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A possible solution to the dark energy problem is that Einstein’s theory of general relativity is modified.

A suite of models have been proposed that, in general, are unable to predict the correct amount of large

scale structure in the distribution of galaxies or anisotropies in the cosmic microwave background. It has

been argued, however, that it should be possible to constrain a general class of theories of modified gravity

by focusing on properties such as the growing mode, gravitational slip, and the effective, time-varying

Newton’s constant. We show that assuming certain physical requirements such as stability, metricity, and

gauge invariance, it is possible to come up with consistency conditions between these various parameters.

In this paper we focus on theories which have, at most, second derivatives in the metric variables and find

restrictions that shed light on current and future experimental constraints without having to resort to a (as

yet unknown) complete theory of modified gravity. We claim that future measurements of the growth of

structure on small scales (i.e. from 1–200h�1 Mpc) may lead to tight constraints on both dark energy and

modified theories of gravity.
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I. INTRODUCTION

The dark energy problem, i.e. the possibility that 70% of
the Universe seems to be permeated by an invisible fluid
which behaves repulsively under gravity and does not
cluster, has been the focus of research in cosmology for
over a decade. There are a host of proposals [1] and a
battery of experiments are under way, or on the drawing
board, to characterize the nature of this elusive source of
energy [2–5].

In recent years, an alternative possibility has emerged,
that Einstein’s general theory of relativity is incorrect on
cosmological scales and must be modified. Although the
idea that general relativity is incomplete has been around
since the early 1960s [6–9], there are now a number of
proposals for what this theory of modified gravity might be
[10]. The Einstein-Hilbert action, Sg /

R
d4x

ffiffiffiffiffiffiffi�g
p

R

(where g is the metric determinant and R is the scalar
curvature of a metric gab) can be replaced by a more
general form Sg /

R
d4x

ffiffiffiffiffiffiffi�g
p

FðRÞ, where F is an appro-

priately chosen function of R [11,12]; the dynamics of the
gravitational field can emerge from a theory in higher
dimensions such as one might encounter in brane worlds
[13]; a preferred reference frame may emerge from the
spontaneous symmetry breaking of local Lorentz symme-
try [14–17]; the metric that satisfies the Einstein equation is
not necessarily the one that defines geodesic motion [18]
but is related to a second metric via additional fields [19–
21] or connections [22–24]; the Einstein-Hilbert action

may be deformed by choosing as fundamental variables
of gravity, SUð2Þ connections [25–27].
Many of these models have been successful in reproduc-

ing, for example, the observed relation between redshift
and luminosity distances from distant supernovae. They
have, however, generally failed to reproduce the observed
clustering of galaxies on large scales as well as the anisot-
ropies in the CMB unless the modified theory becomes
effectively equivalent to general relativity (i.e. the
Einstein-Hilbert action and a cosmological constant), e.g.
[28–30]. The general problem that seems to plague most
theories is an excess of power on the very largest scales,
which manifests itself through the integrated Sachs-Wolfe
effect and a mismatch between the normalization of the
power spectrum of fluctuations on the largest and smallest
scales. As yet, a truly compelling and viable model of
modified theory of gravity has yet to be put forward, which
may resolve the dark energy problem.
All is not lost, however, and progress can be made in

learning about potential modifications to gravity by ex-
tracting phenomenogical properties that can be com-
pared to observations, with the ‘‘parametrized post-
Friedmannian’’ approach [31]. In this paper we focus on
a key observable characterizing the evolution of large scale
structure: the growing mode of gravitational collapse.
The time evolution of the density field can be a sensitive

probe of not only the expansion rate of the Universe but
also its matter content. In a flat, matter dominated universe
we have that �M, the density contrast of matter, evolves as
�M / a where a is the scale factor of the Universe. We can
parametrize deviations from this behavior in terms of �
[32–34] through
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� �
ln½ _�M

H�M
�

ln�M

; (1)

where �M is the fractional density of matter, H ¼ _a
a and

overdots are derivatives with regard to conformal time, �.
For standard growth in the presence of a cosmological
constant, one has that � � 6=11 to a very good approxi-
mation. This is not true over a wide range of values for�M.
In fact, in Fig. 1 we can see that � deviates from its early-
universe asymptotic value as �M ! 0. A natural question
to ask is how � depends on different aspects of the
Universe and how one might use it to constrain dark energy
and modifications to gravity. In this paper we will focus on
a few of these properties.

One important property of the Universe is the equation
of state of dark energy, characterized by the constant (or
function of time), w:

PE ¼ w�E: (2)

PE and �E are the pressure and energy densities of dark
energy. The function w may be time varying and is related
to the adiabatic speed of sound c2a as

c2a ¼ w� _w

3H ð1þ wÞ : (3)

Another important property is gravitational slip, � ,
which is normally defined to be

��� � ��; (4)

where we are taking a linearly perturbed metric in the
conformal Newtonian gauge,

ds2 ¼ �a2ð1þ 2�Þd�2 þ a2ð1� 2�Þd~x2: (5)

Such a parametrization has been advocated in a number of
papers on modified gravity [35–41], and it has been shown
that it can lead to a number of observational effects. Albeit
simple, and appealing, such a parametrization of slip is not
necessarily general and, as we shall see in the next section,

necessarily implies other nontrivial modifications to the
gravitational sector. Such modifications are, in general, not
explicitly acknowledged but may correspond to unex-
pected assumptions about any putative, underlying theory.
Hence, a more general assumption (at least within the
context of second order theories) would be that gravita-

tional slip would depend on � and _� (this is explained in
more detail in Sec. II D and in [42])
Finally, we can define an effective Newton’s constant in

the relativistic Newton-Poisson equation

r2� ¼ 4�a2Geff

X
X

�X

�
�X þ 3ð1þ wXÞ _a

a
�X

�
;

where �X is the density contrast, and �X is the momentum
of the cosmological fluid X, which has an equation of state
wX. We can define the dimensionless function

�2 � G

Geff

; (6)

where G is the ‘‘bare’’ Newton constant. It then makes
sense to try to constrain (�, w, � , and �) in the hope that it
may be possible to shed light on a possible theory of
modified gravity.
Although there have been alternative proposals [43], a

number of groups have pioneered the use of this simple
parametrization of modified gravity (in terms of � , �2 or
both): in [35,36] it was argued that gravitational slip might
be a generic prediction for modified theories of gravity, in
[37,38] it was shown that it would be possible to constrain
it through cross correlations of the CMB with galaxy
surveys and in [44] from the integrated Sachs-Wolfe effect;
weak lensing has been proposed as a possible route for
constraining these parameters [45–47] with a tentative
detection of modification being proposed in [40]. Much
is expected from applying these methods to future ambi-
tious experiments that will map out the large scale structure
of the Universe. Indeed constraints of general relativity are
a core element of the science that could be extracted from
the Euclid experiment [3].
Given that such an approach is phenomenological, the

general attitude has been to leave these parameters com-
pletely free. There is merit to such an approach in that one
is not restricting oneself to a particular theory and hence
constraints will be general. It is true however that is pos-
sible to identify (reasonably general) consistency condi-
tions for (�, w, � , and �), contingent on specific physical
assumptions. In this paper we state these assumptions and
present restrictions on (�, w, � , and �). We shall use the
formalism first proposed by one of us [42], which spells out
how to build consistent modifications to gravity.
This paper is structured as follows: In Sec. II, we recap

the formalism presented in [42] and relate it to the parame-
ters we wish to study phenomenologically. We discuss how
the consistency conditions reduce the freedom to choose
arbitrary ð�; �;�2Þ. In Sec. III, we implement the consis-

