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We present a comprehensive investigation of cosmological constraints on the class of vector field

formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation

theory we generate cosmic microwave background and large-scale structure spectra for general parame-

ters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark

matter candidate where the vector field sources structure formation, and a dark energy candidate where it

causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five

physical problems that can restrict this and other theories of dark matter. The dark energy candidate does

fit the data, and we constrain its fundamental parameters; most notably we find that the theory’s kinetic

index parameter nae can differ significantly from its �CDM value.
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I. INTRODUCTION

Over the past few years, a new suite of models for the
dark sector has been proposed. They invoke a vector field
which is normally constrained to lie along the timelike
direction and may lead to modifications to the gravitational
sector [1–4]. Sometimes called Einstein-aether models,
they tend to entangle two of the main paradigms currently
being considered: on the one hand modified gravity and on
the other dark matter and energy.

Vector field models are attractive because they seem to
be able to resolve the problem of the dark sector (i.e. dark
matter and energy) in a unified way. Most of the emphasis
has gone into constraining vector field models that lead to
accelerated expansion [2–4] although there is a fair amount
of work for which the vector field leads to a relativistic
version of modified Newtonian dynamics (MOND) [5] or
can even play the role of dark matter [1,6]. In fact vector
field models seem to incorporate what seems to be a
generic feature of relativistic modified gravity models
[7]: that it is impossible to construct relativistic models
that just modify the gravitational sector without introduc-
ing new degrees of freedom, which can then behave like
either dark matter or dark energy (although for other
approaches see, for example, [8–13]).

There has been significant progress in trying to constrain
these models. For example, at a fundamental level it has
been shown that a broad class will lead to instabilities and
the formation of caustics, signaling a breakdown of the
fundamental theory [14]. It has also been shown that for a
general choice of kinetic terms, these theories will be
plagued by ghosts or tachyons [15–17]. These pathologies
are worrying but do not entirely rule out vector field
models—it has been shown that modifications to the ki-
netic term, for example, can cure them.

Substantial work has been done on understanding how
these fields in these theories behave on macroscopic scales,

either through their interaction with matter to form gal-
axies and clusters [18], or on the largest scales, affecting
the growth of structure and its effect on the CMB [19].
Indeed for a particular, ‘‘vanilla’’ version of the vector field
model, detailed and definitive constraints have been placed
on the various coupling constants [20,21].
In [19], it was found that one of the key effects that

vectors would have would be to modify the growth rate of
structure. This is not surprising—theories that modify
gravity tend to have this effect. We also found that it led
to a mismatch between the two gravitational potentials, a
potentially observable effect [22]. In this paper we wish to
pursue this analysis and quantify how strong these effects
are. Although we focus on a particular (albeit broad) class
of theories, we are interested in extracting general lessons
from these models. We believe that much of what we learn
by looking at these models will shed light on other models
of modified gravity (such as, for example, fðRÞ theories
[23] and bimetric theories [24]).
The structure of this paper is as follows. In Sec. II we lay

out the essential ingredients for a reasonably broad class of
vectorlike models and its background evolution, and spe-
cialize to the form used in the remainder of the paper. In
Sec. III Awe lay out the equations of the perturbed theory,
and how we implement them with theoretical constraints.
In Sec. IV we discuss the problems with modeling dark
matter with the theory. In Sec. V we find and constrain the
parameters which let the theory act as dark energy. In
Sec. VI we conclude and draw more general lessons about
the dark sector.

II. THE THEORY

A. Theory definition

A general action for a vector field Aa coupled to gravity
can be written in the form
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S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

16�G
þLðgab; AbÞ

�
þ SM; (1)

where gab is the metric, R the Ricci scalar of that metric,
SM the matter action, and L is constructed to be generally
covariant and local. By construction SM only couples to the
metric gab and not to Aa.

We will restrict ourselves to consider a Lagrangian that
only depends on covariant derivatives of A and we will
consider a unit timelike Aa. Such a theory can be written in
the form

L ðgab; AaÞ ¼ M2

16�G
FðKÞ þ 1

16�G
�ðAaAa þ 1Þ; (2)

K ¼ M�2Kab
mnraA

mrbA
n; (3)

Kab
mn ¼ c1g

abgmn þ c2�
a
m�

b
n þ c3�

a
n�

b
m; (4)

where ci are dimensionless constants and M has the di-
mension of mass. We have removed an additional c4
‘‘acceleration’’ term in accordance with the transformation
described in [25].

As was the case with the tensor-vector-scalar theory
(TeVeS), the constant G may be a different number from
the locally measured value of Newton’s gravitational con-
stant. � is a nondynamical Lagrange-multiplier field with
dimensions of mass-squared.

The gravitational field equations for this theory, obtained
by varying the action with respect to gab (see [1]) are

Gab ¼ ~Tab þ 8�GTmatter
ab ; (5)

where the stress-energy tensor for the vector field is given
by

~Tab ¼ 1

2
rcðFKðJðacAbÞ � JcðaAbÞ � JðabÞAcÞÞ � FKYðabÞ

þ 1

2
gabM

2Fþ �AaAb; (6)

FK � dF

dK
; (7)

Jac ¼ ðKab
cd þ Kba

dcÞrbA
d: (8)

Brackets around indices denote symmetrization [26] and
Yab is the functional derivative

Yab ¼ rcA
erdA

f
�ðKcd

efÞ
�gab

: (9)

The equations of motion for the vector field, obtained by
varying with respect to Ab, are

raðFKJ
a
bÞ þ FKyb ¼ 2�Ab; (10)

where once again we define the functional derivative

yb ¼ rcA
erdA

f
�ðKcd

efÞ
�Ab

: (11)

Finally, variations of the action with respect to �will fix
AbAb ¼ �1. By inspection, contracting both sides of (11)
with Ab leads to a solution for � in terms of the vector field
and its covariant derivatives.
These equations allow us to study a general theory of the

form presented in Eq. (1) with a unit timelike vector field.
For our particular, restricted choice of K we have Yab ¼
�c1½ðrcAaðrcAbÞ � ðraAcÞðrbA

cÞ� and yb ¼ 0.

