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We give an explicitly gauge-invariant canonical analysis of linearized quadratic gravity theories in three

dimensions for both flat and de Sitter backgrounds. In flat backgrounds, we also study the effects of the

gravitational Chern-Simons term, include the sources, and compute the weak field limit as well as

scattering between spinning massive particles.
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I. INTRODUCTION

Recently, Bergshoeff et al. [1] found that, in three
dimensions, among the class of higher-derivative theories
defined by the Lagrangian ��1Rþ �R2 þ �R2

��, a special

case 8�þ 3� ¼ 0 and ��1 < 0 (let us call it BHT gravity)
and its parity-violating extension, with a gravitational
Chern-Simons term, have massive ghost-free spin-2 parti-
cles in their free spectrum around both flat and (anti)-
de Sitter [(a)dS] spacetimes. Perhaps, the most interesting
feature of the BHT model is that it is the first and (apart
from some bimetric theories) the only known example of a
(parity-invariant) theory that provides a nonlinear exten-
sion to the Pauli-Fierz mass term for spin-2 particles. In
addition, being a three-dimensional theory, it is power-
counting superrenormalizable whose four-dimensional
cousin is renormalizable [2]. Therefore, it is possible that
the BHT model may turn out to be a perturbatively well-
defined quantum gravity in three dimensions. But of
course, unitarity of the model beyond tree level is yet to
be checked.

Various aspects of the theory such as its ghost-freedom
and tree-level unitarity [1,3–5] and Newtonian limits [5]
have been explored. Also, classical solutions and related
issues were studied in [1,6–10], and supergravity exten-
sions were given in [11].

In this paper, we give an explicitly gauge-invariant, de-
tailed analysis of the canonical structure of the generic
quadratic models in 2þ 1 dimensions for both flat and
de Sitter (dS) backgrounds. In flat space, we also include
the gravitational Chern-Simons term in our analysis. It is
interesting to see how at the linearized level BHT theory is
singled out as a unique regular ‘‘harmonic oscillator’’
(massive free field), which avoids the infamous
Ostragradskian instability that ruins every higher-time de-
rivative theory [12]. (It was claimed that adding interac-
tions might yield stable higher-time derivative theories
[13].) All the other quadratic theories are ghost-ridden
higher-derivative Pais-Uhlenbeck [14] oscillators at the

linearized level. In addition, we discuss the Newtonian
limits, weak fields, and the tree-level scattering of particles
with mass and spin in these models.
The layout of the paper is as follows: Section II is

devoted to a flat spacetime analysis, which includes the
canonical structure of both the parity-invariant and parity-
violating quadratic gravity, in addition to the effects of
static sources and weak field solutions with circular sym-
metry. In Sec. III, canonical structure analysis is extended
to de Sitter space. Some of the computations are relegated
to the Appendices. Tree-level scattering amplitude be-
tween spinning massive particles is given in Appendix A.
In Appendix B, generic quadratic action is written in terms
of two auxiliary fields. Finally, we list some results that
may be helpful in the analysis of field equations.

II. HIGHER-DERIVATIVE SPIN-2 IN FLAT
SPACETIME

We start our analysis of the higher-derivative spin-2
fields in flat space, which is considerably simpler than
the de Sitter background, which we deal with in the next
section. The action

I ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p �
1

�
Rþ �R2 þ �R2

��

�
; (1)

gives the desired spin-2 model when expanded as g�� ¼
��� þ h��, where ��� is the usual flat spacetime metric

with mostly plus signature. (Actually, spin-2 here is a
misnomer. It should be symmetric rank-2 tensor, since
without any constraints in addition to spin-2, it has spin-
1 and spin-0 components. But, in what follows, we will call
h�� a spin-2 field.) Below, we will also add the parity-

violating gravitational Chern-Simons term to this action. In
practice, to actually get the action for h��, it is somewhat

more convenient to linearize the full nonlinear field equa-
tions and then integrate them (after carefully taking care of
the overall sign, which will be relevant for the discussion of
ghosts). Then, the action (1) up to boundary terms becomes
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I ¼ � 1

2

Z
d3xh��

�
1

�
G��

L þ ð2�þ �Þð���h� @�@�ÞRL

þ �hG��
L

�
: (2)

Here, the linearized Einstein and Ricci tensors, and curva-
ture scalar read

G ��
L ¼ R��

L � 1
2�

��RL; RL ¼ @�@�h
�� �hh;

R
��
L ¼ 1

2ð@�@�h�� þ @�@
�h�� �hh�� � @�@�hÞ;

h ¼ ���h��;

(3)

where h ¼ @�@
� ¼ �@20 þr2. Raising and lowering op-

erations are carried out with ���. To explore the canonical

structure and identify the free fields, h�� can be decom-

posed in terms of six a priori free functions of ðt; ~xÞ:
hij � ð�ij þ @̂i@̂jÞ	� @̂i@̂j
þ ð�ik@̂k@̂j þ �jk@̂k@̂iÞ�;

h0i � ��ij@j�þ @iNL; h00 � N; (4)

where @̂i � @i=
ffiffiffiffiffiffiffiffiffiffiffi
�r2

p
. From these, one can compute GL

��

in terms of three functions:

G L
00 ¼ �1

2r2	; GL
0i ¼ �1

2ð�ik@k�þ @i _	Þ;
GL

ij ¼ �1
2½ð�ij þ @̂i@̂jÞq� @̂i@̂j €	� ð�ik@̂k@̂j

þ �jk@̂k@̂iÞ _��;

where _	 ¼ @	=@t, etc. Here, q, �, and 	 are invariant
under gauge transformations �h�� ¼ @�� þ @�� and

are defined as

q � r2N � 2r2 _NL þ €
; � � _��r2�: (5)

Note also that 	 is gauge invariant unlike the other com-
ponents of h��. Linearized scalar curvature is computed to

be

RL ¼ q�h	:

Therefore, as required by the Bianchi identity, @�G
��
L ¼ 0,

the number of arbitrary functions reduces from six to three.
One can use either 	, �, q; or	, �, RL combinations. The
Einstein-Hilbert part of the action can be computed as

IEH ¼ � 1

2�

Z
d3xh��G

��
L ¼ 1

2�

Z
d3xð	qþ �2Þ;

which clearly shows that there is no propagating degree of
freedom in the pure Einstein theory. To compute the qua-
dratic part, its better to use the self-adjointness of the
involved operators to rewrite the action as explicitly gauge
invariant not just gauge invariant up to a boundary term,
which will simplify the computations in a great deal:

I2�þ� ¼ � 2�þ �

2

Z
d3xh��ð���h� @�@�ÞRL

¼ 2�þ �

2

Z
d3xR2

L;

I� ¼ ��

2

Z
d3xh��hG��

L

¼ ��

2

Z
d3x

�
�2GL

��G
��
L þ 1

2
R2
L

�

¼ �

2

Z
d3xðqh	þ �h�Þ:

In the I� action, the second equality follows after one

moves the h term to h��, and then uses (3) and the

Bianchi identity. Collecting all the terms, the total action
in terms of the gauge-invariant combinations is

I ¼ 1

2

Z
d3x

�
1

�
	qþ ð2�þ �Þðq�h	Þ2 þ �qh	

�

þ �

2

Z
d3x

�
�h�þ 1

��
�2

�
: (6)

� describes a single scalar field with mass m2
g � � 1

�� ,

which is nontachyonic for ��< 0 and a nonghost for �>
0, therefore � < 0. For the 	 and q part of the action, the
discussion bifurcates whether 2�þ � ¼ 0, or not. Let us
first consider the 2�þ � � 0 case, for which the non-
dynamical field q can be eliminated, yielding the action

I	 ¼ 1

2

Z
d3x

�
�ð8�þ 3�Þ
4ð2�þ �Þ ðh	Þ2 þ ð4�þ �Þ

2�ð2�þ �Þ	h	

� 1

4�2ð2�þ �Þ	
2

�
: (7)

There are apparently several special points, one of which is
the BHT limit 8�þ 3� ¼ 0, for which the higher-
derivative term disappears. (The 4�þ � ¼ 0 theory seems
special, but it has a tachyonic excitation; on the other hand,
the � ¼ 0 model is ghost and tachyon-free for � > 0.)
Therefore, at the linearized level, the BHT model is ac-
tually not a higher-derivative theory, so it escapes the
Ostragradski instability. The	 field part of the BHTaction
reads

IBHT;	 ¼ � 1

2�

Z
d3x

�
	h	þ 1

��
	2

�
;

which again describes a single degree of freedom with the
same mass as �. This is to be expected in this parity-
invariant theory, since � and 	 are two helicity degrees
of freedom of the massive spin two field in three dimen-
sions. Also, observe that for	 to be a nonghost, � has to be
negative.
For generic � and �, except for 2�þ � � 0, (7) de-

scribes a higher-derivative Pais-Uhlenbeck [14] oscillator
which can be rewritten in terms of simple oscillators in the
following way. Defining new fields as
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’1 � 	�h	

m2
g

; ’2 � 	�h	

m2
s

;

(7) becomes

I	 ¼ 1

64�ð2�þ �Þ2
Z

d3x½ð8�þ 3�Þ2’1ðh�m2
sÞ’1

� �2’2ðh�m2
gÞ’2�; (8)

with mg given as above and ms as

m2
s ¼ 1

�ð8�þ 3�Þ :

For 8�þ 3�< 0, ’1 is nontachyonic just like ’2, but
unlike ’2, it describes a ghostlike excitation since its
kinetic energy comes with the wrong sign.