FIG. 1. The solid line is the growth parameter, �, for a �CDM
universe, as a function of �M. For small values of ��, � is well
approximated by 6=11 (dashed line) but there are deviations as
�� grows; we find errors of 0.7%, 3.3%, and 4.2% when �M ¼
0:7, 0.3, and 0.05.
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tency conditions and find a relationship between the pa-
rameters by looking at the evolution equation for the
density contrast in matter for small wavelengths. In doing
so, we find analytic expressions for the relationships and
briefly assess the range of scale to which they are appli-
cable. In Sec. IV, we find analytic expressions for � to
second order for a general parametrization which is con-
sistent with the parametrized post-Newtonian (PPN) ap-
proximation on small scales. In Sec. V, we discuss the
generality of the results and how they may be extended
to other, more exotic models.

II. THE FORMALISM

We now summarize the formalism, the details of which
can be found in [42]: we present the field equations, the
evolution equations for the fluid components, and the con-
sistency conditions for modifications to the field equations.
We shall further assume a spatially flat universe, but our
results can be easily generalized to include curvature.

A. The background cosmology

As discussed in [42], the background equations for any
theory of gravity for which the metric is Friedmann-
Robertson-Walker (FRW) can be recast in the usual form
used in general relativity. The Friedmann equation simply
reads

3H 2 ¼ 8�Ga2
X
X

�X: (7)

In addition to the Friedmann equation we also have the
Raychaudhuri equation �2 €a

a þH 2 ¼ 8�Ga2
P

XPX.

With the help of the Friedmann equation, in a universe
containing only pressureless matter and dark energy (as is
approximately the case in the late universe) the
Raychaudhuri equation may be rewritten as

_H ¼ �1
2H

2ð1þ 3w�EÞ: (8)

The dark energy density �E and w, may be in general a
function of additional degrees of freedom, the scale factor

a or H . For example, for FðRÞ one gets �E ¼ 1
2 ðRFR �

FÞ � 3H
a2

_FR � 3H 2

a2
FR. But this explicit dependence of �E

(or of w) is irrelevant. One may always treat �E as a
standard fluid with a time-varying equation of state w
subject to energy conservation _�E þ 3H ð1þ wÞ�E ¼ 0
(but note that there may be additional field equations that
determine the time dependence of w). In a universe con-
taining only pressureless matter and dark energy, the en-
ergy conservation equation for dark energy can be
rewritten as

_� E ¼ �3Hw�M�E: (9)

Our discussion above has one important consequence:
that one cannot distinguish modifications of gravity from

ordinary fluid dark energy using observables based on
FRW alone. As discussed in [42], and further below, the
situation changes drastically once we consider linear
fluctuations.

B. The field equations

The idea is to parameterize deviations from Einstein
gravity at a linear level. Schematically we can write the
modified Einstein equations in the form

�Gmod
�	 ¼ �G�	 � �U�	 ¼ 8�G�T�	 þ 8�G�TDE

�	:

(10)

Note that for a tensor F we use �F to indicate a linear
perturbation of F, and we assume that �Uab is made of the
scalar metric perturbations and their derivatives. Let us
also stress that the background tensor corresponding to
Uab, i.e. �Uab vanishes. We assume that ‘‘normal matter’’
(i.e. baryons, dark matter, neutrinos, and photons) are
contained in T�	 and that dark energy, or any nonmetric

degrees of freedom that behave like dark energy (such as a
scalar field- quintessence- or a dark fluid), are contained in
TDE
�	 . In this paper we will restrict ourselves to two fluids:

T�	 is the energy-momentum tensor for a pressureless fluid

with density �M, density contrast �M, and momentum �M,
while TDE

�	 is the energy-momentum tensor of a fluid with

density �DE, density contrast �DE and �DE, which can be
characterized defined in terms of (possibly time varying)
equation of state and sound speed (we shall use the ap-
proach of [48] to model a quintessence-like fluid with a
constant equation of state.
The field equations can be rewritten in the following

form:

�2k2� ¼ 8�Ga2
X
X

�X½�X þ 3ð1þ wXÞH�X�

þU� þ 3HU�; (11)

2ð _�þH�Þ ¼ 8�Ga2
X
X

ð�X þ PXÞ�X þU�; (12)

d

d�
ð _�þH�Þ ¼ 4�Ga2�E�E þ 1

6UP þ 1
3r2U�

� 2H ð _�þH�Þ þ ðH 2 � _H Þ�;

��� ¼ U�: (13)

As advertised, the U terms contain modifications to grav-
ity, and we have used the notation from [42]: U� �
�a2U0

0,
~riU� ¼ �a2U0

i, UP ¼ a2Ui
i, and ½ ~ri ~rj �

1
3
~r2
�i

j�U� ¼ a2ðUi
j � 1

3U
k
k�

i
jÞ. Further, we have pa-

rameterized the dark energy pressure perturbation �E �
�PE=�E as

�E ¼ c2s�E þ 3ðc2s � c2aÞð1þ wÞH�E: (14)

LINEAR GROWTH RATE OF STRUCTURE IN . . . PHYSICAL REVIEW D 81, 104020 (2010)

104020-3



For adiabatic fluids, as is the case of radiation and cold dark
matter, cs ¼ ca, and we get �E ¼ c2s�E. In general, how-
ever, cs � ca and may in fact be a function of space as well
as time.

C. The fluid equations

It is convenient to define �X ¼ �X � 3ð1þ wXÞ� for
X ¼ M, dark energy. We then have that the equations of
motion for the fluids [48] are

_�M ¼ �k2�M;

_�M ¼ �H�M þ�;

_�E ¼ 3H ðw� c2sÞ�E � ð1þ wÞk2�E
� 9ð1þ wÞH ðc2s � c2aÞ½�þH�E�;

_�E ¼ ð3c2s � 1ÞH�E þ c2s

�
1

1þ w
�E þ 3�

�
þ�:

(15)

D. The consistency conditions

In principle, one should be able to choose arbitrary
combinations of metric perturbations to go in the tensor
U. Yet in [42] it was argued that by assuming a set of
general properties, it is possible to restrict the form of U.
For the purpose of this paper, we shall choose the general
theory of gravity to satisfy the following restrictions:

(1) The fundamental geometric degree of freedom is the
metric: This encompasses most modified theories of
gravity, including the first order Palatini (torsion-
less) formulations (where the connection 	c

ab is

independent of the metric at the level of the action)
or purely affine theories [49], provided a metric can
be defined.