B. Background cosmology

In this paper we will restrict ourselves to background
cosmologies where the spacetime is of the spatially flat
Friedmann-Robertson-Walker (henceforth FRW) form

gabdx
adxb ¼ �dt2 þ aðtÞ2�ijdx

idxj: (12)

The energy momentum content of each matter fluid (i) in
the background is taken to be of the usual form

Ti
ab ¼ ðPi þ �iÞuiauib þ Pigab; (13)

where �i and Pi are the comoving density and pressure of
the ith fluid, respectively. We assume that all fluids have
identical four velocities ua ¼ ð1; 0; 0; 0Þ. Furthermore we

define � � P
i�

ðiÞ.
In spacetimes with FRW symmetries, the vector field

must align with the direction @t and so the vector field is
entirely fixed to have components (1, 0, 0, 0) in the
coordinate system (12). Explicitly, the background value
of the scalar K is given by

KFRW ¼ 3
�H2

M2
; (14)

where H � @t lnðaðtÞÞ and
� � c1 þ 3c2 þ c3: (15)

The Friedmann equation then takes the form [19]�
1� �K1=2 d

dK

�
F

K1=2

��
H2 ¼ 8�G

3
�; (16)

where � still includes only the matter components.
We note that the combination of (16) and the aether

stress-energy tensor allows us to write down an effective
energy density �ae and pressure Pae of the aether. From this
we may define the fractional energy density �ae �
8�G�ae=3H

2
0 , and the aether equation of state parameter

wae � Pae=�ae:

�ae ¼ M2

6

�
@

@H

�
F

H

��
H¼H0

; (17)

wae ¼ �1� 1

3H2

d2

dtdH F
d
dH ðFHÞ

: (18)
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The effect of the vector field on the background expan-
sion may be seen as an expansion rate dependent modifi-
cation to Newton’s constant, i.e., schematically (16) is an
equation of the form 3H2 ¼ 8�GðH2Þ�. It was found in
[19] that various forms of the function F permitted a wide
variety of cosmological dynamics: the presence of the
vector field variously leading to accelerated expansion,
slowed expansion, rescaling of G, and recollapse as sum-
marized in Fig. 1.

C. The functional form of FðKÞ in cosmology

We must now specify the form of the function FðKÞ in
Eq. (6). There is an obvious set of candidates here—we
could attempt to be directly consistent with MOND and use
the same branch of F as it uses on small scales. In
Appendix A we show that doing so would make it impos-
sible to consistently generate late-time acceleration behav-
ior in the background cosmology. Instead, we will use a
simple and reasonable ansatz that works for the regime
jKj � 1 that we consider here.

Existing functional forms for FðKÞ in the MOND regime
typically are dominated for a single monomial term for
jKj � 1 (see for instance [27]) and so it seems reasonable
to restrict the function to take this form:

F ¼ �ð�KÞnae K < 0

F ¼ �ðþKÞnae K > 0;
(19)

where nae � 1. This form has sufficient power to express a
wide variety of behavior, and the parameters � and n shall
be central to our further analysis.

III. LINEAR PERTURBATION THEORY

A. Formalism and Theory

We have seen that the vector field can have a significant
effect on the quasistatic, weak field limit and the back-
ground cosmological geometry. Significant evidence for
nonbaryonic mass persists on the largest cosmological
scales [28] therefore it is vital that a relativistic theory of
MOND can account for this. As mentioned, it has been
argued [29] that even in the quasistatic, weak field limit, a
spatial tilt to the vector field may produce significant
deviations under some circumstances from the local
MOND force law. Similarly it was shown [19] that in the
context of linear cosmological perturbations the energy
density associated with the projection of the vector field
onto surfaces of constant conformal time could, to a de-
gree, act as a cosmological ‘‘dark matter.’’ In this paper we
shall comprehensively address the question of whether the
Lagrangian (2) represents a viable model of the dark sector
in light of precision cosmology.
In the main body of the paper we will consider scalar

perturbations. In Appendix B we derive the equations of
motion for the vector field’s two divergenceless vector
modes as well as the gravitational wave tensor modes
(the speed of propagation of which is in general modified
by the vector field). Requiring the stability of these modes
puts constraints on (2) (see Sec. III B).
We shall work in the synchronous gauge (see for in-

stance [30]) and so the metric takes the following form:

g��dx
�dx� ¼ �a2d	2 þ a2½�ij þ hij�dxidxj; (20)

where 	 is conformal time, �ij is a spatially flat spacelike

3-metric perturbed by hij which is built from two scalar

potentials 
 and h:

hijðx; 	Þ ¼
Z

d3keik�x
�
k̂ik̂jhðk; 	Þ

þ
�
k̂ik̂j � 1

3
�ij

�
6
ðk; 	Þ

�
: (21)

Similarly we will expand the aether field as

A� ¼ 1

a
ð1; @iVÞ: (22)

The zeroth component of the aether field is, by virtue of
the gauge choice and the constraint, fixed as equal to 1 up
to second order in perturbations.
A slight complication in the field equations arises be-

cause of the presence of the function F which depends
nonlinearly on the scalar K. We assume that for modes of
interest one may consistently regard the perturbation to K
as being much less than unity. Thus one can expand K as

FIG. 1. A schematic representation of the types of the late-
time background evolution permitted by the functional form F ¼
�ð�KÞn as a function of ðn; �Þ for n < 1.
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K ¼ K0 þ K� and F as F ¼ F0 þ F0
KK

� where K� � 1
where the superscript 0 denotes the quantity corresponding
to a function’s background value. Explicitly we have that

K0 ¼ 3
�H 2

a2M2
; (23)

H K� ¼ � 2

3
K0

�
k2V � h0

2

�
; (24)

where primes denote derivatives with respect to conformal
time and we have used the conformal Hubble parameter
H � H=a. We also make use of the following identity:

ðK0Þ0H ¼ �4K0

�
H 2 � 1

2

a00

a

�
: (25)

Henceforth we will drop the superscripts on K0 and F0,
i.e., K and F shall be assumed to represent background
values of the fields.
Toward simplifying the form of the equations, we will

rather use the field � instead of V, where � is defined as

� � V � 1

2k2
ðhþ 6
Þ0: (26)

For further compactness of notation we define the var-
iables

�̂ �
�
1þ 2

FKK

FK

K

�
�; (27)

ĉ 1 �
�
1þ 2

FKK

FK

K

�
c1: (28)

The vector field equation of motion (10) becomes

0 ¼ c1ð1þ c13FKÞ ðFK�
0Þ0

FK

þ 2H c1ð1þ c13FKÞ ðFK�Þ0
FK

þ
�
2c1ð1þ c13FKÞ

�
a00

a
�H 2

�
þ 2ðĉ1 þ �̂Þ

�
H 2 � 1

2

a00

a

�

þ c1c13ðFKKK
0Þ0 þ 1

3
ð�̂þ 2c13Þk2

�
�þ ðc1 þ �̂Þ
0 þ ðĉ1 þ �̂Þ 1

k2

�
H 2 � 1

2

a00

a

�
ðh0 þ 6
0Þ � 3

2

c1
k2

ðFK�fÞ0
FK

:

(29)

The relevant Einstein equations are

�
1� 1

2
�̂FK

�
k2
0 ¼ 4�Ga2ikj�T0

j þ
1

6
k4ð�̂þ 2c13ÞFK� (30)

and�
1þ 1

2
c1FK

�
ðHh0 � 2k2
Þ ¼ �8�Ga2�T0

0 �
1

2
FKðc1 þ �̂Þ6H
0 � 2�FKKKH k2�þ FKc1k

2

a2
ða2ð1þ c13FKÞ�Þ0

� 3

2
c1FK�f; (31)

where we have used the fact that

ðhþ 6
Þ00 þ 2H ðhþ 6
Þ0 � 2k2


¼ �3�f þ 2c13k
2½FKð2H�þ �0Þ þ FKKK

0��: (32)

The functions �T0
j and �T0

0 are the first order pertur-

bations to the corresponding components of the matter
fields’ stress-energy tensors. Summation over field species
is assumed. The field �f is the scalar component of the

total fluid shear, i.e., �f ¼ �8�Ga2ðk̂ik̂j � 1
3�

j
iÞ�i

j and

�i
j � �Ti

j � 1
3�

i
j�T

k
k. A gauge invariant formulation of

the theory’s equations may be found in [31].

