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Spectacular breakthroughs in numerical relativity now make it possible to compute spacetime dynamics

in almost complete generality, allowing us to model the coalescence and merger of binary black holes with

essentially no approximations. The primary limitation of these calculations is now computational. In

particular, it is difficult to model systems with large mass ratio and large spins, since one must accurately

resolve the multiple length scales that play a role in such systems. Perturbation theory can play an

important role in extending the reach of computational modeling for binary systems. In this paper, we

present first results of a code that allows us to model the gravitational waves generated by the inspiral,

merger, and ringdown of a binary system in which one member of the binary is much more massive than

the other. This allows us to accurately calibrate binary dynamics in the large mass ratio regime. We focus

in this analysis on the recoil imparted to the merged remnant by these waves. We closely examine the

‘‘antikick,’’ an antiphase cancellation of the recoil arising from the plunge and ringdown waves, described

in detail by Schnittman et al. We find that, for orbits aligned with the black hole spin, the antikick grows

as a function of spin. The total recoil is smallest for prograde coalescence into a rapidly rotating black

hole, and largest for retrograde coalescence. Amusingly, this completely reverses the predicted trend for

kick versus spin from analyses that only include inspiral information.
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I. INTRODUCTION AND BACKGROUND

A. Modeling binary systems in general relativity

After roughly three decades of effort, numerical relativ-
ity can now model nearly arbitrary binary black hole
configurations. Following Pretorius’ pioneering ‘‘break-
through’’ calculation [1], and then the successes of the
Brownsville and Goddard groups using techniques that
required only modest modifications to the methods they
used before the breakthrough [2,3], the past few years have
seen an explosion of activity. Recent work has studied the
impact of the many physical parameters that describe
binaries, such as mass ratio [4,5], spin and spin alignment
[6–9], and eccentricity [10,11]. As numerical models have
improved, analytic tools for modeling binary systems [12]
and connecting numerics and analytics have likewise ma-
tured. In particular, the effective one-body (EOB) [13–16]
approach to binary dynamics, which maps the dynamics of
a binary to that of a point particle moving in an ‘‘effective’’
spacetime corresponding to a deformed black hole, has
been found to outstandingly describe the outcome of nu-
merical relativity calculations after some adjustable pa-
rameters in the EOB framework are calibrated to numer-
ical calculations [17–20]. Our understanding of the two-
body problem in general relativity has never been better.

These efforts are largely motivated by the need for
accurate models of coalescing black holes to detect and
measure merger signals in the data of gravitational-wave
(GW) detectors. Black holes with masses of roughly

106–109M� indisputably reside at the cores of essentially
every galaxy with a central bulge [21,22]. In the hierarch-
ical growth of structure, these black holes will form bi-
naries as their host galaxies merge and grow [23];
estimates of how often such binaries form indicate that
the proposed space-based detector LISA [24,25] should be
able to measure at least several and perhaps several hun-
dred coalescences over a multiyear mission lifetime [26].
There is already a catalog of candidate binaries in this mass
range, such as active galaxies with double cores [27–29],
systems with doubly peaked emission lines [30,31], and
systems that appear to be periodic or semiperiodic, such as
the blazar OJ287 [32]. The last year or so of the binary’s
life will generate GWs at frequencies to which LISA is
sensitive; measuring those waves will make it possible to
precisely map the distribution of cosmic black hole masses
and spins, opening a new observational window onto the
high-redshift growth of cosmic structure.
Less massive black hole binaries (several to several

hundred M�) will be targets for the ground-based GW
detector network, currently including LIGO [33], Virgo
[34], and GEO [35], and hopefully including the proposed
detectors LCGT [36], AIGO [37], and the ‘‘Einstein
Telescope’’ [38] in the future. Formation scenarios and
event rate estimates in this band are much less certain,
since the demographics of the relevant black holes and
scenarios for them to form binaries are not as well under-
stood as in the supermassive range. However, scenarios
involving dynamic binary formation in dense clusters sug-
gest that this network can plausibly expect an interesting
event rate [39–43], strongly motivating the construction of
binary merger models for these detectors.
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Finally, moving back to the LISA band, binaries in
which one member is much less massive than the other
are expected to be an important source. Such extreme mass
ratio binaries are created when a stellar mass secondary
(� 1–100M�) is scattered through multibody interactions
onto a highly relativistic orbit of a roughly 106M� black
hole in the center of a galaxy. Though rare on a galaxy-by-
galaxy basis, enough galaxies will be in the range of LISA
that the number measurable is expected to be several dozen
to several hundreds [44]. The waves from these binaries
largely probe the quiescent spacetimes of their larger (pre-
sumably Kerr) black hole, making possible precision tests
of the strong-field nature of black hole spacetimes [45].

In short, astrophysical binary black holes will come in a
wide range of mass ratios. Computational models must be
able to handle systems with mass ratios ranging from near
unity, to millions to one. Each mass m sets a length scale
Gm=c2 which the code must be able to resolve. Large mass
ratios require codes that can handle a large dynamic range
of physically important length scales.

Perturbation theory is an excellent tool for modeling
binaries with very large mass ratios. In this limit, the
binary’s spacetime is nearly that of its largest member,
with the smaller member acting to distort the metric from
the (presumably) exact Kerr solution of that ‘‘back-
ground.’’ It is expected that tools based on perturbation
theory will be crucial for modeling extreme mass ratio
systems described above (mass ratios of 104:1 or larger).
Even for less extreme systems, perturbative approaches are
likely to contribute important wisdom, working in concert
with tools such as numerical relativity and the effective
one-body approach.

The foundational examples of such an analysis are the
papers of Nagar, Damour, and Tartaglia [46] and of
Damour and Nagar [47]. In that work, the EOB framework
is used to construct the quasicircular late inspiral and
plunge of a small body into a nonrotating black hole.
Regge-Wheeler-Zerilli methods [48,49] are then used to
compute the GWs that arise from a small body that follows
that trajectory into the larger black hole. Those authors use
this large mass ratio system as a ‘‘clean laboratory’’ for
investigating binary dynamics, and advocate using these
techniques as a tool for probing delicate issues such as the
form of the waves that arise from the plunge, and the
matching of the final plunge waves to the late ringdown
dynamics of the system’s final black hole.