(2) The field equations are at most second order: This
does restrict the class of acceptable theories (for
example FðRÞ theories are generally higher deriva-
tive but it has become clear that it is these higher
order terms that lead (again) to instabilities in the
generation of large scale structure.

(3) The field equations are gauge-form invariant:
Gauge-form invariance is the linearized version of
the full diffeomorphism invariance of any gravita-
tional theory with a manifold structure. It is the
unbroken symmetry of the field equations under
gauge transformations. After a gauge transforma-
tion, the field equations retain their exact form: they
are form invariant (see [50–53] for further
discussion).

It is of course possible to relax some of these conditions,
and we will discuss how in the conclusions.

Armed with these conditions we can construct U in

Fourier space solely out of � and _� such that U� ¼
k2A�, U� ¼ kB�, UP ¼ k2C1�þ kC2

_�, and U� ¼

D1�þD2
_�=k. All operators above (e.g. A ) are dimen-

sionless. Terms such as €�, _�, and €� (and higher deriva-
tives) are forbidden, while terms proportional to � are
allowed but their coefficients vanish as a result of the
Bianchi identities. This last fact is a consequence of the
consistency conditions outlined above, and the reader is
referred to [42] for a more thorough treatment.
We can rearrange (11) in the form of (6) to immediately

read off

�2 ¼ 1þ Aþ 3H kB

2
;

where we let H k � H =k.
Furthermore, we have that the shear field equation be-

comes

��� ¼ ��þ g

k
_�;

where we have let � ¼ D1 and g ¼ D2.
We see that the gravitational slip ��� will generally

depend on both� and its time derivative, _�, and not solely
on �. Defining � ¼ �PPF� as has been in proposed in
[37,38], we find that

�PPF½�� ¼ 1

1� � � g
k
d ln�
d�

� 1þ � þ g

k

d ln�

d�
: (16)

Thus, unless g ¼ 0, �PPF is an explicit functional of �,
introducing interesting environmental dependence on the
matter distribution. All parameterizations of the slip used
so far, for which��� / �, have ignored this possibility,
which suggests that they were over simplistic (although see
[31]).
As shown in [42], as a result of the Bianchi identities we

have raU
a
b ¼ 0, leading to a series of restrictions on the

coefficients:

A ¼ H
2H k _gþ 2kð2H 2

k þ 1
3Þg� 2H �

_H �H 2 � k2

3

;

B ¼ � k

3H
A� 2

3
g;

C1 ¼ 3

k
ð _Bþ 2HBÞ þ 2� ¼ �A� 1

H
½ _Aþ kB�;

C2 ¼ � k

H
A:

(17)

This means a consistent modification to the Einstein equa-
tions is uniquely determined by two arbitrary free func-
tions, �ð�; kÞ and gð�; kÞ.
Finally, we can combine the expression for A and B

appropriately to find that g has a simple interpretation as
a perturbation of the effective gravitational constant

�2 ¼ 1�H
k

g: (18)
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Hence, the consistency conditions lead to an important
relationship between a generalized form of the gravita-
tional slip. In particular, if we consider time variations of
the Newtonian potential, it is inconsistent to consider a
restricted parametrization of the gravitational slip of the
form ��� ¼ �� on all scales [54].

E. Parameterizing � and g

We are not assuming any particular underlying theory of
modified gravity and hence do not have a specific model
for � and g. Our interest is in theories that may mimic the
behavior of dark energy so we expect deviations from
Einstein gravity to emerge as �E begins to diverge from
0. A simple assumption is to assume that the gravitational
slip is analytic at �E ¼ 0 and Taylor expand it:

� ¼ �1�E þ �2�
2
E þOð�3

EÞ: (19)

We can do the same for g so that

g ¼ g1�E þ g2�
2
E þOð�3

EÞ: (20)

In Sec. III, we find how the growth depends on such a
parametrization and, in particular, determine analytic ex-
pressions for �.

This way of parameterizing � and g has three major
advantages:

(i) It is in the spirit of the PPN formalism where the
PPN parameters are isolated from the potentials,
which are dependent on the density profiles and
thus the solutions; the role of the ‘‘potential’’ in
this case is taken by �Eð�Þ, which depends on the
background cosmology.

(ii) Expanding in powers of�E isolates the background
effects of dark energy from the genuine effects of
the perturbations. In particular, the dark energy
relative density �0E or the dark matter relative
density�0m would have no effect on the parameters
�i and gi.

(iii) This expansion makes mathematical sense for any
analytic function, as the function �Eð�Þ is always
bounded to be 0 � �E � 1, i.e. it is a naturally
small parameter.

Note that we have dropped any k dependence from this
parametrization. There are twoways that k dependence can
enter, either relative to a fixed scale k0 (which may be part
of some theory of gravity) or relative to the Hubble scale
H . If wewish to see how our results are affected by a scale
dependence relative to the temporal changes introduced by
the FRW background we can extend the parametrization to

� ¼ � ð0Þ þ � ð1ÞH k; g ¼ gð0Þ þ gð1ÞH k; (21)

where, as above, we have

� ð0Þ ¼ �01�E þOð�2
EÞ; � ð1Þ ¼ �11�E þOð�2

EÞ;
(22)

and likewise with gð0Þ and gð1Þ.
It turns out that, if we attempt to, on one hand generalize

our parametrization of � and g, but, on the other hand pin it
down so as to be consistent with PPN method used on
much smaller scales, we need to change our previous
approach. It is entirely possible that there are other scales
in the system. Furthermore, as we show in the Appendix, to
leading order we may have g / H m

k where m is negative.

These can complicate the simple model we considered

above. For example, consider the function f ¼ e‘H where
‘ is a fixed scale. How does one expand this on small

scales? One would be tempted to write f ¼ e‘kH k � 1þ
‘kH k ¼ 1þ ‘H but this clearly makes no sense. The
scale k was artificially introduced and leads to erroneous
conclusions.
In general we have a function �ð�; kÞ. Since � is dimen-

sionless while � and k are not, the functional dependence
on � and k must come in dimensionless combinations. It is
convenient to exchange �with either �ðH Þ or with �ð�EÞ.
Thus, the most general function � will have the form � ¼
�ð�E;H k; ‘H ; k=k0Þ for constants ‘ and k0, and there
may be additional dimensionless parameters entering. We
can thus isolate the leading-order dependence of � on H k

and write

� ¼ �Lð�E; kÞH n
k (23)

for a constant n. We expand g in a similar way as

g ¼ gLð�E; kÞH m
k (24)

for a constantm. In the Appendix we show that a consistent
PPN limit fixes n ¼ 0 and m ¼ �1.
Thus, we arrive at our general expansion of � and g in

the small-scale limit, which is consistent with PPN:

� ¼ � ð0Þ g ¼ gð�1Þ 1

H k

;

� ð0Þ ¼ �1�E þ �2�
2
E þ �3�

3
E;

(25)

gð�1Þ ¼ g1�E þ g2�
2
E þ g3�

3
E: (26)

The parameters �i and gi may in principle be k dependent,
e.g. �1 / ðk=k0ÞN for a fixed scale k0 and power index N.
We shall not investigate this further in this work but we
stress it as a possibility and note that our results would
include these cases. In Sec. IV, we conclude by presenting
and analyzing the resulting growth rate due to such a
parametrization.