B. Parameter constraints

We can immediately see a number of constraints on the
ci and the form of the function F. From (29) it can be
shown that in the limit of timescales shorter than a Hubble
time the quantity

C2
S ¼

2

3

ð�̂2 þ c13Þ
c1ð1þ c13FKÞ (33)

can be interpreted as the squared sound speed of the field �.
The avoidance of exponentially growing subhorizon
modes dictates that C2

S should be positive definite.

Similarly, one may consider the field equations of the
two divergenceless ‘‘vector’’ modes of the vector field and
the two transverse traceless ‘‘tensor’’ modes of of the
metric. Each, respectively, has a squared sound speed
function (named C2

V and C2
T respectively) which, as in

the scalar case, should be positive definite. These functions
are calculated in Appendix B and are as follows:

C2
T ¼ 1

1þ c13FK

; (34)
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C2
V ¼ FK

2c1

2c1 þ FKðc21 � c23Þ
1þ c13FK

: (35)

Note that the gravitational wave tensor modes now
generically have a time-dependent speed of propagation.

Collectively the three positivity constraints imply the
following constraints on the ci and function F parameter
space:

1þ FKc13 > 0; (36)

ð�̂þ 2c13Þ=2c1 > 0; (37)

FK

�
1þ FK

c21 � c23
2c1

�
> 0: (38)

Now we turn to the Einstein equations (30) and (31).
Terms in the perturbed vector field stress-energy tensor
� ~Tab may contain terms proportional (up to a time-
dependent function of the background fields) to �Gab

and indeed this can be seen in (30) and (31) through the
appearance of terms proportional to the ci on the left-hand
sides of the equations. If the effect � is negligible then the
effect of the aether stress-energy terms proportional to
components of the Einstein tensor may always be absorbed
into a redefinition of Newton’s constant as a time-
dependent effective gravitational coupling. Thus, even if
� has comparatively little effect, there may be a consid-
erable modification to the link between the matter fields
and the gravitational field. The resulting gravitational cou-
plings should be greater than or equal to zero otherwise the
gravitational field will interpret normal matter as violating
energy conditions, and so risking the appearance of insta-
bilities. This restriction implies the following constraints:�

1� 1

2
�̂FK

�
> 0; (39)

�
1þ 1

2
c1FK

�
> 0: (40)

Throughout our analysis, we will only consider regions
of the model’s parameter space which satisfy these
constraints.

C. Computation

To study the effects of the vector field in detail we have
modified the structure formation Boltzmann code
CMBEASY [32]. We add a Newton-Raphson solver for the

Hubble parameter, with added aether components. The
perturbation evolution is also modified to include the
aether components � and �0, and their contribution to the
density, pressure, and shear perturbations. We also include
the altered metric perturbations in the calculation of the
cosmic microwave background (CMB) source function.
We use adiabatic initial conditions [33]. Since Boltzmann
codes are very highly optimized for �CDM models, care
must be taken to ensure that modifications are performed in

a consistent manner—for example an unmodified
Friedmann equation is often assumed for computational
efficiency.
To explore parameter spaces, CMBEASY is coupled to a

Monte-Carlo Markov chain (MCMC) engine [34]. We
extended this engine to include our new aether parameters:
�ae, cþ ¼ ðc1 þ c3Þ, c� ¼ ðc1 � c3Þ, C2

S, nae, and M. We

include the full ranges of these parameters by allowing the
kinetic term to take two branches, for positive and negative
K as in (19).
We constrain models using both CMB data from the

WMAP experiment [35] and large-scale structure from the
SDSS survey [36], though not always at the same time. As
we shall see, some aether models are extremely poor fits to
the combined data sets; to illustrate such problems we want
to find models that fit only the large-scale structure data. In
regimes where fits are extremely poor, MCMC does not
work particularly well. We ameliorate such situations by
running larger numbers of shorter Markov chains and
restarting from their best-fit positions, and sometimes by
abandoning MCMC altogether and simply performing ran-
dom searches for good parameter combinations.

IV. THE VECTOR FIELD AS DARK MATTER

A. Background evolution and Doppler peak positions

An unusual property of the model considered here is that
at the level of cosmological perturbations the field can
mimic a perturbed pressureless fluid in the formation of
large-scale structure while behaving entirely differently in
the cosmological background [19]. In this paper we would
like to consider not just large-scale structure but also other
cosmological probes. The anisotropies in the CMB tem-
perature are sensitive to the background dynamics and
perturbed dynamics of sources of cosmic mass discrepan-
cies in a largely distinguishable manner.
If the aether plays the role of dark matter only in the

perturbations, then the background expansion is dark-en-
ergy-dominated at an earlier time. For a given H0 this
reduces the expansion rate of the Universe between recom-
bination and now and so decreases the angle subtended on
the sky by given distance at last scattering. This moves the
CMB Doppler peaks to higher ‘. Although the aether can
give a suitable time dependence to the effective gravita-
tional couplingG in the Friedmann equations so as to yield
the same expansion rate as �CDM, the necessary func-
tional forms of F are extremely contrived. For instance
these forms essentially contain a new constant scale
roughly equal to the Hubble parameter at matter-radiation
equality. Even in the event of such a construction, it may
not be possible for the squared sound speed of vector field
perturbations C2

S to remain sufficiently small as to behave

like cold dark matter in perturbations [1].
The other input to the peak position is the sound horizon

at last scattering. The physics of this is sufficiently robust
that changes compensatory to the alteration in the distance
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to last scattering are not feasible without exceptional fine-
tuning of the perturbational behavior of the aether. Indeed,
it has been argued that only additional components that
behave like nonrelativistic matter in the background might
fix this problem [37].

