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We consider Friedmann-Lemaı̂tre-Robertson-Walker flat cosmological models in the framework of

general Jordan frame scalar-tensor theories of gravity with arbitrary coupling functions, in the era when

the energy density of the scalar potential dominates over the energy density of ordinary matter. We focus

upon the phase space of the scalar field. To study the regime suggested by the local weak field tests (i.e.

close to the so-called limit of general relativity) we propose a nonlinear approximation scheme, solve for

the phase trajectories, and provide a complete classification of possible phase portraits. We argue that the

topology of trajectories in the nonlinear approximation is representative of those of the full system, and

thus can tell for which scalar-tensor models general relativity functions as an attractor.
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I. INTRODUCTION

The unknown source of observed present day accelera-
tion of the Universe, called dark energy, is inspiring thor-
ough investigations of different extensions of general
relativity (GR) and �CDM cosmology (for recent reviews
see Ref. [1]). The scalar-tensor theory of gravity (STG) [2]
offers one such consistent possibility. Besides the usual
spacetime metric tensor g�� it employs a scalar field �,

playing the role of a variable gravitational ‘‘constant,’’ to
describe the gravitational interaction. In the Jordan frame
STG is specified by two functions [3], e.g. a coupling!ð�Þ
and a scalar potential Vð�Þ. In fact, a wide class of theories
of gravitation, including higher order theories [4], theories
of variable speed of light [5], as well as low energy
approximations of brane world models and string theories
[6] can be cast into the general form of STG.

The weak field tests [7] pose a restriction to all alter-
native models of gravity including STG, since the Universe
around us tends to be described by the Einstein tensorial
gravity very precisely [8]. This means that only those STG
models are physically viable which in their late time
cosmological evolution imply local consequences very
close to those of GR. Several authors have studied how
general relativity acts as an attractor for a wide class of
STGs, such that the Solar System weak field parametrized
post-Newtonian (PPN) constraints spontaneously come to
be satisfied at late times [9–11]. In our recent papers
[12,13] we have proposed a limiting process for the scalar
field which describes scalar-tensor cosmological models
relaxing to satisfy the Solar System constraints, with an

indication for which classes of STGs the attractor behavior
is realized.
The methods of dynamical systems have proved to be a

useful tool when explicit analytic solutions are hard to find.
In STG cosmology several authors have performed the
analysis for different specific choices of the coupling and
potential [14], while Refs. [12,15–17] study the phase
space and dynamics in the general case.
The STG phase space point corresponding to the limit of

GR is peculiar in the sense that the standard linearization
process there is hampered by ratios which turn out to be
indeterminate. In our previous studies [12,13] we assumed
that these indeterminate terms vanish, which allows one to
treat this singular point as a standard fixed point. In the
present paper we focus upon Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) flat cosmological models in
the era when matter density is negligible in comparison
with scalar potential density. We consider the phase space
of the (decoupled) scalar field � and its (cosmological)

time derivative _� � �, and propose an approximation
which takes into account all possible finite values of these
indeterminate ratios, thus preserving the leading nonlinear
term in the field equations. We give a comprehensive
description of the phase space trajectories of the approxi-
mate nonlinear system near the GR point and classify all
trajectories allowed by the parameters of the theory. While
the topology of trajectories differs in linear and nonlinear
approximation, there is a correspondence in the final
asymptotics, i.e. whether the trajectories end up at the
GR point or are repelled from it. We argue that the non-
linear system accurately captures the key properties of the
full system of STG equations near this singular point, and
the topology of trajectories of the nonlinear approximation
is representative of those of the full system. Therefore for
any given STG model with a reasonable coupling !ð�Þ
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and scalar potential Vð�Þ our results predict whether GR is
an attractor.