III. THE GROWTHRATEON SMALL SCALES FOR
A SIMPLIFIED MODEL OF � AND g

The definition of � originally arose when characterizing
the evolution of small-scale density perturbations. We ex-
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pect it to be particularly useful when characterizing the
growth of structure on small scales (by which we mean
roughly between 1 and 200h�1 Mpc) as would be probed
by galaxy redshift surveys (through redshift measurements
of the power spectrum, for example, or redshift space
distortions [55–57]) and weak lensing surveys.

In this section we focus on the behavior of this system in
the limit in which H k � H =k � 1, i.e. on scales deep
inside the horizon. We can then assume that �DE ’ �DE ’
0. This is true for c2s �Oð1Þ or larger. Since in this paper
we are concerned with modifications of gravity rather than
the speed of sound we will leave the full treatment of small
c2s for a future investigation. We shall, however, show the
effect of small c2s numerically further below.

In what follows we will present a modified evolution
equation, find analytic expressions for the growth factor
and compare to numerical results for the full system.

A. Evolution of density perturbations

Combining the fluid Eqs. (15) in one second order
equation, we find that �M obeys

€�M þHU _�M � 3
2�MH 2V�M ¼ 0; (27)

with the damping coefficient modified by

U½�; g� ¼ 1þ 3�MH k

2ð1�H kgÞ
�

�
gþ 3H k½1� � � gB=2�

1�H kgþ 9H 2
k�M=2

�
(28)

and the response term modified by

V ½�; g� ¼ 1� � � gB=2

ð1�H kgÞð1þ 9H 2
k�M=2�H kgÞ

:

(29)

Specifying � and g completely fixes U and V .
If we further take the provisional small-scale limit

H k � 1 (i.e. without assuming anything about � and g)
we find that

U ½�; g� ¼ 1þ 3�MH k

2ð1�H kgÞ
�
gþ 3H k½1� � � gB=2�

1�H kg

�

(30)

and

V ½�; g� ¼ 1� � � gB=2

ð1�H kgÞ2
: (31)

The full small-scale limit, including � and g is presented in
the Appendix.

B. Analytic expressions for the growing mode

We expect modifications of gravity to kick in when the
expansion rate starts to deviate from matter domination. In

this section we will work with the parametrization of � and
g proposed in Eqs. (19) and (20). We can immediately see
from Eqs. (30) and (31) that the effects from g will only
come in at order H k. We shall also restrict ourselves to
constant w and leave varying w for Sec. IV. In this section
we shall present the derivation and result to first order in
�E and then present the result to second order in �E.
The starting point is

€�M þH _�M � 3H 2�M

2
ð1� �1�EÞ�M ¼ 0:

Changing variables to lna and defining �M ¼ aY, we can
rewrite this equation as

Y00 þ 5� 3w�E

2
Y0 þ 3

2
�E½1� wþ �1�M�Y ¼ 0;

where we have used the Raychauduri Eq. (8) and where we
set ðÞ0 ¼ d

d lna .

Changing variables to �E and using the 0th order fluid
conservation equation, rewritten as�0

E ¼ �3w�M�E, we
find

3w2�2
M�

2
E

d2Y

d�2
E

þ w

2
�M�E½3wð2� 3�EÞ � 5� dY

d�E

þ 1

2
½�Eð1� wÞ þ �1�M�E�Y ¼ 0: (32)

Equation (32) has a three regular singular points (at
�E ¼ 0 and �E ¼ 1) and can therefore be transformed
into the hypergeometric equation. We wish to find its
behavior around �E ¼ 0 and do so by expanding Y, Y ¼
1þ Y1�E to find (to lowest order in �E)

Y1 ¼ 1� wþ �1
wð5� 6wÞ ;

and hence

�M ¼ a

�
1þ 1� wþ �1

wð5� 6wÞ �E

�
:

Therefore to Oð�EÞ

ln�M ¼ lnaþ 1� wþ �1
wð5� 6wÞ �E;

which we can use to find the logarithmic derivative of the
growth factor f � d ln�M=d lna:

f ¼ 1� 3ð1� wþ �1Þ
5� 6w

�E:

As stated above, we are parametrizing the growth factor
using f ¼ ��

M and so we have that

� ¼ �0 ¼ 3ð1� wþ �1Þ
5� 6w

; (33)

where the subscript 0 is due to the fact that this is the lowest
order approximation.
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We can easily see that, for w ¼ �1 and �1 ¼ 0 we
retrieve � ¼ 6=11 ’ 0:54 545 . . . , the approximation first
proposed in [32] and subsequently rederived and advocated
in [33,58]. If we assume a more general (but constant)
equation of state, we improve on the approximation advo-
cated in [33].

It is possible to further improve the approximation by
going to next order in �E. For this we need Y and � to
Oð�2

EÞ, i.e. Y ¼ 1þ Y1�E þ Y2�
2
E and � ¼ �1�E þ

�2�
2
E. We now have that

� ¼ �0 þ �1�E; (34)

where �0 is as derived above and given in (33) and

�1 ¼ 3w

2
½�3Y1 � ð2� 3wÞY2

1 þ 4Y2�; (35)

where we have defined

Y2 ¼ ð1� wÞð15w2 � 4w� 1Þ þ �1ð9w2 þ 2w� 2Þ
2w2ð12w� 5Þð5� 6wÞ

� �21 þ wð5� 6wÞ�2
2w2ð12w� 5Þð5� 6wÞ : (36)

In the case of w ¼ �1 (i.e. the cosmological constant) and
� ¼ 0 we find that expression (35) reduces to

�1 ¼ 15
2057 :

As stated above assuming that g can be parametrized in
the same way as � , independently of H k, we find that it
does not affect the growth of structure on small scales. The
situation is of course different if we consider expanding
1��2 ¼ gH k in powers of�E with coefficients that are
H k independent.

C. Comparison with numerical results

We can solve (13), (15), and (17) to assess the quality of
this analytic approximation. We first restrict ourselves to a
dark energy like fluid with a large sound speed, c2s �Oð1Þ,
(such as a quintessence model or most other field like
models) and assume no modifications to gravity. We see
a number of features in Fig. 2. First of all, � is very clearly
not independent of �M as has been generally assumed. In
fact as �M ! 0, � deviates substantially from its asymp-
totic value at �M ¼ 1. Nevertheless, we find that (35) is a
good approximation to the true behavior. In Fig. 2 we plot
the true and approximate behaviors of � for w ¼ �1,
�0:8, �0:6 and �0:4: we find deviations of at most 10%
for w ¼ �0:4 at �M ¼ 0:1.