Could there indeed be such a nonrelativistic matter in the
background which allows acoustic peak positions which
are consistent with the data while leaving the aether in its
role as the seed of the formation of large-scale structure?
An appropriate candidate would appear to be massive
neutrinos. A suitable mass of such particles so as to ac-
count for the right effective contribution to the dust com-
ponent of the background typically implies that the
neutrinos themselves are unable to clump on small enough
scales so as to be a good candidate for all of the dark
matter. Such a solution as has been proposed in [38,39].

B. Perturbation evolution

We now argue that even with the inclusion of massive
neutrinos, one generically expects the aether to have an
unacceptable influence on the large-scale CMB anisotropy
if it is to also play the dominant role in structure formation.

The first requirement for successful perturbation evolu-
tion is that structure can form at all. One necessary condi-
tion for this is that the sound speed of the structure seed not
be too large, since this would wash out structure. We
require that the sound horizon in the model be less than
the smallest scales where structure can form linearly:
CSkmax	 & 1, where kmax � 0:2h=Mpc. For matter power
observations at 	� 3	 104, the present epoch, this yields
CS & 10�4.

There are two underlying physical processes that further
constrain the models.

The first is a change to the growth rate of perturbation
amplitude. This can cause discrepancies between the am-
plitudes we expect in the matter power spectrum and the
CMB, since the evolution between the two is different. It
can also lead to an integrated Sachs-Wolfe (ISW—see
below) effect during the matter era since � will accrue a
time dependence.

The second is the increased presence of a���metric
shear. This also leads (directly) to a matter era ISW.

1. Observable 1: ISW

Under the assumption of adiabaticity we have that the
anisotropy in the CMB,�Tðn̂Þ=T on large scales in a given
spatial direction n̂, is given by

�Tðn̂Þ
T

’ � 1

3
�ð	
; d
n̂Þ �

Z 	0

	

d~	ð�0 þ�0Þ

	 ½~	; ð	0 � ~	Þn̂�; (41)

where 	
 is the conformal time of last scattering, 	0 is the
conformal time today, d
 is the comoving radius of the
surface of last scattering, and � and � are the conformal

Newtonian gauge gravitational potentials. The integral in
(41) is the integrated Sachs-Wolfe (ISW) effect. Writing
the integrand of (41) as�0 þ�0 ¼ �ð���Þ0 þ 2�0, we
can see this as time derivatives of a shear part and a growth
rate part.
In the standard cosmological model, the field � has

negligible time dependence during matter domination. It
gains a time dependence only when the background starts
accelerating, and only then can the resulting growth rate
ISW contribution be considerable. In the model considered
here, the situation may be rather different. It was found in
[19] that substantial contributions to the ISW may occur
even during the matter era. For the aether field to seed
structure formation the field � must have a suitable grow-
ing mode solution in the matter era. Typically the corre-
sponding spatial curvature perturbation k2� will then have
a time dependence via the Poisson equation.
The shear part can also gain a time dependence in the

aether model, which in the �CDM is very small even
during acceleration.
Each of these effects depend on the functional form of F,

the time-dependence of the � growing mode and the choice
of the parameters ci. It is extremely challenging to find
combinations of the parameters which allow for a realistic
growth of structure while making the ISW acceptably low.
This is most easily illustrated by considering the theory
TeVeS [24] which has many of the same properties as the
model considered here. It may be shown that TeVeS can be
written as a single metric theory with a timelike vector field
of unfixed norm [40,41]. As in the model considered here,
the longitudinal component of the vector field can source
the growth of structure [28,38]. We will call this field VT .
We consider a matter dominated era where VT is respon-
sible for the dominant source in the Poisson and shear
equations. These equations, respectively, then are [42]

k2� � �fsH k2VT � KB

2
k2V 0

T; (42)

k2ð���Þ � fsk
2ð2HVT � V0

TÞ; (43)

fsð	Þ � ð1� �A4Þ
�A4

; (44)

where KB is a positive constant of the action and �A4 is the
norm of the vector squared again (equal to unity in the fixed
norm case, but in TeVeS the deviation of j �A2j from unity is
essentially the background variation of the ‘‘scalar field’’
degree of freedom). Therefore

�þ� ¼ �ðfsð	Þ þ KBÞV 0
T: (45)

In this era the vector field equation is

V00
T þ b1

V0
T

	
þ b2

VT

	2
¼ S½�;��; (46)

where

b1 ¼ 2ð3� �A4Þ; (47)
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b2 ¼ 2ð2� �A4Þ þ 12 �A4

KB

ð1� �A4Þ; (48)

and S½�;�� is a source term.
For this situation to arise, there must be a growing mode

in VT [28]. Therefore we require that b2 < 0. The function
�A4 will be rather close to unity [43] so

b2 � 2þ 12fsð	Þ=KB: (49)

Therefore we require that fsð	Þ=KB & �1=6 (recalling
that KB is a positive number). By (45) we see that the
contribution to the ISWwill be proportional to fsð	Þ þ KB.
Meanwhile we see from (42) that the comparative contri-
bution to Poisson’s equation is also independently
weighted by fs and KB. If there is no time dependence in
the Poisson Eq. (42) due to the vector field then the vector
field will make no contribution to the ISWeffect. If there is
a time dependence in the Poisson equation, there may yet
be no contribution to the ISW if fsð	Þ � �KB between last
scattering and now (though the overdensities of the baryon
field will then not generally grow as a, thus contributing to
the ISW effect). This would be consistent with the condi-
tion for a growing mode in VT but it does not guarantee that
the resulting growing mode would be suitable.

Indeed, it was found [38] that in seeding the growth of
large-scale structure in TeVeS there was a significant dan-
ger of incurring unacceptably high temperature anisotro-
pies in the CMB on large scales. Although involving a
larger number of terms, the same reasoning carries over to
the model considered here—i.e., parameters which allow
realistic structure formation will typically lead to an un-
acceptable ISW effect. This is vividly illustrated in Fig. 2
which shows best-fit models as compared to SDSS large-
scale structure data. In every case, the corresponding tem-
perature anisotropy displays a dramatically poor fit to the
data at low ‘.

2. Observable 2: Amplitudes

The ratio of the observed amplitudes of the CMB an-
isotropy and the matter power spectrum is consistent with a
growth rate proportional to a [44]. Any uncompensated
change to this growth rate in the aether model over this
period would lead to a different ratio. The bias parameter
between the galaxy distribution and the underlying density
field can be used to rectify this difference, but only if the
change is relatively small and unphysically large bias
parameters (larger than �10) are not required.

C. Summary

We have seen that although the vector field may play a
number of the roles that dark matter plays, it seemingly
cannot do all at once [45].