The paper is organized as follows. In the next section we
review very briefly the scalar-tensor theory of gravity with
a potential, write down the field equations of FLRW cos-
mology in the form of a dynamical system, and make some
general remarks about the phase space including the sin-
gular GR point. In Sec. III we introduce the approximation
method and present linear and nonlinear systems of equa-
tions in the neighborhood of the singular point. In Sec. IV
we present solutions (phase trajectories) of the nonlinear
system and a classification of trajectories, summarized in
Table I and illustrated in Fig. 1. In Sec. V our claims are
backed up by a simple example. Finally, Sec. VI provides a
summary and some remarks for future work.

II. FULL EQUATIONS AND THE PHASE SPACE

We consider a general scalar-tensor theory in the Jordan
frame given by the action functional

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�RðgÞ �!ð�Þ
�

r��r��

� 2�2Vð�Þ
�
: (1)

(We have not included the matter contribution to the action,
i.e. we consider the cosmological epoch when the energy
density of the scalar potential dominates over the energy
density of ordinary matter.) Here !ð�Þ is a coupling
function [we assume 2!ð�Þ þ 3 � 0 to avoid ghosts in
the Einstein frame, see e.g. Ref. [18]], Vð�Þ � 0 is a scalar

potential, r� denotes the covariant derivative with respect

to the metric g��, and �2 is the nonvariable part of the

effective gravitational constant �2

� . In order to keep it

positive we assume that 0<�<1.
The field equations for the flat FLRW line element

ds2 ¼ �dt2 þ aðtÞ2ðdr2 þ r2ðd�2 þ sin2�d’2ÞÞ (2)

read

H2 ¼ �H
_�

�
þ 1

6

_�2

�2
!ð�Þ þ �2

3

Vð�Þ
�

; (3)

2 _H þ 3H2 ¼ �2H
_�

�
� 1

2

_�2

�2
!ð�Þ �

€�

�
þ �2

�
Vð�Þ;

(4)

€� ¼ �3H _�� 1

2!ð�Þ þ 3

d!ð�Þ
d�

_�2

þ 2�2

2!ð�Þ þ 3

�
2Vð�Þ ��

dVð�Þ
d�

�
; (5)

where H � _a=a.

By defining _� � �, Eqs. (3)–(5) can be considered as
an autonomous dynamical system, which is characterized
by three variables ð�;�; HÞ. However, one of them is
algebraically related to the others via the Friedmann equa-
tion (3). We choose to eliminate the Hubble parameter H
and thus reduce the system to two dimensions ð�;�Þ.
Upon introducing the functions

TABLE I. Types of fixed points for linear system (LS) and the topology of trajectories for nonlinear system (NLS). Definitions:
C ¼ C2

1 þ NC2, where N ¼ 4 for the linear system and N ¼ 2 for the nonlinear system.

No. Parameters LS: N ¼ 4; NLS: N ¼ 2 Fixed point, linear system Topology of trajectories, nonlinear system