Our goal here is to develop a similar toolkit based on
perturbation theory applied to spinning black holes. We
have developed two perturbation theory codes which we
use to model different aspects of binary coalescence. Both
codes solve the Teukolsky equation [50], computing per-
turbations to the curvature of a Kerr black hole. One code
works in the frequency domain [51,52], which works well
for computing the averaged flux of quantities such as
energy and angular momentum carried by GWs. The other

code works in the time domain [53,54], which is excellent
for calculating the aperiodic GW signature of an evolving
source. As originally proposed in Ref. [55], we have de-
veloped a hybrid approach which uses the best features of
both the time- and frequency-domain codes to model the
full coalescence process. (Although our ultimate goal is to
develop a set of tools similar to those developed by
Damour, Nagar, and Tartaglia, we note that our techniques
are the moment largely numerical, as opposed to the mix-
ture of numerical and analytic techniques developed in
Refs. [46,47]. It would be worthwhile to connect the
work we present here to the body of EOB work, but have
not yet begun doing so in earnest.)
As we were completing this paper, a perturbation-the-

ory-based analysis of binary merger was presented by
Lousto et al. [56]. Their analysis does not use the
Teukolsky equation, but is otherwise very similar in style
and results to what we do here. In particular, they note as
we do here that the perturbation equations terminate the
merger waveform in a set of ringdown waves in a very
natural way, thanks to the manner in which the equation’s
source redshifts away as the infalling body approaches the
large black hole’s event horizon. This behavior was also
pointed out and exploited by Mino and Brink [57] in their
(largely analytic) perturbative analysis of recoil from
waves from the late plunge. We expand on this point in
more detail at appropriate points later in the paper.
As our use of the Teukolsky equation requires, we

assume that a binary can be well described by a small
body moving in the spacetime of a (much larger) Kerr
black hole. We first build the worldline that the smaller
body follows as it slowly inspirals and then plunges into
the black hole. We assume that, early in the coalescence,
the small body moves on a geodesic of the background
Kerr spacetime. Using the frequency-domain perturbation
theory code to compute their rates of change, we allow the
energy E, angular momentum Lz, and Carter constantQ of
this configuration to evolve. (In fact, we confine ourselves
to equatorial orbits in this analysis, so Q ¼ 0 throughout
the binary’s evolution.) This drives the smaller body in an
adiabatic inspiral through a sequence of orbits, until we
approach the last stable orbit of the large black hole.1

We then make a transition to a plunging orbit, using the
prescription of Sundararajan [58] which in turn generalized
earlier work by Ori and Thorne2 [59]. By properly con-
necting the adiabatic inspiral to a plunge, we make a full
worldline describing the small body’s coalescence with the

1At present, we do not include the conservative impact of self
forces. These forces are included in the EOB-framework analy-
ses of Damour, Nagar, and Tartaglia.

2A similar approach to the transition from inspiral plunge, but
valid for arbitrary mass ratios and presented using the EOB
framework, was developed by Buonanno and Damour [14], and
appeared in press before Ref. [59].This approach is used in
Refs. [46,47] to compute the transition from the slow, adiabatic
inspiral to plunge.
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larger black hole. This worldline gives us the source for our
time-domain perturbation theory code, from which we
compute the GWs generated by the system as the small
body evolves from the (initially near geodesic) inspiral
through the plunge and merger. The waves which we
compute in this way have qualitatively the same ‘‘inspiral,
merger, ringdown’’ structure seen in numerical relativity
simulations, though much work remains to quantify the
degree of overlap.

As an illustration of the utility of our perturbative tool-
kit, we focus in this paper on the problem of GW recoil.
Studies of GW recoil have been particularly active in
recent years; we review this problem and its literature in
the next subsection.

B. Gravitational-wave recoil

The asymmetric emission of GWs from a source carries
linear momentum. The system then recoils to enforce
global conservation of momentum. Early work demon-
strated the principle of this phenomenon [60,61];
Bekenstein [62] appears to have been the first to appreciate
the important role it could play in astrophysical problems.
Much recent work has focused on the recoil imparted to the
merged remnant of binary black hole coalescence.

The first estimates of binary black hole kick were made
by Fitchett [63]. He treated the gravitational interaction as
Newtonian and included the lowest order mass and current
multipoles needed for GW emission to compute the recoil
velocity. This early calculation predicted that recoil veloc-
ities could approach thousands of km=s, which is greater
than the escape velocity for many galaxies. Because of his
restriction to low-order radiation formulas, and his use of
Newtonian gravity to describe binary dynamics, it was
clearly imperative that Fitchett’s calculations be revisited;
a prescient analysis by Redmount and Rees [64] particu-
larly argued for the need to account for the effect of black
hole spins in the coalescence.

Over the past several years, quite a few calculations have
substantially improved our ability to model the recoil in
general relativity. The various approaches can be grouped
as follows:

(i) Black hole perturbation theory: As discussed exten-
sively above, black hole perturbation theory is a
good tool for describing binaries involving a massive
central black hole (of mass M) and a much less
massive companion (of mass �). Shortly after
Fitchett’s pioneering binary calculation, Fitchett
and Detweiler examined whether strong-field gravity
changed the conclusions using perturbation theory
[65]. Twenty years later, Favata, Hughes, and Holz
[66] argued that, properly extrapolated, reasonable
results can be obtained for quantities such as the
integrated black hole kick up to a mass ratio�=M�
Oð0:1Þ. Unfortunately, the Favata et al. analysis has
a rather large final error since the frequency-domain

tools they use do not work well at modeling the GWs
arising from the final plunge of the smaller body into
the large black hole. One of our goals in this analysis
is to revisit that calculation and reduce those sub-
stantial error bars.
Another application of perturbation theory is the ‘‘-
close-limit approximation,’’ [67] which describes the
last stages of a merging binary as the dynamics of a
distorted single black hole. Sopuerta, Yunes, and
Laguna [68] applied the close-limit approximation
to describe the final waves from unequal mass bi-
naries, obtaining results that compare very well with
those that have since been computed within ‘‘full’’
numerical relativity.
Finally, Mino and Brink [57] used perturbative tech-
niques to model the waves from the plunge, quanti-
fying the manner in which the geometry of the final
infall impacts the kick imparted to the binary. As
already mentioned, their analysis also took advan-
tage of the manner in which the source redshifts
away as the infalling body approaches the larger
black hole’s event horizon.

(ii) Post-Newtonian (PN) theory: PN theory describes
the spacetime and the motion of bodies in the space-
time as an expansion in the Newtonian gravitational
potential Gm=rc2 (where m is a characteristic sys-
tem mass, and r a characteristic black hole separa-
tion). Blanchet, Qusailah, and Will [69] used an
approach based on this expansion to substantially
improve estimates of the recoil from the final plunge
and merger; though consistent with the results from
[66], they were able to reduce the error bars by a
substantial factor. More recently, Le Tiec, Blanchet,
and Will [70] combined a PN inspiral with a close-
limit computation of the merger and ringdown to
compute the recoil for the coalescence of nonspin-
ning black holes. This analysis is quite similar in
spirit to the one we present here, though it does not
use perturbation theory throughout.

(iii) Numerical relativity: Not long after it first became
possible to model the coalescence of two black holes
in numerical relativity, this became the technique of
choice for computing black hole recoil. No other
technique is well suited to computing wave emission
and spacetime dynamics for very asymmetric,
strong-field configurations which are likely to pro-
duce strong GW recoils. Numerical relativity was
needed to discover the so-called ‘‘superkick’’ con-
figuration: an alignment of spin and orbital angular
momentum which results in a kick of several thou-
sand kilometers per second [71–73]. In most con-
figurations, the kick tends to be substantially smaller,
peaking at a few hundred kilometers per second [74–
76].

(iv) Effective one-body: As already described, EOB de-
scribes a binary as a test body orbiting in the space-
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time of a ‘‘deformed’’ black hole, with the deforma-
tion controlled by factors such as the mass ratio of
the binary. Damour and Gopakumar [77] first exam-
ined the issue of how to compute recoil within the
EOB framework, analytically identifying the major
contributions to the recoil that accumulates over a
coalescence, including the importance of the final
merger and recoil waves in providing an ‘‘antikick’’
contribution. By calibrating some parameters of the
EOB framework with results from numerical relativ-
ity, EOB has had great success generating wave-
forms and recoil velocities that match well with
those from numerical relativity [78,79].