The position of the acoustic peaks in the CMB tempera-
ture anisotropy should be taken as a strong indication of
additional nonbaryonic nonrelativistic matter present in the

Universe during matter domination. Such an effect can be
achieved in this model by a rescaling of the value of
Newton’s constant. However, this rescaling cannot persist
into the radiation era [47]. Thus, the functional form would
have to be approaching the rescaling solution only after
one would expect matter-radiation (including cold dark
matter) equality to happen.
This implies the presence of a new scale in the theory,

roughly corresponding to the Hubble parameter Heq at this

time. It seems fair to say in general that a model such as
that considered here is more likely to be a cosmologically
viable candidate for dark matter if the scaleM in the theory
is closer to Heq and not H0. It is tempting to speculate

whether a theory where the scaleM itself is dynamical may
find more success, but that will not be explored in this
work.
Furthermore we have seen that even if the background is

consistent with observations, the effect on the evolution of
perturbations may be unacceptable, notably either through
the ISW effect or comparing the respective amplitudes of
the CMB anisotropy and matter power spectrum today.

D. Example problem spectra

It has previously been shown that the Einstein-aether can
produce acceptable matter power spectra with certain pa-
rameter combinations [19]. Here we show that such com-
binations do not provide an acceptable fit to CMB
measurements. Despite extensive searches we have been

FIG. 2 (color online). Matter power (top) and CMB (bottom)
power spectra for the �CDM (dashed green) and typical GEA
(solid red) models, with WMAP and SDSS constraints.
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unable to find any parameter set within the model that does
fit the WMAP data well; this is entirely in line with the
problems discussed above.

We use a parameter set which is consistent with big-
bang nucleosynthesis (BBN) limits on �Bh

2 and the
Hubble Space Telescope key project measurement of H0.
The standard cosmological parameters are: �bh

2¼
0:0193, ns¼0:83, H0 ¼ 89:3 km=s=Mpc, �ch

2¼0. The
new aether variables are cþ¼�4:72, c�¼�6:11, nae¼
0:34, �ae¼0:82, Mae ¼ 111:3 km=s=Mpc with c2 set by
requiring zero sound speed. This parameter combination is
in no sense optimal, but it does provide an illustration of all
the problems that arise here.

Figure 2 shows power spectra from our modified
Boltzmann code for this parameter set. The matter power
is a realistic fit to the SDSS data (this was the criterion for
our choice of parameters). The CMB spectra shows various
problems. In the low-‘ regime a large ISWeffect is clearly
present, destroying the fit at large scales, as described in
Sec. IVB. The positions of the peaks are poorly fit by the
model, as expected and discussed in Sec. IVA. Finally, in
the plot we have rescaled the amplitude of the matter power
spectrum by a factor 0.02, corresponding to a galaxy bias
of 0.14 in order to reconcile the relative amplitudes of the
two spectra with the data; such a scaling is unphysically

small. This corresponds to the changed growth rate de-
scribed in Sec. IVB. All these effects cause severe prob-
lems when attempting to simultaneously fit the CMB and
large-scale structure.
Figures 3 and 4 illustrate the sources of the extreme ISW

effects shown in Fig. 2; the time derivatives of the metric
quantities plotted create an ISW effect as shown in
Eq. (41). The onset of background acceleration in each
case is marked by a turnover in the curves at late time. The
generalized Einstein-aether (GEA) universe exhibits a dra-
matically increased j���j and time dependence of j�j
during the matter era as compared to the �CDM universe.
Although the j���j has a smaller magnitude its time
dependence can be significant for the total ISWeffect. Note
that values of 	 between the two universes do not corre-
spond to the same physical time or redshift since the
universes expand at different rates.

V. THE VECTOR FIELD AS DARK ENERGY

A. Dark energy regime

As shown in Fig. 1, our vector field can produce late-
time acceleration and so play the role of dark energy.
Indeed, for the form of the vector field used here, as the
index nae ! 0 the theory becomes the same as a cosmo-
logical constant for both the background and the perturba-
tions. Since the model can fit the data well we can use our
MCMC engine to find constraints on the parameters of the
vector field, telling us exactly how close to the nae ¼ 0

FIG. 3 (color online). Exotic behavior of metric potentials for
k� 10�2 Mpc�1. The panels show the fields j�j and j���j
for a �CDM universe (green solid line) and GEA universe
(dashed blue line) as a function of kð	� 	rÞ where 	r is the
conformal time of recombination.

FIG. 4 (color online). Equivalent of Fig. 3 for k�
10�4 Mpc�1.
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cosmological constant case the theory must be to fit the
CMB and large-scale structure data.

If the model can fit the data only extremely close to
nae ¼ 0 then it does not provide a compelling alternative to
the cosmological constant. If, on the other hand, there is
significant flexibility in the model and no fine-tuning, or if
it can provide a better fit than �CDM, then it is somewhat
more interesting.

In this section we will consider the resulting background
evolution, CMB temperature anisotropy, and matter power
spectrum for a universe containing the vector field, cold
dark matter, the conventional matter fields, and no cosmo-
logical constant. The acceleration will arise solely from the
vector field’s modification to the Friedmann equation.

B. Constraints on aether dark energy from data

Our MCMC generated the constraints on the vector field
parameters shown in Figs. 5–8; these curves are the
smoothed histograms from our combined Markov chains.

The most important trend evident in these results is
closeness of nae to the � value of zero. We find the best-

fit value nae ¼ 4:2	 10�3, with a 95% upper limit nae <
0:126.
The best-fit value in the MCMC run is very close to the

�CDM likelihood of the same data, at the cost of six extra
parameters, meaning that it is unlikely to be favored by any
model comparison exercise. It does, however, demonstrate
the validity of modified gravity-related dark energy
candidates.
Having obtained these constraints we can determine

their origin. There are two ways in which the vector field
must behave like � to provide a good fit. The first is that
the late-time acceleration should be close to that given by
�. The second is that any perturbations in the field (which
are not present in �) should not affect the observable
spectra.

C. Constraint origins—acceleration rates

The consistency of the acceleration of the Universe with
the cosmological constant equation of state w ¼ �1 is
being measured with increasing precision in supernova
and baryon-acoustic oscillation experiments (which are
beyond the scope of this paper). Here, they will be con-

FIG. 6 (color online). Constraints on the kinetic term power
law index parameter.

FIG. 5 (color online). Constraints on the three coupling terms
of the theory.

FIG. 7 (color online). Constraints on the vector field sound
speed parameter.

FIG. 8 (color online). Constraints on the parameter � ¼ c1 þ
3c2 þ c3.
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strained by the late-time ISW effect induced by dark en-
ergy, and by the perturbation growth rate.

We can assess how closely vector-induced acceleration
mimics �-driven expansion at late times with the equation
of state wae of the vector field in the background:

wae ¼ �1� 1

3H2

d2

dtdH F
d
dH ðFHÞ

: (50)

For the monomial form of FðKÞ we have that

wae ¼ �1� 2n

3ð2n� 1Þ
_H

H2
: (51)

Thus the equation of state will generically deviate from
�1 whenever n � 0 and so the acceleration for these
values will not be degenerate with a cosmological constant.
We see immediately from Eq. (51) that waeð	Þ<�1 for
0< n< 1=2 and waeð	Þ>�1 for n > 1=2. This is clearly
visible in Fig. 9.