A. 2�þ � ¼ 0 theory

We have seen in the above discussion that the 2�þ � ¼
0 case is a somewhat singular theory. If one naively takes
the � � 2�þ � ! 0 limit in (8), one gets

I	 ¼ 1

8��

Z
d3x

�
�

m2
g

��
h�m2

g

�
	

�
2

� 4�	ðh�m2
gÞ	þOð�2Þ

�
;

which is a degenerate (equal mass) Pais-Uhlenbeck oscil-
lator after a divergent rescaling of 	. But, more properly,
suppose from the onset at the level of the action, we set
2�þ � ¼ 0 to get (apart from the decoupled � field)

I	 ¼ �

2

Z
d3xðqh	�m2

gq	Þ:

Variation with respect to 	 gives a massive wave equation
for q, and vice versa. But, these equations do not reveal the
ghost structure of the theory. So, let us define q �
m2

gð�1 þ�2Þ, 	 � �1 ��2, which turns the action to

I ¼ m2
g�

2

Z
d3x½ð�1h�1 �m2

g�
2
1Þ

� ð�2h�2 �m2
g�

2
2Þ�:

Since �> 0,�2 is a ghost excitation. The Newtonian limit
of this theory is quite interesting: From the general tree-
level scattering amplitude computation given in [5], one
sees that as in the pure Einstein-Hilbert theory, the 2�þ
� ¼ 0 case has a vanishing Newtonian potential between
static sources: the spin-0 ghost excitation gives a repulsive
component which cancels the attractive one coming from
the spin-2 part.

B. Adding static sources

Up to now, we have studied the free field spectrum of
higher-derivative gravity. Let us remedy this by adding
matter with the usual gravity-matter coupling:

Isource ¼ 1

2

Z
d3xh��T

��:

In the case of a static source, T00 ¼ �ð ~xÞ, T0i ¼ 0, Tij ¼ 0,
(in a related context, we somewhat generalize this in
Appendix A), Isource becomes

Isource ¼ 1

2

Z
d3xN�ð ~xÞ

¼ 1

2

Z
d3x

�
1

r2
qþ 2 _NL � 1

r2
€


�
�ð ~xÞ;

where in the second equality, we have used the definition of
q in (5). After dropping the boundary terms and using the
symmetry of the Green’s function, we have

Isource ¼ 1

2

Z
d3xq

1

r2
�:

Redefining ’ � 	þ � 1
r2 � and ~q � qþ ��, the total

action reduces to

I ¼ 1

2

Z
d3x

�
1

�
ð’~q� �’�þ �2Þ

þ ð2�þ �Þð~q�h’Þ2 þ �ð~qh’� ��h’

� �~q�þ �2�2 þ �h�Þ
�
:

Specifically, for 8�þ 3� ¼ 0, integrating out ~q, one ends
up with

I ¼ 1

2

Z
d3x

�
�ð�h��m2

g�
2Þ

� 1

�
ð’h’�m2

g’
2Þ þ ’�

�
:

The last term is the interaction part which gives the attrac-
tive (for � < 0) potential energy

U ¼ �

4

Z
d2x�1

1

r2 �m2
g

�2 ¼ �

8�
m1m2K0ðmgrÞ; (9)

where we took point sources, �1ð ~xÞ ¼ m1�
2ð ~x� ~x1Þ,

�2ð ~xÞ ¼ m2�
2ð ~x� ~x2Þ, andK0 is the modified Bessel func-

tion. This result matches that of [5].

C. Weak field approximation

It is also highly instructive to capture some of the above
results from the nonlinear theory (1). But, even in the
circularly symmetric case, nontrivial exact solutions for
which g00 � grr are not known, and we have not been able
to find one. Nevertheless, since we just need the weak field
approximation, we can do the following: The ansatz

ds2 ¼ �fðrÞdt2 þ b2ðrÞ
fðrÞ dr

2 þ r2d�2

can be inserted into the action (1), which is to be varied
with respect fðrÞ and bðrÞ (See the details of this Weyl trick
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in [15]) . For the sake of simplicity, let us just consider the
BHT theory. Then, an approximate solution can be found
by setting fðrÞ ¼ 1þ R

r draðrÞ, bðrÞ ¼ 1þ R
r drvðrÞ,

where a and v are small. At first order, we have

4

�
vþ 2�v00 þ 2�a00 þ r�a000 ¼ 0; (10)

�r2a00 þ 2

�
r2aþ 2r�v0 � 2�v ¼ 0: (11)

Here, 0 denotes differentiation with respect to r. v can be
determined as v ¼ aþ r

2 a
0. Putting it back to (11) gives

r2a00 þ ra0 � aðm2
gr

2 þ 1Þ ¼ 0; (12)

which is solved by aðrÞ ¼ c1I1ðmgrÞ þ c2K1ðmgrÞ. Recall
that g00 � �1� R

r draðrÞ, and grr � 1þ R
r drð2vðrÞ �

aðrÞÞ. Thus, for decaying fields c1 vanishes, and the metric
components become

g00 � �1þ cK0ðmgrÞ; grr � 1þ dK1ðmgrÞ;
where c and d are constants related to the mass of the
source. This is consistent with our earlier result (9).