With the exception of the superkick configuration, all of
these techniques predict recoils that peak at roughly a few
hundred kilometers per second (depending on mass ratio,
spins, and spin-orbit orientation; see [80] for detailed dis-
cussion and statistical analysis). This is substantially lower
than the peak predicted by Fitchett’s original calculation;
his overestimate can be ascribed to neglect of important
curved spacetime radiation emission and propagation
effects.

In addition to their potential astrophysical applications,
recoil computations serve another important purpose: They
are a common point of comparison for these four ap-
proaches to strong-field gravity. The recoil velocity from
a merging binary is calculated by integrating the emitted
radiation over some number of orbits. Any significant
systematic error in the approach used will tend to magnify
the error in the estimated recoil velocity. Thus, the eval-
uated recoils for a range of black hole spins and mass ratios
serve as a good platform for comparing various approaches
to strong-field binary models.

C. This paper

Our goal is to revisit and improve the estimate of black
hole recoil via black hole perturbation theory that was
originally developed in Ref. [66]. That analysis predicts
upper and lower bounds which are rather widely separated.
This is because the analysis of [66] could not accurately
model wave emission from the final plunge and merger.
Using the time-domain perturbation theory code developed
and presented in Refs. [53,54], we can now compute the
contribution of those waves. As we describe in more detail
in Sec. V, doing so completely reverses the conclusions of
Ref. [66] regarding how the kick behaves as a function of
spin. In particular, including the plunge and merger is
crucial to correctly computing the ‘‘antikick,’’ the out-of-
phase contribution to the recoil that arises from the merg-
er’s final GWs. This contribution to a binary’s total recoil
was first identified and characterized by Schnittman et al.
[81]. We find that the inability to include this contribution
in Ref. [66] is largely responsible for the large error bars in
that analysis.

We begin by reviewing in Sec. II how we construct the
worldline which the smaller member of our binary follows

as it spirals into the larger black hole. As briefly described
above, we break this trajectory into a slowly evolving
‘‘inspiral’’ (Sec. II A) followed by a transitional regime
(Sec. II B) that takes the binary into a final plunge and
merger (Sec. II C). This review is left general, so that in
principle one could describe these dynamics for generic
orbital geometry. We specialize in our analysis here to the
simplest circular and equatorial orbits (Sec. II D).
We next briefly review how we compute gravitational

radiation from a body moving on this trajectory. As men-
tioned above, our approach is based on finding solutions to
the Teukolsky equation [82] for Kerr black hole perturba-
tions. We review this equation’s general properties in
Sec. III, and then discuss the principles behind solving it
in the frequency domain (Sec. III A) and in the time
domain (Sec. III B). Section IV summarizes how one com-
putes the radiation’s linear momentum and the recoil of a
merged system.
Section V presents the results of our analysis. We begin

in Sec. VAwith general considerations on how our results
scale with mass ratio. Because we work strictly within the
context of linearized perturbation theory, all of our results
can be easily scaled to different mass ratios, provided
that the scaling does not change the system so much that
the validity of perturbation theory breaks down.
Reference [66] argued that a modified scaling would allow
us to estimate with reasonable accuracy quantities related
to the recoil even out of the perturbative regime. Although
those arguments are valid during the adiabatic inspiral,
they break down when the members of the binary merge.
In Sec. VB, we then discuss in some detail the gravita-

tional waveform we find for binary coalescence in the large
mass ratio limit. We examine the different multipolar con-
tributions to the last several dozen cycles of inspiral,
followed by the plunge and merger. These examples illus-
trate the manner in which the coalescence waves very
naturally evolve into a ‘‘ringdown’’ form. As discussed
in some detail in Sec. III B, this behavior arises by virtue of
how the Teukolsky equation’s source term goes to zero, so
that its solutions transition to their homogeneous form, as
the infalling body approaches the large black hole’s event
horizon. Mino and Brink [57] first appear to have exploited
this behavior, which was also seen in recent work by
Lousto, Nakano, Zlochower, and Campanelli [56]. This
demonstrates the power of perturbative methods at model-
ing physically important aspects of the merger waves.
Section VC examines the recoil that arises from these

waves, focusing on how it depends (for the circular, equa-
torial case that we study) on the spin of the larger black
hole. This analysis demonstrates very clearly the impact of
the antikick first reported by Schnittman et al. [81]. With
the antikick taken into account, the smallest recoils come
from the largest spins when the merger is in a prograde
sense; the largest spins come from retrograde mergers with
large spins. The waves which give the system its antikick
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come from those produced by the final plunge and merger,
demonstrating very clearly the substantial impact these
waves have on the system. We conclude this section by
briefly discussing the convergence of our recoil results as a
function of black hole spin. Interestingly, we find that the
number of modes we must include in order for our results
to converge is a strong function of the black hole’s spin—
rapid spin, prograde cases need more modes than do slow
spin cases, which in turn need more modes than rapid spin,
retrograde cases. We conclude the paper by discussing in
Sec. VI how these tools may be used to expand the reach of
two-body modeling in general relativity, and our future
plans.

Throughout our analysis we generally use units in which
G ¼ c ¼ 1. We sometimes use c ¼ 3� 105 km= sec in
order to present kicks in ‘‘physical’’ units.

II. BUILDING THE INSPIRAL AND PLUNGE
TRAJECTORY

Roughly speaking, our coalescence model has two in-
gredients. First, we compute the worldline that the small
body follows as it spirals from large radius through plunge
into the black hole. We then use that worldline to build the
source for the Teukolsky equation and compute the GWs
that are generated as the smaller body follows the worldline
into the black hole. Though for simplicity we describe
these ingredients as though they stand in isolation, they
are in fact strongly coupled. We describe here how we
compute the inspiral and plunge trajectory, deferring dis-
cussion of how we compute radiation from this trajectory
to Sec. III. Throughout, we indicate how these steps are
coupled to one another.

The trajectory which the small body follows can be
broken into three pieces: An early time inspiral, in which
the smaller member of the binary is approximated as
evolving through a sequence of bound orbits of the larger
black hole; a late-time plunge, in which the small body
falls into the larger black hole; and an intermediate tran-
sition which smoothly connects these two regimes. We
now briefly review how we model these different pieces.

In all of these regimes, we treat the zeroth order motion
of the small body as a geodesic of the Kerr spacetime.
These geodesics must be augmented by the conservative
action of a self force if one’s goal is to make a model that
faithfully reproduces the phase of binary black hole GWs.
For our present goal of estimating the GW recoil, we
expect that the error due to neglecting this force is not
important. Kerr black hole geodesics [83] are described by
the following equations for the motion in Boyer-Lindquist
coordinates r, �, �, and t:

�
dr

d�
¼ � ffiffiffiffi

R
p

; (2.1)

�
d�

d�
¼ � ffiffiffiffiffiffi

V�

p
; (2.2)

�
d�

d�
¼ V�; (2.3)

�
dt

d�
¼ Vt: (2.4)

The potentials appearing here are

R ¼ ½Eða2 þ r2Þ � aLz�2 � �½ðLz � aEÞ2 þ�2r2 þQ�;
(2.5)

V� ¼ Q� cos2�½a2ð�2 � E2Þ þ csc2�L2
z�; (2.6)

V� ¼ csc2�Lz � aEþ a

�
½Eðr2 þ a2Þ � Lza�; (2.7)

Vt ¼ aðLz � aEsin2�Þ þ r2 þ a2

�
½Eðr2 þ a2Þ � Lza�:

(2.8)

The quantity M is the large black hole’s mass, a is that
hole’s Kerr spin parameter, and� is the mass of the smaller
body which perturbs the black hole spacetime. The func-
tions � ¼ r2 þ a2cos2� and � ¼ r2 � 2Mrþ a2. In the
absence of radiation emission, the energy E, axial angular
momentum Lz, and Carter constant Q are constants of the
motion; up to initial conditions, choosing these three con-
stants defines a geodesic.
Equations (2.1), (2.2), (2.3), and (2.4) are the starting

point for building the smaller body’s inspiral and plunge
worldline. We now describe in some detail how we use
them for this computation.

