of t, which can be determined using
(36). Therefore,

g ¼ 3ð1� FÞ
24


; (45)

� ¼ 3hð1� FÞ � K�

9½3hð1� FÞ � I�� ; (46)
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where

� ¼ ð1� FÞ�2 þ 2Eð1þ�Þ:
Using (21) and (26) we obtain

m ¼ maðr=aÞ (47)

and

� ¼ lnFþ 8
g

F

�
1þ I

3h

�
lnðr=aÞ þ 8
g

3hF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3h

p

�
�
I ln

� ðK=I � 9�Þa
ffiffiffiffiffiffiffiffiffi
4�3h

p

ðK=IÞa
ffiffiffiffiffiffiffiffiffi
4�3h

p
� 9�r

ffiffiffiffiffiffiffiffiffi
4�3h

p
�

þ K ln

�ðK=IÞa
ffiffiffiffiffiffiffiffiffi
4�3h

p
� 9�r

ffiffiffiffiffiffiffiffiffi
4�3h

p

a
ffiffiffiffiffiffiffiffiffi
4�3h

p
ðK=I � 9�Þ

��
: (48)

Evaluating Eq. (23) at the surface we can obtain an equa-

tion for _� (too long to display here).
Integrating the system of equations at the surface for the

initial conditions Að0Þ ¼ 8 and � ¼ �0:1, with Mr ¼
10�2, we obtain Figs. 13–15. We obtain similar results as
in model II but in a different fashion. The bigger the
difference between the tangential (viscous) pressure pt

and the radial pressure pr (as h decreases), the more
violently the distribution explodes. It is striking that now
all the spherical shells tend to reach the same instantaneous
local radial velocity when the system goes to faster col-
lapse with emission of energy across de boundary surface.
At least locally, the ‘‘acceleration’’ of all the shells goes to
zero at the same time; again the same instantaneous local
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radial velocity (negative) is reached before a final bouncing
per shell from outer to inner.

D. Tolman VI-like model IV: adiabatic

We construct this model with the same effective varia-
bles and metric functions as in model III, but now the
radiation flux is zero everywhere; therefore, this model is
adiabatic. Obviously we do not need now an equation of
state because all physical variables are determined alge-
braically from the field equations. However, some measure
of tangential stress at the surface is required to evolve the
system. We opt for a tangential pressure equal to the radial
pressure just at the surface, ptja ¼ prja, as in model II. The
third surface equation in this case is

_� ¼ ð�9�4Kh2I2Fþ�4FI2K3 þ 9�4K2h2IF

þ 6�4FI2K2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3h

p � 243FIh4�2 � I3K2F�4

� 81Fh4I þ 54FIKh3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3h

p þ 243Kh4�2F

� 18�2FI2Kh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3h

p � 18�2FIK2h2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3h

p

þ 81Fh4K � 18h2I2FK�2 þ 18Fh2K2�2I

þ 9�4Kh2I2 � 9�4K2h2I � 18h2K2�2I

þ 18h2I2K�2 þ I3K2�4 � 81h4K � I2�4K3

þ 81h4I þ 81Kh4�2 � 81Ih4�2Þ=½162ðK � IÞh4A�:
(49)

Integrating the system for the initial conditions Að0Þ ¼ 8
and� ¼ �0:1, Fig. 13 shows the radius of the distribution
for different values of h. Figures 16–18 display the radial
velocity and the shear viscosity for h ¼ 0:9. After some
numerical experimentation some nontrivial results arise,
and we relax the condition pt > pr. At the surface we do
not find any novelty. The most violent explosion occurs as
pr 	 pt. In this adiabatic but viscous (anisotropic) model
all the shells bounce at the same time to irrupt from inner
regions to outer regions with an apparently linear depen-
dence with time. The outer shells of matter are ejected
faster and earlier than the inner ones. This sort of behavior
was reported several years ago studying in Bondi coordi-
nates the collapse of radiating distributions with an ex-
treme transport mechanism as diffusion [46]. However, the
shear viscosity profiles indicate that i) bouncing is not
allowed at all and ii) some inner regions are forbidden,
otherwise the shear viscosity profiles become negative or/
and infinite (see Fig. 18). This situation is general and
independent of the anisotropy parameter h.
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V. CONCLUSIONS

We consider a self-gravitating spherical distribution of
matter containing a dissipative fluid. The use of the PQSA
with noncomoving coordinates allow us to study viscous
fluid spheres in the streaming out limit as they just depart
from equilibrium. From this point of view, the PQSA can
also be seen as a nonlinear perturbative method to test the
stability of solutions in equilibrium.

For the nonadiabatic Schwarzschild model the distribu-
tion evolves to a final state with a nonviscous and aniso-

tropic inner core. Surprisingly, in this model the evolution
of the local radial velocity at the surface is the same in the
isotropic (pt ¼ pr) case, a fortuitous coincidence due to
the chosen equation and state and the incompressibility of
the fluid. For the adiabatic Schwarzschild model the final
core is up to 105 times more viscous, and the anisotropy
appears explicitly in all the evolution equations. The higher
viscosity of the core increases the effective gravity and the
collapse is faster, as long as pt > pr.
Both of the Tolman VI models lead to a distribution

which initially collapses and then bounces and expands
indefinitely. The Tolman VI nonadiabatic model
shares some of the characteristics of the adiabatic
Schwarzschild. Before the final bouncing, as pt > pr the
collapse is accelerated. For the nonadiabatic case some
regions of the parameter space are forbidden, since the
shear viscosity profiles become unphysical. In this case the
bouncing is not allowed and the distribution collapses
indefinitely.
A forthcoming paper considers the dissipation by heat

flow, in order to isolate effects similar to the ones studied in
the present investigation, but with different mechanisms.
Also, a work in progress considers heat flow and anisotropy
induced by electric charge, pointing to the most realistic
numeric modeling in this area [47]. Although they are not
entirely new, the results presented here constitute a first cut
to more general situations using the PQSA, including dis-
sipation, anisotropy, electric charge, heat flow, viscosity,
radiation flux, superficial tension, temperature profiles and
study their influence on the gravitational collapse. This
investigation is an essential part of a long-term project
which tries to incorporate the Müller-Israel-Stewart theory
for dissipation and deviations from spherical symmetry,
specially when considering electrically charged distribu-
tions. Besides being interesting in their own right, we
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believe that spherically symmetric fluid models are useful
as a test bed for more general solvers in numerical relativ-
ity [39,40]. A general three-dimensional code must be able
to reproduce situations closer to equilibrium.
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Astrophys. J. 421, 677 (1994).

[22] J. Martı́nez, Phys. Rev. D 53, 6921 (1996).
[23] W. Barreto and A. da Silva, Gen. Relativ. Gravit. 28, 735

(1996).
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