D. Higher-derivative gravity plus a Chern-Simons term

We will now extend the preceding discussion in flat
space by adding a gravitational Chern-Simons term [16]

I ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p �
1

�
Rþ �R2 þ �R2

��

� 1

2�
������

��

�
@��

�
�� þ 2

3
��

���
�
��

��
; (13)

where �012 ¼ 1, and � is the Chern-Simons coupling with
an arbitrary sign. (Without the �,� terms, but with a Pauli-
Fierz mass term, a canonical analysis was carried out in
[17,18].) Linearization of the Chern-Simons part yields

ICS ¼ � 1

2�

Z
d3x����G��

L @�h��

¼ 1

2�

Z
d3x�ðqþh	Þ:

The total action in terms of the gauge-invariant combina-
tions becomes

I ¼ 1

2

Z
d3x

�
1

�
ð	qþ �2Þ þ ð2�þ �Þðq�h	Þ2

þ �ðqh	þ �h�Þ þ 1

�
�ðqþh	Þ

�
:

Assuming that 2�þ � � 0, q can be eliminated to yield
the action

I ¼ 1

2

Z
d3x

�
�

�
�h�þ

�
1

��
� 1

4�2�ð2�þ �Þ
�
�2

�

þ
�
1

�
þ ð4�þ �Þ

2�ð2�þ �Þ
�
�h	� 1

2��ð2�þ �Þ�	

þ 1

�

�
��ð8�þ 3�Þ
4ð2�þ �Þ ðh	Þ2 þ ð4�þ �Þ

2ð2�þ �Þ	h	

� 1

4�ð2�þ �Þ	
2

��
:

For generic �, � one can diagonalize this action, but it is
rather cumbersome and not particularly illuminating, so we
just consider the 8�þ 3� ¼ 0 case,

IBHT�CS ¼ �

2

Z
d3x

��
�h��

�
m2

g þ 1

�2�2

�
�2

�

þ 2m2
g

��
�	þm2

gð	h	�m2
g	

2Þ
�
:

To decouple the �, 	 fields, one possible route is to take
the Fourier transform of the fields, put the Lagrangian in a
matrix form, and then diagonalize the matrix. This proce-
dure yields

IBHT�CS ¼ �

2

Z
d3xð�þh�þ �m2þ�2þ

þ��h�� �m2��2�Þ;
where the masses read

m2� ¼ m2
g þ 1

2�2�2
� 1

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

g þ 1

4�2�2

s
;

and the new fields are defined as

��
�þ

 !
¼ Nþ ðm2þ �m2

gÞNþ
N� ðm2� �m2

gÞN�

" #
�

mg	

 !
;

N� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
��

mg

ðm2� �m2
gÞ
�
2

s
:

m� agree with those of [1,11]. As the þ2 and �2 helicity
modes have different masses, it is a parity-violating theory
as expected. In the � ! 0 limit, which is the topologically
massive gravity with a single degree of freedom [16], mþ
diverges and drops out, m� ¼ �j�j=�.

III. HIGHER-DERIVATIVE SPIN-2 IN A DE SITTER
BACKGROUND

Now, we will study the canonical structure of the higher-
derivative theory in an (anti)-de Sitter background defined
by the action

I ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p �
1

�
ðR� 2�0Þ þ �R2 þ �R2

��

�
;

whose linearization about an (a)dS background yields
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I ¼ � 1

2

Z
d3x

ffiffiffi
�g

p
h��

�
aG��

L þ ð2�þ �Þ
�
�g��h

�r�r� þ 2

‘2
�g��

�
RL þ �

�
hG��

L � 1

‘2
�g��RL

��
;

where a � 1
� þ 12

‘2
�þ 2

‘2
�, and 1=‘2 is the cosmological

constant which is related to �, �, � and the bare cosmo-

logical constant �0 of the full theory as 1
‘2
¼ 1

4�ð3�þ�Þ �
½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8��0ð3�þ �Þp � [19]. For the sake of simplic-
ity, we will consider the background to be a de Sitter
spacetime, but since our results will be analytic in ‘, in
the final expressions one can take ‘ ! i‘ to obtain the
results in anti-de Sitter spacetime. (To keep the signature
intact, one also needs to Wick rotate a space coordinate).
For dS, we take the metric, �g��, with which all the cova-

riant derivatives and raising-lowering operations should be
made, to be in the Poincaré form

ds2 ¼ ‘2

t2
ð�dt2 þ dx2 þ dy2Þ;

and define the perturbation as

g�� ¼ ‘2

t2
��� þ h��:

Linearized forms of Einstein and Ricci tensors, and Ricci
scalar are given as

GL
�� ¼ RL

�� � 1

2
�g��RL � 2

‘2
h��;

RL
�� ¼ 1

2
ðr�r�h�� þr�r�h�� �hh�� �r�r�hÞ;