A. The inspiral

We approximate the inspiral as a slowly evolving se-
quence of bound Kerr geodesics (neglecting for now con-
servative aspects of the self interaction). Momentarily
ignore the impact of radiation emission. In this limit, the
orbits are determined by selecting E, Lz, and Q plus initial
conditions, and are completely characterized by three or-
bital frequencies describing their periodic motions in the r,
�, and � coordinates [84]. This periodic nature means that
functions built from the orbital motion can be usefully
represented by a discrete Fourier expansion.
To build our inspiral, we assume that radiation acts

slowly enough that, to a good approximation, we can treat
the small body’s worldline as a Kerr geodesic at each
moment. We then use the frequency-domain Teukolsky
solver described in Sec. III to compute the rates at which
E, Lz, and Q evolve due to GW backreaction. From these
rates of change, we build the time-varying parameters EðtÞ,
LzðtÞ, and QðtÞ which describes the sequence of orbits the
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small body passes through on its inspiral. More detailed
discussion of this procedure is given in Refs. [55,85].

B. The last stable orbit and the transition to plunge

Our assumptions, and hence our procedure for comput-
ing the inspiral, break down as the small body approaches
the last stable orbit, or LSO. This is worth describing in
some detail. For bound orbits, the function RðrÞ defined in
Eq. (2.5) generally has four real roots. Denote these roots
r1 > r2 > r3 > r4. The root r4 is generally inside the event
horizon,3 and is not interesting for our discussion. The
roots r1, r2, and r3 on the other hand, are quite important.
When these roots are distinct, the geodesic describes an
eccentric orbit that oscillates between r1 (apoapsis) and r2
(periapsis). When r1 ¼ r2 > r3, the geodesic describes a
circular orbit at r ¼ r1. (In this case, we also have
dR=dr ¼ 0 at r ¼ r1.) When r2 ¼ r3, the orbit is margin-
ally stable. (The triple root r1 ¼ r2 ¼ r3 denotes a mar-
ginally stable circular orbit.) Once we reach this point, the
small body will rapidly plunge into the black hole. This
condition defines the LSO.

As inspiral proceeds, the roots r2 and r3 approach one
another, indicating that GW backreaction is carrying the
small body toward the LSO. We model the transition from
slowly evolving geodesics through the LSO to plunge by
expanding the equations of motion around their behavior at
the LSO, as described in Ref. [58] (which generalizes
Ref. [59]). More specifically, we take the constants in the
transition to be given by

EðtÞ ’ ELSO þ ðt� tLSOÞ _ELSO; (2.9)

and similarly for Lz and Q. Here, ELSO and _ELSO are the
energy and its rate of change at the LSO (the latter calcu-
lated using our frequency-domain Teukolsky equation
solver), and tLSO is the time at which the LSO is reached.
We integrate the geodesic equations using this form from a
time tstart < tLSO until a time tend > tLSO. Reference [58]
describes how we choose tstart and tend as a function of
parameters such as the black hole spin a and binary mass
ratio. For our purposes, it is enough to note that, provided
they are chosen within a well-defined range, our results are
robust to that choice—varying tstart and tend does not sig-
nificantly change the recoil. A more careful investigation
may clarify the optimal way to define these transition
parameters.

C. The plunge

For t > tLSO, the geodesics described by EðtÞ, LzðtÞ, and
QðtÞ correspond to plunging geodesics, i.e., trajectories
which fall into the large black hole. As described in
Ref. [58], the transition matches onto a plunging trajectory
most simply by just holding these parameters constant for

t � tend. This is justified by the fact that radiation reaction
does not have a strong impact in the final plunge
[46,47,86]: careful analysis indicates that an orbit’s energy
and angular momentum remain nearly constant during the
final plunge into the black hole.
As the small body approaches the black hole, its motion

as viewed by distant observers appears to ‘‘freeze’’ onto
the generators of the event horizon.4 When this happens,
the source term of the Teukolsky equation redshifts to zero
[cf. Eq. (2.46) of Ref. [53]]. Since the homogeneous
Teukolsky equation’s solutions are the quasinormal modes
of the binary’s large black hole, this means that the final
cycles of radiation from our coalescing system are very
naturally given by the system’s ringdown modes.

D. Specialization to circular equatorial orbits

Until now, we have kept the discussion of these inspiral
and plunge trajectories general in order to emphasize that
our approach can be applied to totally generic coales-
cences. For this first analysis, we now focus on the simplest
interesting case, circular orbits confined to the equatorial
plane of the larger black hole. In this limit, geodesic orbits
are totally characterized by the orbit’s radius; Ref. [83]
gives an outstanding summary of their properties.
The energy, angular momentum, and Carter constant of

circular equatorial orbits are given by

E ¼ 1� 2M=r� aM1=2=r3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M=r� 2aM1=2=r3=2

q ; (2.10)

Lz ¼ �
ffiffiffiffiffiffiffi
rM

p ð1� 2aM1=2=r3=2 þ a2=r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M=r� 2aM1=2=r3=2

q ; (2.11)

Q ¼ 0: (2.12)

Upper sign refers to prograde coalescences (orbital angular
momentum parallel to black hole spin), lower sign to
retrograde (antiparallel). These orbits are characterized
by a single frequency associated with the azimuthal mo-
tion,

� ¼ �� ¼ � M1=2

r3=2 � aM1=2
: (2.13)

The last stable orbit is located at

rlso=M ¼ 3þ Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� Z1Þð3þ Z1 þ 2Z2Þ

q
; (2.14)

Z1 ¼ 1þ ð1� a2=M2Þ1=3 � ½ð1þ a=MÞ1=3
þ ð1� a=MÞ1=3�; (2.15)

3In fact, r4 ¼ 0 for equatorial orbits (Q ¼ 0) and for orbits of
Schwarzschild black holes (a ¼ 0).

4This behavior led many researchers to call these solutions
‘‘frozen stars’’ in the early literature.
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Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ 3a2=M2

q
: (2.16)

Our procedure for building an inspiral and plunge tra-
jectory reduces, in the equatorial circular limit, to the
following algorithm:

(1) Choose a mass � for the smaller body, and mass M
and spin a for the larger black hole.5 Pick an initial
orbital radius r and an initial azimuth � for the
smaller body’s trajectory.

(2) Evolve through a sequence of circular, equatorial
orbits using _E computed with the frequency-domain
code (described in the following section). For these
orbits, we do not need to compute _Q since Q ¼ 0
over the entire sequence. Also, in this case _Lz is
simply related to _E, so computing it does not pro-
vide additional information.