We may relax the condition c2s ¼ 1 substantially before
the dark energy perturbations affect the growing mode in
the density field. This is clearly illustrated in Fig. 3 where,
forw ¼ �0:6, three different values of the sound speed are

chosen: c2s ¼ 5� 10�4, c2s ¼ 10�5 c2s ¼ 10�6 and c2s ¼ 0.
For c2s ¼ 5� 10�4, the growth is still indistinguishable
from c2s ¼ 1 and only once the Jeans scale for dark energy
falls substantially below the cosmological horizon is the
effect noticeable. In particular our results hold for values cs
such that cs > 10�H k, which approximately translates
to c2s >�3� 10�4.
We note in passing that the effects of the speed of sound

without modifications of gravity, have been studied in [59–
61]. In particular, [61] have found fitting formulas for �,
which interpolate between cs ¼ 0 and cs �Oð1Þ.
However, those fitting formulas do not account for mod-
ifications of gravity and are in fact quite model dependent
(they depend on the background cosmology). The current
constraints on the speed of sound do not rule out small
values [62] and in fact they are consistent with cs ¼ 0.

FIG. 2. The growth parameter, �, for a selection of dark energy
models, as a function of �M. The dashed curves are the numeri-
cal results for w ¼ �1, �0:8, �0:6, and �0:4 in ascending
order, and the corresponding analytic approximations are plotted
in the solid line.

FIG. 3. The growth parameter, �, for a selection of dark energy
models where w ¼ �0:6 and the sound speed is chosen to be
c2s ¼ 5� 10�4, c2s ¼ 10�5, c2s ¼ 10�6 and c2s ¼ 0 in descending
order from the top of the figure, as a function of �M.
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Since this work concerns the effects of modifications of
gravity rather than effects coming from the speed of sound,
however, we leave the case for small cs for a future
investigation.

Let us now introduce modifications to gravity and as-
sume a non-negligible gravitational slip. In Figs. 4 and 5
we show how well the analytic approximation fares in
comparison to different values of �1 and �2 ( in these
figures we restrict ourselves to w ¼ �1 but the agreement
between the numerical and approximate estimates of � is
generic). In Fig. 4, we restrict ourselves to a gravitational
slip which is linear in�E and identify the two main effects.
First of all, the quicker the onset of slip, the more effective
the suppression of growth due to the onset of dark energy-
�0 increases with �1. Furthermore, the dependence of � on
�E, through �1, changes sign so that for larger �1, �
becomes smaller as �M decreases.

This last effect is further affected by �2. Indeed, we find
that the slope of � as function of �M can greatly be
affected by higher order terms in � .

D. Intermediate and large scales

While the � parametrization is particularly useful on
small scales where terms dependent on H k can be dis-
carded, this is not true once we look at horizon crossing,
i.e. H k ’ 1. This regime will be of particular importance
for measurements of the cosmic microwave background
and using the Integrated Sachs-Wolfe effect to look for the
presence of dark energy or modified gravity [37,38,44,63].
Let us now consider the parametrization presented in
Eqs. (21)
We expand Eq. (27) to include the first order term in

H k, which gives

€�M þH
�
1þ 3H k�M

2
gð0Þ

�
_�M

� 3

2
�MH 2f1� � ð0Þ þH k½gð0Þð2� � ð0ÞÞ � � ð1Þ�g�M

¼ 0; (37)

where the functions � ð0Þ, � ð1Þand gð0Þ are further expanded
in powers of �E using Eq. (22). We apply the same
techniques as in Sec. III B above, and expand � as

� ¼ �ð0Þ þ �ð1ÞH k;

where the coefficients �ð0Þ and �ð1Þ are further expanded in
powers of �E, i.e. �

ð0Þ ¼ �00 þOð�EÞ. Carrying through
the expansion we find that

�ð0Þ ¼ 3
1� wþ �01
5� 6w

þOð�EÞ; (38)

�ð1Þ ¼ 27

4

3�201 þ 2�11 � 2g01
3w� 1

þOð�EÞ: (39)

There are now three free modified gravity constants: �01,
�11 and g01. Notice how the first order correction inH k to
� only depends on the modified gravity parameters and is
zero for wCDM, i.e. corrections in H k to � for wCDM
come to second order.
We find that scale-dependent corrections in powers of

H k are always subdominant compared with corrections in
powers of �E, or corrections with respect to a fixed scale,
e.g. �ð‘kÞN . They are thus effectively negligible. We find
that at k� 0:04h Mpc�1 corrections in powers of H k are
around 1% at redshift z ¼ 1 for �11 ¼ �0:6 and become
smaller at larger k (smaller scales), or lower redshift (z�
0). Hence, it is perfectly reasonable to discard scale-
dependent corrections that come in powers of H k.

IV. GENERAL EVOLUTION OF � AND g

We now wish to address a more realistic expansion of
the � and g proposed in Sec. II, which is consistent with the

FIG. 4. The growth parameter, �, for a selection of gravita-
tional slip parameters of the form � ¼ �1�E, as a function of
�M. The dashed curves are the numerical results for �1 ¼ 0, 0.2,
0.4, and 0.6 in ascending order, and the corresponding analytic
approximations are plotted in the solid line.

FIG. 5. The growth parameter, �, for a selection of gravita-
tional slip parameters of the form � ¼ �1�E þ �2�

2
E, as a

function of �M. The dashed curves are the numerical results
for �1 ¼ 0:2 and �2 ¼ 0, 0.125, 0.2 and 0.4, and the correspond-
ing analytic approximations are plotted in the solid line.
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PPN approximation on small scales, namely, (25) and (26).
Having in mind our findings in Sec. III D on intermediate
scales, we disregard any dependence of �M (and hence
of �) on H k, and therefore to this order we can set
�M ¼ �M.

We perform the calculation in steps. First, we solve the
second order differential equation obeyed by � by applying
a Taylor series expansion in �E, resulting in a set of
coefficients fY1; Y2; Y3g, which are functions of the expan-
sion coefficients of w, U and V . Then we relate the a
perturbative expansion coefficients for �, namely,
fY1; Y2; Y3g, to the � parameter. Finally, we relate
fY1; Y2; Y3g for general U and V to the specific case of
our g�CDM model.