RL ¼ r�r�h
�� �hh� 2

‘2
h; (14)

whereh � r�r� ¼ t2

‘2
���r�r�. Decomposition of h��

into ‘‘spatial’’ tensor hij, spatial vector h0i, and ‘‘scalar’’

h00 is

hij � ‘2

t2
½ð�ij þ r̂ir̂jÞ	� r̂ir̂j


þ ð~�ikr̂kr̂j þ ~�j
kr̂kr̂iÞ��

¼ ‘2

t2

�
ð�ij þ r̂ir̂jÞ	� r̂ir̂j


þ t2

‘2
ð~�ikr̂kr̂j þ ~�jkr̂kr̂iÞ�

�
;

h0i � ‘2

t2
ð�~�i

krk�þ @iNLÞ

¼ ‘2

t2

�
� t2

‘2
~�ijrj�þ @iNL

�
;

h00 � ‘2

t2
N;

where r̂i � ri=
ffiffiffiffiffiffiffiffiffiffiffi
�r2

k

q
and the covariant derivative is for

two-dimensional space with metric �ij ¼ ‘2

t2
�ij. Since the

two-dimensional space is flat, then ri ! @i and @̂i �
@i=

ffiffiffiffiffiffiffiffiffiffi
�@2k

q
. ~�ik is the Levi-Civita tensor for two-dimensional

space, which is related with the corresponding tensor den-
sity �ik by

~� ik ¼ ffiffiffiffi
�

p
�ik ) ~�ik ¼ ‘2

t2
�ik:

The convention for �ik is �12 ¼ 1 (the convention for Levi-
Civita tensor density for the upper indices is �12 ¼ 1
naturally with the induced metric). As a result, the final
form of the decomposition is

hij ¼ ‘2

t2
½ð�ij þ @̂i@̂jÞ	� @̂i@̂j
þ ð�ik@̂k@̂j þ �jk@̂k@̂iÞ��;

h0i ¼ ‘2

t2
ð��ij@j�þ @iNLÞ; h00 ¼ ‘2

t2
N;

with the convention for Levi-Civita tensor density �12 ¼ 1.
Here, all the spatial indices are raised and lowered by �ij.

A further note on this specific choice of decomposition is
about the ‘2=t2 coefficients: With this coefficients, at every
step the flat space limit ‘ ! 1, ‘=t ! 1 will be clear.
Unlike the flat space case, 	 is not gauge invariant

anymore. In fact, under the gauge transformations
�h�� ¼ r�� þr��, where � can be decomposed as

� ¼ ð0;��ij@j þ @i�Þ, the components of h�� trans-

form as

�	 ¼ 2
t

‘2
0; �
 ¼ 2

t2

‘2

�
@2i �þ 1

t
0

�
;

�� ¼ t2

‘2
@2i ; �� ¼ t2

‘2

�
_ þ 2

t


�
;

�NL ¼ t2

‘2

�
_�þ 0 þ 2

t
�

�
; �N ¼ 2

t2

‘2

�
_0 þ 1

t
0

�
:

Again, from the linearized Bianchi identity, r�G
��
L ¼ 0,

we know that there should be three independent gauge-
invariant combinations constructed out of the (derivatives
of) six scalar fields. By inspection, one can find these
combinations, but the quickest way would be to look at
the independent components of the gauge-invariant tensor
G��

L . This led us to the following four gauge-invariant
functions:

f� ‘

t

�
	� 2

t
NLþ 1

t

1

r2

�
_	þ _
� 2

t
N

��
;

p� ‘

t

�
_	� 1

t
N

�
;

q� ‘

t

�
r2Nþ €
� 2r2 _NL� 1

t
ð _N� 2r2NLþ _
Þþ 2

t2
N

�
;

�� ‘

t
ð _��r2�Þ;
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and a relation between them coming from the Bianchi
identity

tr2

�
_f� pþ f

t

�
� _p� q ¼ 0: (15)

In terms of these, the components of the linearized Einstein
tensor can be found as

G L
00 ¼ � t

2‘
r2f; GL

0i ¼ � t

2‘
ð@ipþ �ik@k�Þ;

GL
ij ¼ � t

2‘
½ð�ij þ @̂i@̂jÞq� @̂i@̂j _p� ð�ik@̂k@̂j

þ �jk@̂k@̂iÞ _��:
The linearized curvature scalar follows as

RL ¼ t3

‘3
ðq�r2fþ _pÞ ¼ t4

‘3
r2ð _f� pÞ;

where in the second line we used the Bianchi identity.
Using the above, the Einstein-Hilbert action can be

reduced to the following form:

IEH ¼ �a

2

Z
d3x

ffiffiffi
�g

p
h��G

��
L

¼ a

2

Z
d3x

�
‘2

t2
fRL þ t

‘
ðfr2fþ p2 þ �2Þ

�
:

As in the flat space case, computations get a lot simpler if
the higher-derivative parts of the Lagrangian are organized
in such a way that h�� is replaced by some gauge-invariant

combinations. This can be done again upon use of the self-
adjointness of the involved operators as follows:

I2�þ� ¼ �ð2�þ �Þ
2

Z
d3x

ffiffiffi
�g

p
h��

�
�
�g��h�r�r� þ 2

‘2
�g��

�
RL

¼ ð2�þ �Þ
2

Z
d3x

ffiffiffi
�g

p
R2
L:

For the � term, one has

I� ¼ ��

2

Z
d3x

ffiffiffi
�g

p
h��

�
hG��

L � 1

‘2
�g��RL

�

¼ ��

2

Z
d3x

ffiffiffi
�g

p �
ðhh��ÞG��

L � 1

‘2
hRL

�
:

After organizing RL
�� (14) into a form where the indices �

and � in the covariant derivatives stay at the far left, and
using the Bianchi identity, r�G

��
L ¼ 0, one arrives at

I� ¼ ��

2

Z
d3x

ffiffiffi
�g

p �
�2GL

��G
��
L þ 1

2
R2
L þ 2

‘2
h��G

��
L

�
:

Note that, had we not done this and instead computed
h��hG��

L directly, putting the result into an explicitly

gauge-invariant form would be somewhat time-consuming.
Not worrying about the correct canonical dimensions for

the fields, one can collect all the parts computed above to
end up with

I ¼ 1

2

Z
d3x

��
aþ 2�

‘2

��
‘2

t2
fRL þ t

‘
ðfr2fþ p2 þ �2Þ

�

þ ð2�þ �Þ ‘
3

t3
R2
L þ �

t3

‘3

�
_�2 þ �r2�þ _p2

þ pr2pþ ðr2fÞ2 þ ‘3

t3
RLr2f� ‘3

t3
RL _p� _pr2f

��
:

The flat space limit of this action gives (6). In this form, not
all the fields are independent: After defining ’ � r2f, and
using the Bianchi identity (15), we can further simplify the
action to

I ¼ 1

2

Z
d3x

��
aþ 2�

‘2

�
t

‘
ð�tp’þ p2Þ

þ ð2�þ �Þ t
5

‘3
ð _’�r2pÞ2 þ �

t3

‘3
ð _p2 � pr2p

� ’2 � t’r2p� t _p _’�’ _pÞ
�
þ I�; (16)

where the � field decouples from the rest

I� ¼ 1

2

Z
d3x

�
�
t3

‘3
ð _�2 þ �r2�Þ þ

�
aþ 2�

‘2

�
t

‘
�2

�
:

(17)

For vanishing � and �, cosmological Einstein theory does
not have any propagating degrees of freedom just like its
flat space partner. For generic � and �, there are 3 degrees
of freedom. Recall that a minimally coupled scalar field
with the correct canonical dimension is in the following
form:

I ¼ � 1

2

Z
d3x

ffiffiffi
g

p ð@��@��þm2�2Þ

¼ � 1

2

Z
d3x

�
‘

t
½� _�2 þ ð@i�Þ2� þ ‘3

t3
m2�2

�
:

Therefore, after rescaling � ! ‘2

t2
� in (17), one finds the

mass of the � field as

m2
g ¼ � a

�
� 2

‘2
¼ � 1

��
� 12�

‘2�
� 4

‘2
: (18)

For generic � and �, unlike the flat space case, diagonal-
izing the ’, p action is highly nontrivial. But, there are
various ways to see the basic oscillators in this model. One
such method is to Fourier transform the fields just in the ~x
space and then consider the zero two-momentum limit.
That would be equivalent to dropping the r2 terms in the
action. Note that this construction does not change the
number of degrees of freedom, of course as long as r2

(field) is not the lowest order term. Another way is to
directly study the equations of motion. We shall employ
both of these methods below.
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A. Masses from the nonrelativistic limit

Apart from the decoupled� part, the generic�,� theory
(16) reads in the nonrelativistic limit as

I ¼ 1

2

Z
d3x

��
aþ 2�

‘2

�
t

‘
ð�tp’þ p2Þ þ ð2�þ �Þ

� t5

‘3
_’2 þ �

t3

‘3
ð _p2 � ’2 � t _p _’�’ _pÞ

�
:

To decouple the fields, first note that 2�þ � ¼
�
4 þ 8�þ3�

4 , and rescale ’ as ’ ! 1
t ’ to get the action

I ¼ 1

2

Z
d3x

��
aþ 2�

‘2

�
t

‘
ð�p’þ p2Þ þ �

4

t3

‘3

�
_’2 � ’2

t2

þ 4 _p2 � 4 _p _’

�
þ ð8�þ 3�Þ

4

t3

‘3

�
_’2 þ 3’2

t2

��
:

Then, define a new field as � � ’� 2p, which leads to
the decoupled actions for the� and ’ fields. As the spin-2
helicity partner of the � field, the � action is exactly like
the � action with the same mass mg (18);