(3) As we approach the last stable orbit, switch to the
transition trajectory following Ref. [58]. In particu-
lar, Ref. [58] describes how to choose the times at
which we start and end the transition regime, which

depends in detail on the system’s mass ratio, the
larger black hole’s spin, and the orbit geometry. For
circular, equatorial orbits, this prescription reduces
to that given in Ref. [59].

(4) When we reach tend, hold the parameters E and Lz

constant, and allow the small body to follow the
plunging trajectory so defined into the larger black
hole.

An example trajectory is shown in Fig. 1. For this figure,
we examine a binary with a mass ratio �=M ¼ 10�4. The
larger black hole has a spin a ¼ 0:3M. We start our pro-
grade trajectory at r ¼ 5:23M, close to the LSO at r ¼
4:98M. The smaller body orbits roughly 25 times before
crossing the LSO; shortly thereafter, it rapidly plunges into
the black hole, locking onto the horizon as seen by distant
observers. The inset in the left panel of Fig. 1 zooms in on
its approach to the horizon, showing that our plunge tra-
jectory smoothly asymptotes to the final ‘‘horizon locking’’
behavior.

III. COMPUTING RADIATION

We compute gravitational radiation from our model
binaries using the Teukolsky equation, which describes
the evolution of curvature perturbations to a Kerr black
hole [82,87]. In Boyer-Lindquist coordinates, it is given by

FIG. 1. Example quasicircular inspiral and plunge trajectory. For this calculation, the larger black hole’s spin was set to a ¼ 0:3M,
and the binary’s mass ratio is �=M ¼ 10�4. Left panel shows rðtÞ, the trajectory’s radius as a function of time; right panel shows the
same trajectory as viewed in the equatorial plane of the larger black hole. On the left, the dotted line at r ¼ 4:98M labels the radius of
the prograde last stable orbit. Our trajectory, which starts at r ¼ 5:23M, executes about 25 orbits before crossing this point. The inset
there zooms in on the region t ’ 2260M, showing the smaller body’s trajectory as it approaches the event horizon at r ¼ 1:955M. On
the right, the heavy circle at r ¼ 1:955M is the hole’s event horizon; notice how the particle quickly ‘‘locks’’ onto the horizon after the
plunge which follows its slow inspiral.

5As is common with codes of this sort, we normalize most
dimensionful quantities to M. As such, we really pick mass ratio
�=M; the impact of M can then be accounted for in post-
processing after the numerics have been evaluated.
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� ðs2cot2�� sÞ�¼�4�ðr2 þ a2cos2�ÞT; (3.1)

where M is the mass of the black hole, a its angular

momentum per unit mass, � ¼ r2 � 2Mrþ a2, r� ¼
M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
. The quantity s is the ‘‘spin weight’’ of

the field under study. Choosing s ¼ 0means the perturbing
field is a scalar field; s ¼ �1 describes a spin-1 (electro-
magnetic) perturbation, and s ¼ �2 describes gravita-
tional perturbations. For s ¼ þ2, the field � is given by
the Weyl curvature scalar c 0 (see [88] for precise defini-
tions and discussion of this quantity); for s ¼ �2, � ¼
ðr� ia cos�Þ4c 4, where c 4 is another curvature scalar.
We use s ¼ �2 since c 4 is a natural choice to study
outgoing radiation. Once c 4 is known, we then know the
GWs that the binary produces, since

c 4 ! 1

2

�
@2hþ
@t2

� i
@2h�
@t2

�
(3.2)

far from the black hole.
The T on the right hand side of Eq. (3.1) is a source term

constructed from the stress-energy tensor describing a
pointlike body moving in the Kerr spacetime. This stress-
energy tensor is given by

T�� ¼ �
Z

u�u��
ð4Þ½x� zð�Þ�d�; (3.3)

¼�
u�u�
� _t sin�

�½r� rðtÞ��½�� �ðtÞ��½���ðtÞ�: (3.4)

On the top line, x denotes an arbitrary spacetime event,
zð�Þ describes the worldline that the point body follows,
and � is proper time along that worldline. On the second
line, we have performed the integral and written the result
in terms of the body’s motion in the Boyer-Lindquist
coordinates r, �, and �, parameterized by coordinate
time t. On both lines, u� ¼ dz�=d� is the 4-velocity of
the body as it moves along its worldline.

Note, in particular, the _t 	 dt=d� that appears in the
denominator of Eq. (3.4). This is the timelike component of
the smaller body’s geodesic motion, described by Eq. (2.4).
As the small body approaches the horizon, _t ! 1—the
passage of coordinate time (time as measured by distant
observers) diverges per unit proper time as measured by
that body. This is the mechanism by which the source term
‘‘redshifts away’’ as the small body falls into the large

black hole, smoothly converting the Teukolsky equation
into its homogeneous form.
The source T is constructed from this T�� by project-

ing onto a tetrad that describes radiation, and then apply-
ing a particular integro-differential operator; see
Refs. [52,53,82] for detailed discussion of its nature. For
our purposes here, the key thing to note is that we must
construct the worldline which the small body follows in
order to compute the radiation associated with its motion.
Different approximations are appropriate to different re-
gimes of the coalescence, which is why we have developed
two rather different codes for solving Eq. (3.1). We now
briefly summarize the techniques behind these two codes,
and how we use our solutions.

A. Radiation in the frequency domain

As was originally found by Teukolsky [82], Eq. (3.1)
separates. For s ¼ �2, we put

c 4 ¼ 1

ðr� ia cos�Þ4
Z

d!
X
lm

Rlm!ðrÞSlmð�Þeiðm��!tÞ:

(3.5)

The function Slmð�Þ is a spin-weighted spheroidal har-
monic, and can be constructed by expanding on a basis
of spin-weighted spherical harmonics [51]. The function
Rlm!ðrÞ is found by solving a second-order ordinary dif-
ferential equation. Its limiting behavior is

Rlm!ðr ! 1Þ / Z1ei!r
 ; (3.6)

corresponding to purely outgoing radiation far away, and

Rlm!ðr ! rþÞ / ZHe�ikr
 ; (3.7)

corresponding to purely ingoing radiation on the event
horizon. The wave number k ¼ !�m!þ, where !þ ¼
a=2Mrþ is the angular velocity of the hole’s event horizon.
In both of these equations, r
 is the so-called ‘‘tortoise
coordinate,’’

r
 ¼ rþ 2Mrþ
rþ � r�

ln

�
r� rþ
2M

�
� 2Mr�

rþ � r�
ln

�
r� r�
2M

�
:

(3.8)

The ingoing and outgoing solution is thus characterized by
the coefficients Z1 and ZH. For details of how we compute
these numbers, see Refs. [51,52].
This frequency-domain approach to solving Eq. (3.1) is

most useful when the source T has a discrete frequency
spectrum. The function c 4 can then be written as a sum
over harmonics of the source’s fundamental frequencies.
This is the case for geodesic black hole orbits; see Ref. [52]
for an extensive discussion.
For the circular, equatorial case, orbits and hence the

source T are completely characterized by the frequency
�� defined in Eq. (2.13). The frequency ! in Eq. (3.5)

becomes m��, and the coefficients Z1 and ZH are then
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determined by ! and the harmonic indices l and m. Once
those coefficients are known, it is not difficult to compute
the rates of change of E, Lz, and Q. The coefficients Z1;H

are labeled by the indices l and m, and we have

_E1 ¼ X
lm

jZ1
lmj2

4�!2
m

; (3.9)

_L1
z ¼ X

lm

mjZ1
lmj2

4�!3
m

; (3.10)

where !m ¼ m��. Strictly speaking, the l sum appearing

here is from l ¼ 2 to infinity, and m is from �l to l; in
practice, the sums converge to double precision accuracy
once l is of order a few to a few dozen, depending on how
fast the smaller body orbits. See Refs. [51,52] for an
extensive discussion of convergence issues, as well as for
a discussion of how to compute the down-horizon contri-
bution to the rates of change. Also, see Ref. [89] for a
discussion of how to compute the rate of change of Q.