A. Perturbative solution of the � equation

We start with the equation for the matter density contrast
in the absence of dark energy perturbations, namely,

€�M þHU _�M � 3H 2�M

2
V�M ¼ 0: (40)

Changing the independent variable from � to lna and the
dependent variable from �M to Y defined by Y � �M=a,
we get

Y00 þ
�
Uþ 3

2
ð1� w�EÞ

�
Y0

þ
�
Uþ 1

2
ð1� 3w�EÞ � 3�M

2
V

�
Y ¼ 0: (41)

On small scales we may expand Yðk; �Þ ¼ Yð0Þðk; �Þ þ
Yð1Þðk; �ÞH k þOðH 2

kÞ [see the Appendix)], where the

functional coefficients YðiÞðk; �Þ have no dependence on

H k but may still be k or � dependent through combina-
tions of the form ‘k or �=‘ (where ‘ is some scale, not
necessarily the same scale for all such combinations). We
are interested in the small-scale limit H k ! 0, and we

shall work with Yðk; �Þ ¼ Yð0Þð‘k;�EÞ only. As discussed
in Sec. III D above, at the scale of validity of the �
parameterization H k corrections are always small and
irrelevant. Since time dependence only comes through
�=‘ for some scale ‘ we may further exchange �=‘ with
a function of �E, thus we let Yðk; �Þ ¼ Yðk;�EÞ.
We now Taylor expand Yðk;�EÞ in powers of�E. To get

� to Oð�2
EÞ we need to expand Y to Oð�3

EÞ as

Y ¼ 1þ Y1�E þ Y2�
2
E þ Y3�

3
E: (42)

We then use the above expansion (42) into (41) and match
orders [64]. To be able to do that we need to expand the
functions w, U, and V . Since w always appears in the
combinationw�E we only need it toOð�2

EÞ. The functions
U and V , however, are needed to Oð�3

EÞ. Thus, we
expand

w ¼ w0 þ w1�E þ w2�
2
E; (43)

U ¼ 1þU1�E þU2�
2
E þU3�

3
E; (44)

V ¼ 1þV 1�E þV 2�
2
E þV 3�

3
E: (45)

While wi are constants, theUi andV i coefficients may be
k dependent, for example U1 ¼ U01ð kk0ÞN for some index

N and scale k0. Using the expansions (42)–(45) into (41)
and equating orders in �E we find

Y1 ¼
�1þ w0 þV 1 � 2

3U1

w0ð6w0 � 5Þ ;

Y2 ¼ 1

2w0ð12w0 � 5Þ
�
w1 þV 2 �V 1 � 2

3
U2 þ

�
�1� 2

3
U1 þV 1 þ 5w1 þ w0ð�4þ 2U1 þ 15w0 � 18w1Þ

�
Y1

�
;

Y3 ¼ 1

3w0ð18w0 � 5Þ
�
V 3 � 2

3
U3 �V 2 þ w2 þ

�
V 2 � 2

3
U2 �V 1 � 4w1 þ 5w2 þ 2w1ðU1 � 6w1Þ

þ w0ð�2U1 þ 2U2 � 9w0 þ 42w1 � 24w2Þ
�
Y1 þ

�
�1� 2

3
U1 þV 1 � 9w0 þ 10w1

þ 2w0ð2U1 þ 27w0 � 30w1Þ
�
Y2

�
: (46)

We notice that in general there are nine initial coefficients
appearing in (40) that determine only three final coeffi-
cients Yi for the solution to (40).

Having found the coefficients Yi we proceed to relate
them to �.

B. From � to �

We can now use the definition of the logarithmic change
of the growth rate f ¼ d ln�

d lna and then get � from � ¼
lnf= ln�M. We find that � is expanded as
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� ¼ �0 þ �1�E þ �2�
2
E; (47)

where

�0 ¼ 3w0Y1;

�1 ¼ ��0ð32 þ Y1 � 1
2�0Þ þ 3w1Y1 þ 6w0Y2;

�2 ¼ �0ð�11
6 � 1

2�0 þ 1
3�

2
0Þ � 3

2�1 þ 1
2½6w1�0 þ 6w2 � �2

0

� 3�0 � 2�1�Y1 þ ½�ð1� 6w0Þ�0 þ 6w1�Y2

þ 9w0Y3: (48)

Given a set of coefficients fY1; Y2; Y3; w0; w1; w2gwe can
get �ð�EÞ. Note that fY1; Y2; Y3g may be k dependent, for
example Y1 ¼ Y01ð kk0ÞN for some index N and scale k0.

One important point is in order. What we have done so
far is more general than the approach we discussed in the
main part of the article. In particular, the derivation of the �
coefficients in this section would hold for any theory for
which the density contrast obeys (40). One such theory is
Dvali-Gabadadze-Porrati gravity (DGP), even though
strictly speaking DGP does not fit within our framework
of the main part of the article.

To connect the � coefficients above with our framework
we must perform a third step: relate the Ui and V i

coefficients with expansions of g and � .

C. Relating to the g�CDM model

As shown in the Appendix, to be consistent with ultra-
small-scale quasistatic limit the functions � and g must

have the form � ¼ � ð0Þ þOðH kÞ and H kg ¼
gð�1Þ þOðH kÞ. As discussed in the last part of Sec. II E,

we further expand � ð0Þ and gð�1Þ as

� ð0Þ ¼ �1�E þ �2�
2
E þ �3�

3
E; (49)

and

gð�1Þ ¼ g1�E þ g2�
2
E þ g3�

3
E; (50)

respectively, where the coefficients may once again be k
dependent. To lowest order in H k we find

U1 ¼ 3
2g1;

U2 ¼ 3
2½g2 � g1 þ g21�;

U3 ¼ 3
2½g3 � g2 þ g21ðg1 � 1Þ þ 2g1g2�;

V 1 ¼ 2g1 � �1;

V 2 ¼ 2g2 þ ð2þ 3w0Þg21 � g1�1 � �2;

V 3 ¼ 2g3 þ 2ð1þ 3w0Þg31 þ ð3w1 � 3w0 � �1Þg21
þ g1g2ð4þ 9w0Þ � g2�1 � g1�2 � �3: (51)

These expressions may then be used with (46) and (48) to
find the � coefficients.

D. Comparison with numerical results

The fitting formulas we have derived map theoretical
properties of the gravitational field onto the observable, �.
This allows us to circumvent the use of a full cosmological
perturbation code when trying to observationally constrain
the �2, � and g via the growth of structure. We have
already seen how well such an approach fares for the
simplified model we used in Sec. III. We now briefly
show how the general framework fares- note that the model
for g and � matches onto the PPN and we have found the
expansion of � to second order in �E. Both of these
properties should allow us to span a wide range of possible
models.
If we focus first on the gravitational slip, we can see in

Figs. 6–8 that the analytic fit works exceptionally well, to

FIG. 6. The growth parameter, �, for a selection of dark energy
models, as a function of �M. The dashed curves are the numeri-
cal results for �1 ¼ �0:6, �0:3, 0.3, and 0.6 in ascending order,
and the corresponding analytic approximations are plotted in the
solid line.

FIG. 7. The growth parameter, �, for a selection of dark energy
models, as a function of �M. The dashed curves are the numeri-
cal results for �2 ¼ �0:6, �0:3, 0.3 and 0.6 in ascending order,
and the corresponding analytic approximations are plotted in the
solid line.
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within a few percent out to �M ¼ 0:1. The fit starts to
diverge in the upturn of � for low �M a universal feature
that becomes more pronounced for certain ranges of � .
From inspecting these figures, it is clear that the behavior
of � near �E ¼ 1��M is telling something qualitative
about � . The parameter �1 drives the offset of � (i.e.�0), �2
the slope (i.e. �1) and �3 the curvature (i.e. �2). Measuring
these three coefficients can give a direct handle on the time
evolution of � .