I� ¼ �

8

Z
d3x

�
t3

‘3
_�2 þ t

‘

�
a

�
þ 2

‘2

�
�2

�
;

and the spin-0 mode has the action

I’ ¼ ð8�þ 3�Þ
8

Z
d3x

�
t3

‘3
_’2 � 1

ð8�þ 3�Þ
t

‘

�
�
a� 24�

‘2
� 6�

‘2

�
’2

�
;

which after putting into the canonical form by rescaling

’ ! ‘2

t2
’ yields the mass

m2
s ¼ 1

�ð8�þ 3�Þ �
4

‘2

�
3�þ �

8�þ 3�

�
:

In the 8�þ 3� ¼ 0 case, the ’ field freezes out and m2
g

matches the result of [1] obtained with the help of an
auxiliary field, not via canonical analysis. For generic �
and �, in accordance with the analysis of [1], one can
introduce two auxiliary fields to rewrite the action (1), but
decoupling of the scalar mode from the spin-2 mode is not
immediately clear. This is done in Appendix B.

B. Equations of motions in the BHT case

The above nonrelativistic analysis reveals the canonical
structure of the generic �, � theory. But here let us con-
sider the relativistic equations of motion for the 8�þ
3� ¼ 0 case. Dropping the � field in (16), we have

I ¼ �

2

Z
d3x

�
m2

g

t

‘
ðtp’� p2Þ þ t5

4‘3
ð _’�r2pÞ2 þ t3

‘3

�ð _p2 � pr2p� ’2 � t’r2p� t _p _’�’ _pÞ
�
:

It appears that there are 2 degrees of freedom in this action
(which would conflict our earlier result, and the result of
[1]), but this is a red herring, there is only a single degree of
freedom. A quick way to see this is to look at the Hessian

matrix, H ¼ @2L
@ _qi@ _qj

,

H ¼ �t3

4‘3
t2 �2t
�2t 4

� �
:

Since detH ¼ 0, there is a constraint in the model.
Therefore, ‘‘velocities’’ _’ and _p cannot be separately ex-
pressed in terms of the canonical momenta

�’ � @L
@ _’

¼ �t5

4‘3

�
_’�r2p� 2

t
_p

�
;

�p � @L
@ _p

¼ �t3

2‘3
ð2 _p� t _’� ’Þ:

One can use the Dirac’s constraint analysis method to
obtain the Hamiltonian for this singular Lagrangian, but
here it suffices to consider just the field equations. Taking
the variations with respect to ’ and p yield

�’:
m2

gt
2

‘
p� t3

‘3
ð2’þ tr2pþ _pÞ

� 1

2‘3
@0½t5ð _’�r2pÞ � 2t4 _p� ¼ 0;

and

�p:
m2

gt

‘
ðt’� 2pÞ � t5

2‘3
r2

�
_’�r2pþ 4

t2
pþ 2

t
’

�

� 1

‘3
@0½t3ð2 _p� t _’� ’Þ� ¼ 0:

By inspection, and with a hint from the field equations
which give RL ¼ 0, one observes that _’ ¼ r2p and the
other equation reduces to

‘

t

�
� €’� 1

t
_’þr2’

�
� ‘3

t3

�
m2

g � 1

‘2

�
’ ¼ 0;

which is not yet in the canonical wave equation form in dS.
To put in the canonical form, (h�m2) 	 ¼ 0, rescale
’ ! ’=t to obtain

‘

t

�
� €’þ 1

t
_’þr2’

�
� ‘3

t3
m2

g’ ¼ 0;

) ðh�m2
gÞ’ ¼ 0;

which is exactly like the � field.

IV. CONCLUSIONS

We have studied the canonical structure of the linearized
quadratic gravity models in an explicitly gauge-invariant
way for both flat and dS backgrounds in three dimensions.
In flat spacetime, the general action is decoupled into three
harmonic oscillators. After considering the signs and vari-
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ous limits of the parameters �, �, �, the BHT case is
singled out as the unique unitary and nontachyonic theory
(namely, a regular massive free spin-2 field, not a higher-
time derivative one), while the others are all higher-
derivative Pais-Uhlenbeck oscillators. Sources are also
added to the theory, and Newtonian potentials for both
static and spinning particles are calculated. Moreover, we
have computed the weak field limit of the circularly sym-
metric spacetime. We extended our flat space analysis to
include the gravitational Chern-Simons term and investi-
gated the oscillator structure for the BHT limit: We have
seen that in this limit the oscillators decouple with different
masses, violating parity as expected. In dS, we have also
found the most general action in terms of three gauge-
invariant functions constructed from the (derivatives of
the) components of the metric perturbation and carried
out the decoupling of the fields in the nonrelativistic limit
at the level of the action and in a relativistic form at the
level of the field equations. For future work, to go beyond
the free field level and introduce nonlinearities, such as
Oðh3Þ and interactions, our gauge-invariant actions will be
of great use. Another interesting point about the models
that we discussed here is that, especially in (anti)-de Sitter
backgrounds, for certain tuned values of the parameters
novel phenomena such as partial masslessness or chiral
gravity arise. These topics will be addressed in a separate
work.
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APPENDIX A: SPINNING MASSES