B. Radiation in the time domain

Because they work best when the source has a discrete
frequency spectrum, we only use frequency-domain tech-
niques to describe the inspiral, when the system is accu-
rately described as slowly evolving through a sequence of
orbits. When this description is not accurate (such as in the
final plunge, or when inspiral is sufficiently rapid that the
system does not spend many cycles near a given orbit),
Eq. (3.5) is ill-suited to describing solutions of the
Teukolsky equation. To handle this case, we solve
Eq. (3.1) directly in the time domain.

In the code we have developed for this, we take advan-
tage of the Kerr spacetime’s axial symmetry to write the
field � as [53,54]

�ðt; r; �; �Þ ¼ X
m

eim�r3�mðt; r; �Þ: (3.11)

Equation (3.1) is then solved as a (2þ 1)-dimensional
partial differential equation for the modes �m.

The major difficulty in numerically solving Eq. (3.1) is
coming up with a good description of the source term. One
challenge is to represent a pointlike source on a numerical
grid [we use finite-difference techniques to solve Eq. (3.1)].
In Refs. [53,54], we have developed a discrete representa-
tion of a delta function which works very well on a finite-
difference grid. This function is defined so that our repre-
sentation of the delta function and of its first two deriva-
tives preserves various integral identities. For cases in
which a comparison can be made (e.g., for nonevolving
generic geodesic orbits), we find that this representation
allows us to compute GWs in the time domain with less
than a 1% error compared to a frequency-domain code over
a large span of orbital parameter space.

We use the transition and plunge trajectory described in
the previous section to provide the worldline zð�Þ and 4-
velocity u�. As we have already highlighted, the Teukolsky
Eq. (3.1) becomes homogeneous at late times thanks to the
manner in which _t ! 1 as the infalling body approaches
the event horizon. When T ¼ 0, the solutions of Eq. (3.1)
are the larger black hole’s quasinormal modes modes. This
means that the late-time solution in our coalescence model
is dominated by quasinormal modes of the larger black
hole. By virtue of arising in a natural way from the behav-
ior of our source term, these modes are properly phase
connected to the preceding inspiral and plunge waves.

IV. COMPUTING RECOIL FROM RADIATION

Once we have computed c 4, it is not difficult to com-
pute the rate at which linear momentum is carried by the
waves. Letting TGW

�� denote the Isaacson [90] stress-energy

tensor for GWs, we have

dPiðtÞ
dt

¼ lim
r!1r

2
Z

niTGW
tt d�

¼ lim
r!1

r2

16�

Z
ni
��

@hþ
@t

�
2 þ

�
@h�
@t

�
2
�
d�

¼ lim
r!1

r2

16�

Z
ni
��

@hþ
@t

� i
@h�
@t

�

�
�
@hþ
@t

þ i
@h�
@t

��
d�

¼ lim
r!1

r2

4�

Z
nij

Z t

�1
c 4dt

0j2d�: (4.1)

The quantity ni denotes the Cartesian direction vector in
the large radius limit,

nx ! sin� cos�; (4.2)

ny ! sin� sin�; (4.3)

nz ! cos�: (4.4)

This quantity must then be integrated over time to find the
momentum carried by the GWs:

PiðtÞ ¼
Z t

�1
dPiðt0Þ
dt

dt0: (4.5)

Imposing global conservation of momentum, the recoil
velocity of the system is then given by

vi
recðtÞ ¼ �PiðtÞ=M: (4.6)

Equation (4.6) will be our primary tool for computing
black hole kicks in this analysis.
For the inspiral, which we model using frequency-

domain methods, these formulas reduce to fairly simple
results. In the r ! 1 limit,
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c 4 ¼ 1

r

X
lm

Z1
lmSlmð�Þeimð����tÞ: (4.7)

Inserting this expansion, the momentum flux formula (4.1)
reduces to a sum over overlap integrals between different
modes of the radiation field. This integral sharply con-
strains the mode numbers which contribute to this formulas
sum. For Schwarzschild, the integral over � can be ex-
pressed as a Clebsch-Gordan coefficient, and we find l0 2
½l� 1; l; lþ 1�; a similar but more complicated result de-
scribes the integral for Kerr. For any spin, we find m0 ¼
m� 1 for PxðtÞ and PyðtÞ [PzðtÞ ¼ 0 for the equatorial
orbits we consider here]. Details of this calculation will
be presented in a separate analysis [91]. For the final
plunge and merger portions of the coalescence, we simply
evaluate Eqs. (4.1), (4.5), and (4.6) using the c 4 computed
with our time-domain code.

V. RESULTS: THE COALESCENCE WAVEFORM
AND RECOIL

We now put the pieces of this formalism together to
compute the waveforms from binary black hole coales-
cence and to calculate recoil. We begin by describing some
issues with extrapolating from the truly perturbative mass
ratios we study here (Sec. VA), and then describe in more
detail how we assemble the full inspiral trajectory and its
associated waveform (Sec. VB) before discussing our
results for the recoil (Sec. VC). As already mentioned,
we focus in this analysis on quasicircular equatorial con-
figurations. We conclude (Sec. VD) by describing the
convergence of our recoil results. We find that as we go
to large spin, prograde mergers may require a large number
of m modes [cf. the axial decomposition (3.11) we use] to
give convergent results.

A. Mass ratio dependence considerations

By using the Teukolsky equation to model coalescence,
we are by construction working to first order in mass
ratio—the curvature scalar c 4 that we compute neglects
all corrections of order ð�=MÞ2. Since the various fluxes
we compute (energy, momentum, angular momentum)
follow from the modulus squared of c 4, it likewise follows
that these fluxes are all strictly proportional to ð�=MÞ2.
The recoil velocity, as an integral of the momentum flux,
should likewise scale essentially with ð�=MÞ2. We may
expect small deviations from this scaling since the time
scales of inspiral and of plunge and merger do not scale
with mass ratio in quite the same way. However, we have
found that a ð�=MÞ2 scaling describes the final recoil very
accurately for all mass ratios more extreme than �=M ¼
10�3; we have not examined mass ratios less extreme than
this yet. Since the scaling with mass ratio is trivial, we will
present detailed results for only one choice, �=M ¼ 10�4.
In our summary figure for total recoil velocity as a function

of spin (Fig. 5), we normalize our results by the scaling
ð�=MÞ2.
In Ref. [66], it was argued that one can improve the

ability of perturbation theory to extrapolate out of the
perturbative regime by replacing the ð�=MÞ2 which de-
scribes the momentum flux and the recoil velocity with

fð�=MÞ ¼
�
�

M

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

M

s
: (5.1)

In this argument, it is claimed that in extrapolating out of
the perturbative regime it is useful to interpret the small
body’s mass � as the system’s reduced mass, and the large
black hole’s mass M as the system’s total mass. A similar
interpretation of these masses has been shown to give
excellent results interpreting the head-on collisions of
black holes [92]. The function fð�=MÞ has a maximum
fmax ¼ 0:01789 at �=M ¼ 0:2 (corresponding, after re-
mapping the meaning of these mass parameters, to
msmall=mlarge ¼ 0:382).