In Figs. 9–11, we find similar effects when looking at the
time-varying Newton constant, i.e. g (or �2). Again there
is a direct mapping between g1, g2 and g3 and �0, �1 and
�2. The accuracy of the approximation breaks down for
smaller values of �M yet is still excellent in the range of
interest for observational cosmology. For small values of

�E he accuracy is less than a percent and really only
becomes large (of order 5–10%) for �M < 0:1.

V. DISCUSSION

Let us briefly recap what we have done. The main point
of this paper is that, when introducing modifications to
gravity in linear perturbation theory, one must take into
account the consistency conditions in the field equations.
These necessarily lead to restrictions in the form of the
modifications that can be introduced. Most notably, and
within the context of second order theories, this means
that if one wishes to include modifications to the
Newton-Poisson equation, then one cannot consider the
simplified gravitational slip, � ¼ ��, and must include

an extra term such that � ¼ ��þ ðg=kÞ _� where

FIG. 8. The growth parameter, �, for a selection of dark energy
models, as a function of �M. The dashed curves are the numeri-
cal results for �3 ¼ �0:6, �0:3, 0.3, and 0.6 in ascending order,
and the corresponding analytic approximations are plotted in the
solid line.

FIG. 9. The growth parameter, �, for a selection of dark energy
models, as a function of �M. The dashed curves are the numeri-
cal results for g1 ¼ �0:4,�0:2, 0.2, and 0.4 in descending order
and the corresponding analytic approximations are plotted in the
solid line.

FIG. 10. The growth parameter, �, for a selection of dark
energy models, as a function of �M. The dashed curves are
the numerical results for g2 ¼ �0:4, �0:2, 0.2, and 0.4 in
descending order, and the corresponding analytic approxima-
tions are plotted in the solid line.

FIG. 11. The growth parameter, �, for a selection of dark
energy models, as a function of �M. The dashed curves are
the numerical results for g3 ¼ �0:4, �0:2, 0.2, and 0.4 in
descending order, and the corresponding analytic approxima-
tions are plotted in the solid line.
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g
kH ¼ 1�Geff=G0. If we wish to construct a proper

parametrized post Friedmannian approach to modified
gravity, any parameter we introduce must be independent
of the environment or initial conditions in the perturba-
tions. The only way to do this is to use the parametrization
we are advocating. To our knowledge, all attempts at
studying cosmological deviations from general relativity
have ignored this and hence it is unclear what class of
theories they map onto and which types of theories are
being constrained.

Having taken this point on board, we have found the
expression for the growth parameter on small scales in
terms of both the gravitational slip, � and the modified
Newton constant, �2 ¼ 1� g

kH . Given a set of cosmo-

logical constraints on � and its dependence on �M, it is
now straightforward to calculate constraints on � and g.
The growth parameter is given by Eq. (47) which can be
seen as a Taylor expansion in terms of 1��M. The
coefficients in this expansion, �0, �1 and �2 can be ex-
pressed in terms of the equation of state,w [see Eq. (43)], �
[see Eq. (25)] and g [see Eq. (26)] by using Eqs. (51),
followed by Eqs. (46) and finally Eqs. (48).

With these relations in hand, it is now possible to use
cosmological observations to place constraints on theories
of modified gravity. In this paper we have focused on small
scales (by which we mean between 1 and 200h�1 Mpc),
scales that should be probed by redshift space distortion
measurements, galaxy power spectra and weak lensing.
Furthermore, we can now do this consistently, relating
modifications in the growth rate with changes in the gravi-
tational slip. This is of particular importance when consid-
ering weak lensing where observations probe �þ�. It is
also clear from our analysis that we have come up against
the limitations of the � parametrization: it is useful and
effective on very small scales but not on scales comparable
to the cosmological horizon. On those scales, one should
be using the full set of field equations. We therefore do not
advocate using our fitting formula to the growth on larger
scales such as would be probed by the integrated Sach-
Wolfe.

How general is this method? We have declared from
the outset, the class of theories that we are considering.
They must be metric, with second order equations and
satisfy gauge-form invariance. From what we have learnt
about modifications of gravity, these seem a reasonable
set of conditions to apply- they lead to theories which are
less likely to be marred by gross instabilities either at
the classical or quantum level. We should point out that
all other attempts at developing such a parametrization
have implicitly made these assumptions although have
not necessarily done so self-consistently. It is possible to
extend this analysis beyond the scope of these theories. If
we are to go beyond second order, one must include

terms in €� or even higher. The Bianchi conditions will,
again, impose a set of constraints on the coefficients

of these terms and should allow a similar type of
analysis.
Two well-studied theories are worth mentioning. FðRÞ,

FðR�	R�	Þ, etc., theories come with up-to four time de-

rivatives in the field equations. Thus they do not fall
directly within the methods of this paper but do under
the general scheme outlined in [42]. In this case one would

have to include terms involving _�, €�, � and _� in to the
G00 and G0i Einstein equations, while the Gij equations

would need �
:::

and €� in addition. Theories with higher
derivatives are a subject that warrants further investigation
and have yet to be properly incorporated in any parame-
trized modifications of standard general relativity.
One other theory, studied extensively is the DGP theory

[13]. In this case, only two time derivatives are present in
the field equations and just like our frame, DGP contains
two nonmetric dynamical degrees of freedom, which can
be effectively written ad �E and �E. However, our frame-
work cannot encompass DGP because DGP cannot be
written as a generalized fluid as we have assumed of dark
energy in this work (hence it is not a failure of our use of
�Uab). Nevertheless, our � parameterization in powers of
�E is still valid, and indeed needed. In the case of DGP we
find that

� ¼ 11
16 þ 7

5632�E � 93
4096�

2
E (52)

gives an error on � around 5% at �M < 0:1, dropping to
2% at �M � 0:2 and <1% for larger values of �M. The
error on the corresponding density contrast at those values
of�M is<2%,�1% and<0:5%, respectively. Notice how
the coefficients are entirely fixed and do not depend on the
only free parameter of the theory, namely, the scale rc.
Rather rc comes to play a role only through �E ¼ 1

Hrc
.
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APPENDIX: THE QUASISTATIC LIMIT—
CONNECTING TO THE PPN APPROACH

We reduce our equations to small scales and slow ex-
pansions. To make contact with the PPN expansion, we
will write the Einstein equations in powers of the 3-
velocity v. The 3-velocity is related to the 4-velocity by
ui ¼ a�1vi. In this gauge, for scalar perturbations we get

ui ¼ a�1 ~ri
�, so that vi ¼ ~ri

�. Hence, � ¼ �k�2 ~riv
i.

Letting v ¼ ffiffiffiffiffiffiffiffiffi
vivi

p
we get on dimensional grounds k� ¼ v.