D. Constraint origins—perturbation evolution

Even if the background expansion is rather close to the
�CDM model, the evolution of perturbations need not be.
This is most easily illustrated by considering the Poisson
equation on large scales (see [1] for a derivation). On these
large scales there is a time-dependent rescaling of the
metric perturbation�, which we can cast as a modification
of the effective gravitational constant G:

k2� ¼ �4�Gð1Þ
effa

2
X
i

��i�i; (52)

Gð1Þ
eff �

G

1þ c1
2 FK

; (53)

where we have assumed that terms proportional to the
velocity divergence are ignorable and provisionally con-
sidered the effect of the field � to be subdominant.

The Friedmann equation may be used to cast the above
equation in a more familiar form by eliminating the back-
ground �i in favor of background expansion rate of the
Universe and the time-dependent fractional energy density
�ið	Þ � 8�G�ð	Þ=ð3Hð	Þ2Þ. This yields

k2� ¼ � 3

2
H 2 G

ð1Þ
eff

Gð0Þ
eff

X
i

�ið	Þ�i; (54)

where

Gð0Þ
eff �

G

1� �K1=2 d
dK ð F

K1=2Þ
: (55)

The n ¼ 0 �CDM Poisson equation may be cast in this

form by taking Gð1Þ
eff ¼ G and Gð0Þ

eff ¼ G=ð1��=ð3H2ÞÞ.
For the case where n differs from 0, the function Gð1Þ

eff will

generically possess a time dependence during the back-
ground evolution. Therefore the link between the time

evolution of the functions Gð0Þ
eff , �i, and � will differ from

the case where acceleration is caused by a cosmological
constant. We may thus expect the ISW effect to be of a
nonstandard form. This is vividly illustrated in Fig. 10
where it can be seen that for a given set of ðci; �;MÞ,
variation of n results in a considerable variation in the
large-scale CMB temperature anisotropy. Also evident is
a variation in the matter power spectrum amplitude with n,
evident on all scales.

− 3

− 2

− 1

0

1

w
(z

)

1 2 5 10

1 + z

nae = 0 .1
nae = 0 .3
nae = 0 .4

nae = 0 .6
nae = 0 .7
nae = 0 .9

FIG. 9 (color online). The vector field’s equation of state as a
function of redshift z, for various values of the kinetic term index
nae.

FIG. 10 (color online). Matter power (top) and CMB (bottom)
power spectra for the various GEA dark energy models, with
WMAP and SDSS constraints. The power law function’s ex-
ponent n is varied.
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Variation of parameters other than n could also have a
significant impact on the success of the models. Given the
results of the previous section, it seems unlikely that any
influence of the field � would tend to improve the models.
This indeed seems to be the case. Figure 11 depicts various
models where the function is varied C2

S for fixed values of

the other parameters. In particular, n takes the value 0.1.
The functionC2

S is ultimately a measure of the ability of the

field � to sustain any homogeneous growing behavior for
ðk	Þ> 1; higher values will tend to limit the effect of the
vector field to larger and larger scales. The sets of parame-
ters were chosen so such a growing solution indeed existed
on superhorizon scales. The figure indicates that a growing
� field will indeed have deleterious effects on scales where
it is not suppressed. There is a significant ISW effect
evident for the red curve CMB; the corresponding model
must be considered as being at the edge of acceptability.
The corresponding large-scale matter power spectrum ex-
hibits exotic oscillations, entirely unrelated to the baryon-
acoustic oscillations which occur on other scales. Their
presence in this model is thus reflective of dynamics in the
dark energy sector.

VI. CONCLUSIONS

A. Being dark matter is hard

Generalized Einstein-aether can, with different parame-
ter choices, resemble dark matter in some important ways

but never all of them at once. Specifically, the new degrees
of freedom introduced by the model may conspire to
identically replicate one or more but not all of the follow-
ing properties of cold dark matter.

1. Background dynamics

To accomplish identical background dynamics to cold
dark matter, one must introduce considerable fine-tuning
into the function F of the theory. Specifically the function
must change form on either side of (dark) matter-radiation
equality. The parameter we tune to make this happen is in
the action itself, unlike the usual case where we simply
alter the abundance �c. Changes to fit cosmological ob-
servations can therefore have a larger impact on the small-
scale behavior of gravity.

2. The speed of sound

If the speed of sound is too high then structure cannot
form on small enough scales. In this model we may reduce
the sound speed to be close to zero, at the cost of one of our
parameters. When designing new gravity theories this is
perhaps the easiest structure formation constraint to inves-
tigate, and it should be examined to see if it conflicts with
other constraints needed to make the theory useful—for an
example, see [48].

3. Growth rate of ‘‘overdensity’’

Theories of modified gravity designed to replace dark
matter must necessarily have growing modes of fluctuation
in at least one of the new degrees of freedom they intro-
duce, in order to sufficiently source gravitational collapse
and structure formation on scales within their own sound
horizon. There remains some flexibility in the perturbation
growth rate, since the bias on the galaxy power spectrum
measurements is a free factor. As measurements of weak
lensing (which samples gravitation directly) and semian-
alytic models (which predict bias) improve this freedom
will be reduced.

4. Absence of anisotropic stress and contribution the
cosmological Poisson equation

A sufficiently small anisotropic stress associated with
the vector field may be implemented by fine-tuning the
parameter c13 to be very small [see Eq. (32)]. However, as
was discussed in Sec. IVB, even this will tend to come at
the expense of other desired behavior of the field. An
appreciable time variation of the anisotropic stress over
the time from last scattering to today can result in a very
poor fit to the low-‘ CMB C‘. This problem is likely to be
common in theories of modified gravity.
As we have seen, it is a combination of time variation of

the anisotropic stress and time variation of the field � via
the vector field’s effect on the cosmological Poisson equa-
tion that contribute to the ISW effect. Though both effects

FIG. 11 (color online). Matter power (top) and CMB (bottom)
power spectra for the various GEA dark energy models, with
WMAP and SDSS constraints. The squared speed of sound of
vector field perturbations is varied.
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are absent in the cold dark matter case, one may imagine
both effects being present in the vector field model but
being of equal and opposite sign. As with the case of the
isolated anisotropic shear contribution, it seems this is not
possible while maintaining the other constraints like the
existence of a growing mode.

5. Effective minimal coupling to the gravitational field

Even if the vector field growing mode gives an appro-
priate (dark matter-like) contribution to the Poisson equa-
tion, the link between the overdensity and the
corresponding � can differ from the cold dark matter
case. This difference can come from curvature terms in
the vector field stress-energy tensor, and its main conse-
quence is a time-dependent rescaling of Newton’s constant
G. Thus � may gain a time dependence during the matter
era even when there is a completely standard dark matter
contribution to the Poisson equation. The converse may
also be possible: the time dependence of an incorrect
Poisson contribution could be counteracted by a time
dependence of the effective G.