As we will discuss in more detail later in this section,
using this scaling does not work quite as well as we might
have hoped. The key issue is that in our perturbative
framework, we assume there exists a stationary back-
ground spacetime which we can expand around, and that
this background does not evolve during the coalescence.
This means, for example, that a binary which contains a
large Schwarzschild black hole at early times will evolve to
a single Schwarzschild black hole at late times; we fail to
account for the evolution of this black hole’s spin during
the merger. This is a minor error when the mass ratio is
small, but is significant for large mass ratio. In particular,
for mass ratios �=M� 0:1 or larger, the spin of the final
black hole will change substantially in the merger. By not
evolving the spin properly, we do not get the late-time
spectrum of merger/ringdown waves correct, with impor-
tant consequences for the system’s final kick.

B. Example waveform

Figures 2–4 present coalescence waveforms for a binary
with �=M ¼ 10�4, and in which the larger black hole has
spin a=M ¼ 0:6, 0, and�0:6 respectively. We focus on the
late waves, including the final plunge and ringdown. The
data for these figures were generated using the time-
domain code discussed in Sec. III B. In the largest panel,
we show the wave including all contributions with jmj �
6; the three smaller panels show individual contributions
from the m ¼ 1, 2, and 3 modes.
In all three examples we show, the general character of

the waveforms is essentially the same: a slowly evolving
chirping sinusoid that terminates in an exponentially
damped ringdown. Two aspects of the waveforms clearly
differ as we move from a ¼ 0:6M to a ¼ �0:6M. First,
notice that the waveform for a ¼ 0:6M is clearly of rather
higher frequency than for a ¼ 0, which in turn is higher
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than for a ¼ �0:6M. This is not surprising, and is a simple
consequence of the orbit’s geometry: the LSO, which
approximately delineates the transition from inspiral to
final plunge, is at rLSO ¼ 3:83M for a ¼ 0:6M, rLSO ¼
6M for a ¼ 0, and rLSO ¼ 7:85M for a ¼ �0:6M. As the
LSO moves to larger radius, the orbital frequency associ-
ated with it sweeps lower.
Second, the final ringdown waves damp more quickly as

we move from the prograde to the retrograde configuration.
This is also not surprising, and follows naturally from the
damping behavior of a Kerr black hole’s quasinormal
modes: modes which are ‘‘parallel’’ to a hole’s spin (i.e.,
have m> 0 for a > 0, and vice versa) are much more long
lived than ‘‘antiparallel’’ modes. See, for example, Fig. 45
of Ref. [88] (noting that Chandra’s sign convention on the
Fourier transform means that mChandra ¼ �mus).

C. Recoil versus spin

Figure 5 summarizes how the kick imparted to a binary
behaves as a function of spin for mass ratio �=M ¼ 10�4.
In this plot, we show the magnitude of the recoil that has
accumulated up to some time t. Since the origin of the time
axis is not particularly interesting, we have shifted the
various tracks so that we can easily compare how the recoil
varies as a function of spin.
The clearest feature apparent here is that, especially for

prograde coalescences (a > 0), the recoil grows to some
large positive value, but then is strongly suppressed by an
antikick to something significantly smaller. The suppres-
sion is a very strong function of the large black hole’s spin:
For the five cases which show antikick behavior in Fig. 5,
the peak kick vpeak and the late-time kick vlate are given by

FIG. 3. Same as Fig. 2, but the large black hole has spin a ¼ 0
in this case. The frequencies which describe this wave are
generically lower than those shown in Fig. 2 since the transition
from inspiral to plunge happens at larger radius thanks to smaller
spin parameter in this binary. In addition, the final ringdown
waves damp out more rapidly than in the a ¼ 0:6M case.

FIG. 2. Coalescence waveform computed with perturbation
theory for a binary with mass ratio �=M ¼ 10�4, and in which
the larger black hole has spin a ¼ 0:6M. We show the þ
polarization of the waveform as viewed in the binary’s equatorial
plane; the � waveform is zero from this viewing angle. The
wave is normalized by D, the distance from source to observer,
and the origin of the time axis is arbitrary. The waveform shown
in the top panel includes contributions from all modes with
jmj � 6; the individual contributions for m ¼ 1, m ¼ 2, and
m ¼ 3 are shown below. Notice how the smoothly chirping
inspiral waves blend naturally into the rapidly damped ringdown
which terminates this waveform.

FIG. 4. Same as Figs. 2 and 3, but now for black hole spin a ¼
�0:6M (i.e., same black hole as in Fig. 2, but now for a
retrograde orbit geometry). The frequencies characterizing this
wave are again lower than for the two previous examples, and the
ringdown waves damp even more rapidly.
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a ¼ 0:9M: vpeak=c ¼ 0:17ð�=MÞ2
vlate=c ¼ 0:0032ð�=MÞ2; (5.2)

a ¼ 0:6M: vpeak=c ¼ 0:074ð�=MÞ2
vlate=c ¼ 0:027ð�=MÞ2; (5.3)

a ¼ 0:3M: vpeak=c ¼ 0:058ð�=MÞ2
vlate=c ¼ 0:039ð�=MÞ2; (5.4)

a ¼ 0: vpeak=c ¼ 0:051ð�=MÞ2
vlate=c ¼ 0:044ð�=MÞ2; (5.5)

a ¼ �0:3M: vpeak=c ¼ 0:048ð�=MÞ2
vlate=c ¼ 0:047ð�=MÞ2: (5.6)

In other words, we find that the antikick suppresses the
maximum recoil by a factor of 53 for a ¼ 0:9M, 2.7 for
a ¼ 0:6M, 1.5 for a ¼ 0:3M, 1.2 for a ¼ 0, and 1.02 for
a ¼ �0:3M. The late-time kick shown in Fig. 5 is nicely fit
by the formula

vrecðaÞ=c ’ ½0:0440� 0:0099ða=MÞ � 0:0114ða=MÞ2
� 0:0312ða=MÞ3�ð�=MÞ2: (5.7)

Over most of the relevant parameter space, this comes in
right between the ‘‘upper’’ and ‘‘lower’’ estimates of
Ref. [66] [compare to Eqs. (1) and (2) of Ref. [93]].
The antikick behavior we see agrees at least qualitatively

with the trends seen in Schnittman et al. [81]. It is hard to
calibrate the quantitative agreement between these analy-
ses, since (as discussed above in Sec. VA) extrapolating
from the perturbative regime into that of the mass ratios
considered in Ref. [81] is not as simple as the arguments in
Ref. [66] would suggest. Consider the Schwarzschild co-
alescence results. If we use the ð�=MÞ2 ! fð�=MÞ rule
suggested in Ref. [66], we find

vlateða ¼ 0Þ ¼ 0:044fð�=MÞc � 235 km= sec : (5.8)

On the second line, we have used fmax ¼ 0:01789 in order
to estimate how large the kick can be in this case.
Taken at face value, this suggests that the recoil of

Schwarzschild black holes has a maximum of
235 km= sec, 34% higher than the maximum value of
175 km= sec found in careful numerical relativity calcula-
tions [94]. However, in those numerical relativity calcula-
tions, the final black hole is not Schwarzschild, but has a
spin a ’ 0:67M. Figure 5 tells us we should expect a larger
antikick when the final black hole is rapidly spinning.
Applying the same extrapolation to our recoil data for a ¼
0:6M (the nearest value to a ¼ 0:67M in our dataset) leads
to

vlateða ¼ 0:6MÞ ¼ 0:027fð�=MÞc � 144 km= sec :

(5.9)

This is about 18% lower than the numerical relativity
prediction. The lesson we take from this is that naive
extrapolation from the small mass ratio regime does not
give a good estimate of the final kick in the comparable
mass case. Because the background spacetime is fixed, we
do not accurately describe the system’s final state and
hence the last waves that it emits during the coalescence.