It is also of some interest to understand how spinning
point particles interact in the generic higher-derivative
model. This can be done as follows: First, note that the
energy-momentum tensor for a massive (m) spinning (j)
pointlike source is

T00¼m�ð2Þð~r� ~r1Þ; Ti
0¼

1

2
j�ij@j�

ð2Þð ~r� ~r1Þ; Tij¼0:

For two such conserved sources scattering amplitude was
computed in [5] as

4A ¼
Z

d3x

�
�2T0

��

�
�h2 þ 1

�
h

��1
T��

þ T0
�
�h2 þ 1

�
h

��1
T

� T0
�
ð8�þ 3�Þh2 � 1

�
h

��1
T

�
:

From the nonspinning case, the only added part will be

�4T0
i0

�
�h2 þ 1

�
h

��1
Ti0 ¼ � j1j2

�m2
g

@i�
ð2Þð~r� ~r1Þ

�
�
1

h
� 1

h�m2
g

�

� @i�
ð2Þð~r� ~r2Þ:

After carrying out the space integrations, it reads

� 4T0
i0

�
�h2 þ 1

�
h

��1
Ti0 ¼ � j1j2

2��
K0ðmgj~r1 � ~r2jÞ;

for ~r1 � ~r2. Then, the total Newtonian potential energy,
U ¼ A=time, becomes

U ¼ �

8�
ðm1m2 þ 4m2

gj1j2ÞK0ðmgj~r1 � ~r2jÞ

� �

8�
m1m2K0ðmsj~r1 � ~r2jÞ:

Since j1 and j2 could be of any sign, the part coming from
the spin-spin interaction can be repulsive or attractive. In
the BHT limit the last term disappears.

APPENDIX B: THE �, � THEORY WITH
AUXILIARY FIELDS

Consider the quadratic Lagrangian (1) in three dimen-
sions. Using two auxiliary fields 	 and f��, one can

rewrite it as

L ¼ 1

�

ffiffiffiffiffiffiffi�g
p �

R� f��G�� �	Rþm2
1

2
	2

þm2
2

4
ðf��f�� � f2Þ

�
;

where m2
1 ¼ � 4

�ð8�þ3�Þ and m2
2 ¼ � 1

�� . After lineariza-

tion around flat spacetime, we have

�Llinearized ¼ �
�
1

2
h�� þ f��

�
GL

�� �	RL

� 2

�ð8�þ 3�Þ	
2 � 1

4��
ðf��f�� � f2Þ:

For 8�þ 3� ¼ 0,	 decouples, and f�� can be eliminated

to yield the action describing spin-2 field with a Pauli-Fierz
mass [1]. But, for generic � and �, one has to find a way to
decouple 	, f��, and h�� keeping in mind that there

should be a kinetic term for the 	 field. This is possible
by rescaling h��, but we have not pursued this [20].

APPENDIX C: LINEARIZED FIELD EQUATIONS
IN THE DE SITTER BACKGROUND

In the body of the text, we worked mostly at the level of
the action. To check our results at the level of the field
equations, some of the computations in this Appendix are
needed. The trace of the linearized field equation is

ð8�þ 3�ÞhRL þ
�
6ð4�þ �Þ

‘2
� a

�
RL ¼ 0;
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where �g��GL
�� ¼ � RL

2 was used. Without further ado, let

us list the results of somewhat tedious, yet relevant com-
putations:

hGL
00 ¼

t3

2‘3

��
r2 €fþ 5

t
r2 _f�r2r2f

�
� 4

t
r2p

� 3

t2
r2f� 2‘3

t5
RL

�
;

hGL
0i ¼

t3

2‘3
@i

�
€pþ 3

t
_p�r2p� 2

t2
p� 2

t
r2f

�

þ t3

2‘3
�ij@j

�
€�þ 3

t
_��r2�� 2

t2
�

�
;

hGL
ij ¼

t3

2‘3
ð�ij þ @̂i@̂jÞ

�
€qþ 5

t
_qþ 1

t2
q�r2q� 2

t2
r2f

�

� t3

2‘3
@̂i@̂j

�
p
... þ 5

t
€pþ 1

t2
_p�r2 _p

� 4

t
r2p� 2

t2
r2f

�
� t3

2‘3
ð�ik@̂k@̂j þ �jk@̂k@̂iÞ

�
�
�
... þ 5

t
€�þ 1

t2
_��r2 _�� 2

t
r2�

�
:

GL
��, and RL, computed in the body of the text, together

with the Bianchi identity (15), and the above results are
sufficient to study the field equations.
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