B. Being dark energy is easy

As a model for dark energy the generalized Einstein-
aether theory is more successful: we have obtained con-
straints on its parameters and found that it generates spec-
tra that fit the data across a reasonable range of its
parameter space. It is clear that modified gravity ap-
proaches to explaining late-time acceleration are viable
and can provide motivated explanations for dark energy
(though this theory retains the coincidence problem in the
guise of the parameter M).

1. Closeness to �

The most interesting constraint on this branch of the
theory is on the parameter nae and is shown in Fig. 6. In
some sense this parameter describes how closely the theory
mimics� (which has nae ¼ 0). The fact that this parameter
is rather free, nae < 0:126 (95% CL), is consistent with the
fact that a wide variety of other theories can also explain
dark energy: present structure formation data are not very
informative about the nature of dark energy, and deeper
require expansion probes like baryon-acoustic oscillation
and supernovae.

2. Sound speed

The other notable constraint on Einstein-aether dark
energy, which may extend to other modified gravity ap-
proaches, is the limits on the sound speed, illustrated in
Fig. 7. As shown in Fig. 11, an incorrect sound speed can
lead to large-scale oscillations by modifying the other
parameters of the theory and permitting a growing mode
excitation at late time.

3. Other constraints

The other constraints on the theory (which are easily
fulfilled by choosing the c parameters) come from ensuring
that no growing mode can disrupt the power spectra, that
the acceleration is close to the �CDM value, and that the
value of effective G remains positive at all times.

C. Future issues for modified gravity and structure
formation

Because �CDM is such a good fit to current cosmologi-
cal data, modified gravity will never be favored in a model
comparison exercise using only current data about linear
structure. It is only in combination with physics on galactic
and smaller scales that it can be persuasive. This work
highlights a few issues for future model-building in this
vein.
The generalized Einstein-aether model is a member of a

class of models in which the scaleM�H0 associated with
dark energy is visible to dark matter. Many of the issues
raised here will be relevant to any such models which try to
use a dark matter scale consistent with small-scale mod-
ifications to gravity.
A combination of probes sensitive only to the back-

ground (like type 1A supernovae) and to the behavior of
cosmological perturbations is needed to fully constrain
these theories. For example, a value nae ¼ 0:3 has wðzÞ �
1 at low redshift but is ruled out by our constraints.
Similarly there are models with nae � 0:75 that provide
reasonable spectra, but they are ruled out by wðzÞ
constraints.
There are, of course, a number of extensions to the

theory and features of it that could be changed; we could,
for example, allow M to vary dynamically, or add more
terms to the kinetic component F in Eq. (19). There are
also myriad possibilities in changing more general aspects
of the primordial conditions or cosmological parameters:
what happens if we add tensors? Can we include an iso-
curvature mode? Would massive neutrinos help? Or curva-
ture? This leads us to a key caveat that applies to this and
all similar work constraining new physics with linear
structure: a simple constraint from the data alone is worth-
less, since any of the numerous other parameters we could
change might conspire to counteract whatever problem it
solves. We need a physical explanation of a constraint’s
origin to understand whether it is robust to the cosmolo-
gist’s tinkering.
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APPENDIX A: THEMOND REGIME FðKÞ CANNOT
YIELD LATE-TIME ACCELERATION

The MOND branch of F applies in the regime 0 � K �
1; outside this range MOND does not prescribe its form.
Inside that range the MOND value is

c1F ¼ �2K þ 2

3
K3=2 ð0 � K � 1Þ: (A1)

The weak field limit of the Einstein-aether theory is

Kae
WF ¼ �c1

ðrÞ2
M2

; (A2)

where  is the conformal Newtonian potential. The weak
field MOND limit is

KMOND
WF ¼ ðrÞ2

a20
: (A3)

Clearly we can equate these by settingM2 ¼ �c1a
2
0. Using

this relation with Eq. (14) gives us this value for the
presentday cosmological K:

KFRWðt0Þ ¼ �3
�

c1

H2
0

a20
: (A4)

There are now two cases: �=c1 < 0 and �=c1 > 0. In
either case we need the measured values ofH0 and a0; they
are suggestively similar:

H0 � �a0 where � � 6: (A5)

If �=c1 < 0 then K > 0 and we are directly in the
MOND regime. Then we obtain the modified Friedmann
equation

H2

�
1þ �

c1
þ 3

2
�2

�
H

H0

���3�

c1

�
3=2

�
¼ 8�G�: (A6)

A self-accelerating solution to this is only possible if the
quantity in brackets is positive definite, so that H ! const
as � ! 0. This could only happen if �=c1<�1, but that
would violate our requirements that K � 1.

In the other case �=c1 > 0 we must extrapolate the
MOND form of F in Eq. (A2) to K < 0. To make the
extension continuous across the K ¼ 0, we should set
Fð�KÞ ¼ �FðKÞ, so that the MOND form becomes

c1F ¼ �2K � 2

3
ð�KÞ3=2 ð0 � �K � 1Þ: (A7)

The Friedmann equation then becomes

H2

�
1þ �

c1
� 3

2
�2

�
H

H0

��
3�

c1

�
3=2

�
¼ 8�G�; (A8)

which does have an accelerating solution. Unfortunately,

solving this equation at the present day for reasonable
values of �m shows that it requires K � 2, which again
violates our requirement that jKj � 1. Having exhausted
our other options we are forced to require K � 1, outside
the true MOND regime. This is consistent with another
separate analysis of the solutions of (16) [49]. It seems
likely that if the vector field is responsible for the late-time
acceleration then it is a result of behavior of the function
away from the MONDian limit. There is still though a role
for the near numerical coincidence of a0 and H0—it less-
ens the fine-tuning of the other parameters in F in order for
the acceleration to happen at suitably late times.

APPENDIX B: VECTOR AND TENSOR MODES

In this appendix, we provide the perturbed equations of
motion for the vector and tensor modes of the various fields
appearing in these models, namely, the metric, the vector
field, and the Lagrange multiplier. The latter, being scalar,
only have a spin-0 mode. The other two fields, gij and Ai,

are perturbed as

ds2 ¼ �a2d	2 þ a2Bid	dx
i þ a2ð�ij þ hijÞdxidxj

hij ¼ 2@ðiEjÞ þ 2Eij A� ¼
�
1

a
;
Ai

a

�
;

A� ¼ ð�a; aViÞ; (B1)

where the different fields introduced satisfy

@iB
i ¼ 0 ¼ @jEij ¼ @iE

i ¼ Ei
i and @iA

i ¼ 0: (B2)

We also introduce the useful quantity Vi ¼ Ai þ Bi and
remind that all the latin indices on the perturbed fields are
raised and lowered thanks to the Kronecker flat metric �ij.