The PPN order bookkeeping is k @
@� � ðÞ0 �OðvÞ and

���� ���Oðv2Þ. The same bookkeeping prescrip-
tion holds in our case, and in addition, we also haveH k �
OðvÞ and �M � �M �Oð0Þ.
We are now ready to find the small-scale limit which is

consistent with PPN. We start from the operators A, B, C1
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and C2. Since H 0
k ¼ � 1

2H
2
kð1þ 3w�EÞ and �0

E ¼ �3H kw�M�E, and letting J ¼ H 2
kð1þ w�EÞ, we get

A ¼ �3H k

2H kðg0 � �Þ þ 2ð2H 2
k þ 1

3Þg
1þ 9

2 J
! 6H k

�
H k� � 1

3
g

�
;

B ¼ 2H kðg0 � �Þ þH 2
kð1� 3w�EÞg

1þ 9
2 J

! H k½�2� þ 2g0 þH kð1� 3w�EÞg�;

C1 ¼ �6H k

1

1þ 9
2 J

� 0 þ 1

ð1þ 9
2 JÞ2

f2þ 9H 2
kð1þ 3w�EÞ � 27H 4

k½1þ w�E þ 3w2�M�E�g� þ 6H k

1

1þ 9
2 J

g00

þ 3H 2
k

ð1þ 9
2 JÞ2

f4� 6w�E þ 27H 2
k½1þ w�E þ w2�M�E�gg0

þ 3H 3
k

ð1þ 9
2 JÞ2

f1� 6w�E þ 9w2�E þ 9H 2
k½1� 2w�E þ 6w2�E � 9w2�2

E�gg ! 2�

þ 3H k½2g00 þ 2H kð2� 3w�EÞg0 þH 2
kð1� 6w�E þ 9w2�EÞg�;

and

C2 ¼ 3
2H kðg0 � �Þ þ 2ð2H 2

k þ 1
3Þg

1þ 9
2 J

! 6

�
�H k� þ 1

3
g

�
;

where ! denotes taking only the lowest order terms that
can contribute to the small-scale limit.

Now consider the Einstein equations. In the small-scale
limit we get

� 2k2�� 6H ð _�þH�Þ
¼ 8�Ga2��þ 6H ½H � � 1

3kg��; (A1)

2ð _�þH�Þ ¼ 8�Ga2��þH ½�2� þ 2g0

þH kð1� 3w�EÞg��; (A2)

6
d

d�
ð _�þH�Þ þ 12H ð _�þH�Þ þ 2k2ð���Þ

¼ �3ðEF þ ERÞ�þ k2f2�
þ 3H k½2g00 þH 2

kð1� 6w�E þ 9w2�EÞg�
þ 2H kð2� 3w�EÞg0g�þ 2½�3H � þ kg� _�; (A3)

and

��� ¼ ��þ g

k
_�: (A4)

As argued in Sec. II, we expand � in powers of H k and
write

� ¼ �Lð�E; kÞH n
k (A5)

to leading order. We expand g in a similar way as

g ¼ gLð�E; kÞH m
k : (A6)

The goal now is to find the smallest powers m and n that
can be consistent with the Einstein equations as H k ! 0.
It is easily seen that � 0 ¼ �1H nþ1

k for some function
�1ð�E; kÞ, which is found to be

�L1 ¼ � n

2
ð1þ 3w�EÞ�L � 3w�M�E

@�L
@�E

: (A7)

Similarly we have g0 ¼ gL1H mþ1
k and g00 ¼ gL2H mþ2

k

and similar expressions to (A7) can be found for gL1 and
gL2.
Consider again the Einstein equations and now keep on

the lowest orders for each variable. For example� isOð2Þ,
while ðEF þ ERÞ� ¼ Oð4Þ and €� ¼ Oð4Þ, etc. We get

� 2k2� ¼ 8�Ga2��þ 6k2H k½�LH nþ1
k � 1

3gLH
m
k ��;

(A8)

2ð _�þH�Þ ¼ 8�Ga2��þH ½�2�LH n
k þ 2gL1H mþ1

k

þ ð1� 3w�EÞgLH mþ1
k ��; (A9)

and

��� ¼ f�LH n
k þ 3H mþ3

k ½gL2 þ ð2� 3w�EÞgL1
þ 1

2ð1� 6w�E þ 9w2�EÞgL�g�
þ ½�3�LH nþ1

k þ gLH m
k ��0; (A10)

while the shear Eq. (A4) remains unchanged. Clearly the
choice n ¼ 0 and m ¼ �1 is consistent with all of the
above equations.
Let us investigate whether smaller numbers are possible.

Suppose that n < 0. Then the shear Eq. (A4) implies
�LH n

k�þ gLH m
k �

0 ¼ 0, hence if n < 0 then m<�1
and in particular m ¼ n� 1. Note that this last relation
includes the choice n ¼ 0 as a special case. If on the
other hand m<�1 then the term gLH m

k �
0 in the shear

Eq. (A4) is of order less than two which forces automati-
cally n < 0. Thus, without loss of generality we may set
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m ¼ n� 1. With this choice the Einstein Eq. (A8) be-
comes

� 2k2� ¼ 8�Ga2��þ 6k2H n
k½�LH 2

k � 1
3gL��:

Therefore, if n < 0 we must have �LH 2
k � 1

3gL ¼ 0 and

since both �L and gL are independent of H k, this forces
�L ¼ gL ¼ 0. Thus, the only consistent leading-order
choice is n ¼ 0 and m ¼ �1.

To summarize, a consistent small-scale limit imposes
the expansions

� ¼ �Lð�E; kÞ þOðH kÞ; (A11)

g ¼ gLð�E; kÞ 1

H k

þOðH 0
kÞ: (A12)

Note that there may be additional constraints on the k
dependence of �L and gL.

One source of worry is theH�1
k term that persists in the

shear Eq. (A4). This is not a problem, however. We may
write the potentials in terms of the matter variables in a
way that no ambiguity arises. We find

� ¼ � 4�Ga2�M

k2ð1� gLÞ
�M; (A13)

� ¼ 1� �L þ gLð�L � gL þ 3w�M�E
@gL
@�E

Þ
1� gL

�

� 3

2
H�M

gL
1� gL

�M; (A14)

_� ¼ 4�Ga2�M

1� gL
�M �H

�
1þ 3w�M�E

@gL
@�E

1� gL

�
�;

(A15)

which are perfectly consistent equations.
Finally, (A14) has a further interesting reduction (in this

small-scale limit). We replace �M by � _�=k2, then use
_�M ¼ H f�M and finally use (A13) to write � ¼ �PPN�
where

1

�PPN

¼ 1

1� gL

�
1� �L � gLð1� gLÞf

þ gL

�
�L � gL þ 3w�M�E

@gL
@�E

��
; (A16)

while the measured Newton’s constant on the Earth, GN is

GN ¼ G

�PPNð1� gLÞ : (A17)

Expanding �L and gL in powers of �E, we find

�PPN � 1þ �1�E (A18)

and

GN

G
� 1þ ðg1 � �1Þ�E; (A19)

hence,

_GN

GN

� �3wðg1 � �1Þ�EH : (A20)
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