D. Convergence

As discussed in Sec. III B, our time-domain perturbation
theory code expands the field � in axial modes; cf.
Eq. (3.11). The angular integral in Eq. (4.1) takes the form

dPx

dt
/ X

m;m0

Z 2�

0
d� cos�eiðm�m0Þ��m�



m0

/ X
m;m0

ð�ðmþ1Þ;m0 þ �ðm�1Þ;m0 Þ�m�


m0 ; (5.10)

FIG. 5 (color online). Summary of recoil versus time for large
black hole spins a=M 2 ½�0:9;�0:6;�0:3; 0; 0:3; 0:6; 0:9�. For
each track, the time origin is arbitrary, so we have shifted the
data in order to cleanly display all seven recoil trends shown
here. The key feature we find is the manner in which (especially
for large spin, prograde coalescences) the kick builds to a large
positive value, followed by an antikick that brings the total
accumulated recoil down to much smaller values. The antikick
is especially strong when the spin is large and the coalescence is
prograde, and is essentially nonexistent for large spin retrograde
coalescence.
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dPy

dt
/ X

m;m0

Z 2�

0
d� sin�eiðm�m0Þ��m�



m0

/ X
m;m0

ð�ðmþ1Þ;m0 � �ðm�1Þ;m0 Þ�m�


m0 : (5.11)

Contributions from terms with m ¼ m0 vanish; the recoil
arises from beating between adjacent m modes.

The question we now address is how many m modes
must be included in order to accurately compute the recoil.
We have found that this is a strong function of black hole
spin: When the black hole has large positive spin, many
more modes are needed for convergence than for small or
retrograde coalescence.

Tables I, II, and III summarize convergence data for
three of the cases presented in Fig. 5. We show, as a
function of mmax [the value of m and m0 at which the
sums in Eqs. (5.10) and (5.11) are terminated] the peak
magnitude of the momentum flux normalized by ð�=MÞ2,

_P 	
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdPx=dtÞ2 þ ðdPy=dtÞ2
q

ð�=MÞ2
�
max

: (5.12)

The ‘‘max’’ subscript means that we select the maximum
of this quantity over the timespan for which we compute
the momentum flux. This quantity is given in units ofM�1.

We also show the percentage change in _P as we increase
mmax by one.
Tables I, II, and III indicate that, once several modes

have been computed, the fractional error in the momentum
flux decreases by roughly a factor of 2 with each unit
increase inm. However, the magnitude of the relative error
is a rather strong function of black hole spin. For a ¼
�0:6M, we find that going from mmax ¼ 5 to mmax ¼ 6
changes the momentum flux by only 2.5%. Including addi-
tional modes presumably will only produce percent-level
changes. For a ¼ 0:6M by contrast, the flux changes by
nearly 8% as mmax is increased from 5 to 6. Many modes
are clearly needed to accurately compute the waves (and
the recoil from these waves) as the large black hole’s spin
approaches the Kerr maximum.

VI. CONCLUSIONS AND FUTURE WORK

Now that numerical relativity has effectively solved the
two-body problem in general relativity, a major task for
researchers has become to explore the parameter space of
binary coalescence. This will insure that wave models
constructed as templates for GW data analysis fully en-
compass the range of behaviors that are likely in real
binary mergers, and allow us to more fully understand
the phenomenology of binary black hole merger astrophys-
ics. In this analysis, we have demonstrated that perturba-
tion theoretical techniques based on the Teukolsky
equation are an excellent tool for extending the reach of
our computations, allowing us to model large mass ratios
that are challenging for 3þ 1 numerical simulations, but
may be of astrophysical significance. Our analysis joins
previous work by Damour and colleagues [46,47], Mino
and Brink [57], and by Lousto and colleagues [56] which
likewise used perturbation theory to model large mass ratio
binaries. By using the Teukolsky equation, we can explore
how the larger black hole’s spin impacts the analysis,
exemplified by our demonstration of how the previously
identified antikick [81] strongly depends on this spin.
Two directions for future analysis strike us as particu-

larly noteworthy. First, the major motivation for this work
is that perturbation theory makes exploring parameter
space computationally fast and simple. As such, it would
be worthwhile to continue this exploration, examining how
the waveform varies as a function of spin-orbit alignment,
and exploring (for example) how the antikick evolves as
one varies the inclination smoothly from the prograde to
the retrograde geometry. Preliminary calculations of this

TABLE III. Convergence of momentum flux with m for a ¼
0:6M. All details are as in Table I.

mmax
_P % change

2 1:373� 10�3 -

3 7:488� 10�3 81.7%

4 1:105� 10�2 32.2%

5 1:302� 10�2 15.1%

6 1:412� 10�2 7.8%

TABLE II. Convergence of momentum flux with m for a ¼ 0.
All details are as in Table I.

mmax
_P % change

2 1:712� 10�3 -

3 4:188� 10�3 58.9%

4 5:508� 10�3 24.0%

5 6:182� 10�3 10.9%

6 6:532� 10�3 5.4%

TABLE I. Convergence of recoil with azimuthal mode for a ¼
�0:6M. First column is mmax, the largest value of m we include.
Second column is the value of _P , the peak magnitude of the
momentum flux normalized by ð�=MÞ2. The third column gives
the percentage change in _P we find as we increasemmax from the
previous value.

mmax
_P % change

2 2:855� 10�3 -

3 4:030� 10�3 29.2%

4 4:557� 10�3 11.6%

5 4:807� 10�3 5.2%

6 4:930� 10�3 2.5%
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behavior indicate that the antikick rapidly evolves with
spin-orbit alignment, consistent with the results of Mino
and Brink [57] which demonstrate a strong dependence on
the final kick with the plunge geometry.

Second, as Damour and Nagar have emphasized [47],
particularly useful application comes by including input
from the effective one-body formalism in our description
of the small body’s motion; input from perturbation theory
can likewise be used to calibrate certain parameters in the
EOB framework. Now that the spin-augmented
Hamiltonian for binary systems is understood [95,96], we
expect that work to extend EOB to more broadly include
the impact of spin will become very active. We hope that
the tools we have presented here will be useful for further
refining what has already proved to be a valuable tool for
modeling coalescing binaries.
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[72] J. A. González, M. Hannam, U. Sperhake, B. Brügmann,
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