In the following we use the unperturbed results

K ¼ 3M�2H 2�; J00 ¼ 6c2H ; Jij ¼ 2H��i
j;

I�00 ¼ 6c2H��
0 ; I�0i ¼ 0; I�ij ¼ �2H���

0 �ij:

(B3)

The Einstein equation (5) without matter introduces the
stress tensor

~T �� ¼ 1

2
r�½I���� þ T̂��

T̂�� ¼ �FKYð��Þ þ 1

2
M2g��F þ �A�A�;

where

I��� ¼ FK½Jð��A�Þ � J�ð�A�Þ � Jð��ÞA��: (B4)

As intermediate results we have

�K��
�� ¼ c1ð�g��g�� þ g���g��Þ; (B5)

�ðr�A
�Þ ¼ ��

i @�

�
Ai

a

�
þ ��

�k

Ak

a
þ ���

�0

a
; (B6)
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�Y0i ¼ �Yi0 ¼ c1ðHVi þ V 0
iÞ; (B7)

�T̂ij ¼ 1

2
M2Fa2hij;

�T̂0i ¼ 1

2
a2BiM

2F� �a2Vi � FK�Yð0iÞ;
(B8)

�J0i ¼
2H c3Vi

a
� 2c1V

0
i

a
;

�J0
i ¼ ��J0i þ

2H
a

ðc1 þ c3ÞBi;

(B9)

�Ji
0 ¼ ��Jj0�ij þ 2H

a
ðc1 þ c3ÞBi; (B10)

�Ji0 ¼ 2
c13B

i

a
H � 2

c1H
a

Vi þ 2c3V
i0

a
; (B11)

and

�Jij ¼ 2c1

�
@iAj

a
þ hi

0
j

2a
þ @½iBj�

a

�

þ 2c3

�
@jA

i

a
þ hi

0
j

2a
þ @½jBi�

a

�
: (B12)

We then obtain

�I�0i ¼ FK½2H c3Vi � 2c1V
0
i � 2H�Bi���

0

þ 2FKðc1 � c3Þ@½kVi� (B13)

with � ¼ c1 þ 3c2 þ c3, and

�Ii00 ¼ FK½�2c1V
i0 � 2c1HVi þ 2H c3V

i

þ 2c3V
i0 þ 6c2HAi�: (B14)

We also get

�I�ij ¼ ���
0FK�JðijÞ: (B15)

To obtain the perturbed Einstein equation, we then plug
these results into the relations

�r�I
�
0i ¼ @0ð�I00iÞ þ @kð�Ik0iÞ þ 2H�I00i

� ðBj0 þHBjÞI0ji � 6H 2c2BiFK � �0
ji�I

j
00;

�r�I
�
ij ¼ @0ð�I0ijÞ þ 2H�I0ij � I0kj��

k
0i

�H�ki�I
k
0j � ��k

0jI
0
ik �H�kj�I

k
i0:

We decompose these equations into Fourier components:

Xiðt; ~xÞ ¼ X
~k

X
m¼0;1

Xðt; ~kÞYiðmÞ
~k

;

Tijðt; ~xÞ ¼ X
~k

X
m¼0;1;2

Tðt; ~kÞYijðmÞ
~k

;
(B16)

where the orthonormal modes

Yð0Þ; Yð1Þ; Yð2Þ (B17)

are eigenmodes of the Laplace-Beltrami operator:

�YðmÞ
I ¼ �k2YðmÞ

I , I being an arbitrary set of Lorentz

indices. For more information on these functions, see
[17]. The perturbed vector field equation can then be
written

2�aV ¼ FKKK
0ð2H c3V � 2c1V

0Þ � 2c1FKV
00

� 4FKc1HV0

þ V

�
2
a00

a
c3FK þH 2ð2c3 þ 2c1ÞFK

�

� FKð2c1k2Aþ ðc1 � c3Þk2BÞ þ 3FKc2k
2E0:

(B18)

The spin-2 part of the ij Einstein equations gives

E00 þ2HE0 þ k2E

1þFKðc1þc3Þþ2FKKK
0ðc1þc3ÞE0 ¼ 0;

(B19)

while the spin-1 part of the 0
i Einstein equations gives the

same equation as (B18) and the spin-1 component of the ij
Einstein equation is, in space conventions,

0¼@ðiE00
jÞ þ

2ð1�2�ÞH þ2c13
1
a2
ða2FKÞ0 þ4�HFK

1þ2FKc13

	@ðiE0
jÞ �

@ðiB0
jÞ �c13FK@ðiA0

jÞ
1þ2FKc13

�2ð2H 0 þH 2ÞþM2F a2þ4�ðHFKÞ0 þ8H 2�F
1þ2FKc13

	@ðiEjÞ �
2H@ðiBjÞ
1þ2FKc13

þc13FKKK
0 þ2c13HFK

1þ2FKc13
@ðiAjÞ:

(B20)

In order to compare with the results of [17] let us consider
the gauge Ej ¼ 0. The spin-1 part of the ij Einstein equa-

tions (B20) implies

Bi ¼ c13FKAi: (B21)

After that we can rewrite (B18) as

A00 ¼ �
�
2H þ FKK

c1FK

K0
�
A0 � FK

2c1

	 2c1 þ FKðc21 � c23Þ
1þ FKc13

k2Aþ
�
H

c3FKK

c1FK

K0 þ a00

a

	 c3
c1

þH 2 c13
c1

� �a

FKc1

�
A

and obtaining the exact expression of � in the case FðKÞ ¼
K,
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� ¼ 3c13
H 2

a
� 3c2

a00

a2
þ 6c2

H 2

a
; (B22)

implies in this latter case

c1ð2HA0 þ A00Þ ¼ � 1

2

�
c1 � c3 þ c13

1þ c13

�
k2A

�
�
2�H 2 � �

a00

a
þ c1

a00

a

�
A:

(B23)

It is interesting to find that in the limit whereF ðKÞ ¼ K
we recover results from [17] for (B19), (B22), and (B21).

A quick look at (B19) and (B22) implies the existence of
two different speeds

C2
T � 1

1þ FKc13
; C2

V � FK

2c1

2c1 þ FKðc21 � c23Þ
1þ FKc13

;

(B24)

being the sound speeds, respectively, of the tensor pertur-
bation Eij and the vector perturbation Ai. These speeds

must be positive, so that it implies constraints on the
parameters of the theory and the function FðKÞ. In particu-
lar, FK � const will imply nontrivial constraints between
the fields of the theory and the parameters ci:

1þ FKc13 > 0 FK

�
1þ FK

c21 � c23
2c1

�
> 0: (B25)
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