(1) C2
1 þ NC2 > 0

(1a) C1 > 0 C2 > 0 Saddle 2 hyperbolic, 2 stable,

& 2 unstable parabolic sectors

(1b) C1 > 0 C2 ¼ 0 Nonhyperbolic 1 stable & 1 unstable parabolic sector,

2 stable sectors of degenerate fixed points

(1c) C1 > 0 � C2
1

N < C2 < 0 Stable node 2 elliptic, 4 stable parabolic sectors

(1d) C1 ¼ 0 C2 > 0 Saddle 2 hyperbolic, 2 stable, & 2 unstable parabolic sectors

(1e) C1 < 0 C2 > 0 Saddle 2 hyperbolic, 2 stable, & 2unstable parabolic sectors

(1f) C1 < 0 C2 ¼ 0 Nonhyperbolic 1 stable & 1 unstable parabolic sector,

2 unstable sectors of degenerate fixed points

(1g) C1 < 0 � C2
1

N < C2 < 0 Unstable node 2 elliptic, 4 unstable parabolic sectors

(2) C2
1 þ NC2 ¼ 0

(2a) C1 > 0 C2 ¼ � C2
1

N Stable node 2 elliptic, 2 stable parabolic sectors

(2b) C1 ¼ 0 C2 ¼ 0 Free motion 2 stable & 2 unstable parabolic sectors

(2c) C1 < 0 C2 ¼ � C2
1

N Unstable node 2 elliptic, 2 unstable parabolic sectors

(3) C2
1 þ NC2 < 0

(3a) C1 > 0 C2 <� C2
1

N Stable focus 2 elliptic sectors

(3b) C1 ¼ 0 C2 < 0 Center 2 elliptic sectors

(3c) C1 < 0 C2 <� C2
1

N Unstable focus 2 elliptic sectors
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FIG. 1. Phase portraits of the nonlinear approximation (21) near the GR point. (Axes: x ¼ ���? horizontal and y ¼ _� vertical.)
Case (1d) is the borderline case between (1a) and (1e); see Table I.
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Að�Þ � d

d�

�
1

2!ð�Þ þ 3

�
;

Wð�Þ � 2�2

�
2Vð�Þ � dVð�Þ

d�
�

�
;

(6)

the dynamical system reads

_� ¼ �; (7)

_� ¼
�
3

2�
þ 1

2
Að�Þð2!ð�Þ þ 3Þ

�
�2

� 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2!ð�Þ þ 3Þ�2 þ 12�2�Vð�Þ

q
�

þ Wð�Þ
2!ð�Þ þ 3

: (8)

Its regular phase trajectories and fixed points have been
considered in Refs. [12,17].

Even if the scalar field rules the cosmological evolution,
in the context of Solar System experiments we can reason-
ably assume that the energy density of the potential is
negligible in comparison with the local matter density.
Then the standard PPN analysis gives a condition for the
present cosmological background value of the scalar field
[7], (a) 1

2!ð�Þþ3 ! 0. It is also evident that the effective

gravitational constant is virtually immutable in time [10],

which provides the second condition, (b) _� � � ! 0. Let
us denote �? the value of the scalar field where the
coupling function !ð�Þ has a singular ‘‘peak,’’ or more
precisely 1

2!ð�?Þþ3 ¼ 0. Also, let �? be its vanishing time

derivative,�? ¼ 0. Then we may cautiously call the phase
space point (� ¼ �?, � ¼ �?) a ‘‘GR point,’’ since the
STG solutions, which can pass the local weak field tests
and behave close enough to the ones of general relativity in
terms of local observations, necessarily lie in the vicinity of
this point.

The value �? poses a caveat, though. On the right-hand
side of Eq. (8) the ð2!ð�?Þ þ 3Þ�2 terms are diverging if
� � 0 and indeterminate if� ¼ �? ¼ 0. This means that
the whole set � ¼ �? at arbitrary � is excluded from the
(open) domain of the definition of Eq. (8). However, in
what follows we find solutions of general approximated
equations (Sec. IV) and of a specific full equation (Sec. V)
for phase trajectories which smoothly reach or pass
through the point ð�?;�?Þ. Thus we are justified to add
the GR point to the open domain of definition as a bound-
ary point. (Note that an analogous conclusion can be
inferred from our analysis of regions in the phase space
accessible to phase trajectories in a general STG [12].)

The phase portrait of the dynamical system (7) and (8) is
drawn by the solutions (trajectories) of

d�

d�
¼

�
3

2�
þ 1

2
Að�Þð2!ð�Þ þ 3Þ

�
�

� 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2!ð�Þ þ 3Þ�2 þ 12�2�Vð�Þ

q

þ Wð�Þ
ð2!ð�Þ þ 3Þ� ; (9)

while the direction of the flow along them is determined by
Eq. (7) as usual (toward increasing � for �> 0 and

toward decreasing � for �< 0). Realizing that d�
d� gives

the slope of the tangent to a phase trajectory, a few char-
acteristic features of the phase portrait outside the singular
point ð�?;�?Þ can be immediately inferred.
First, on the horizontal line� ¼ 0 (� axis) the tangents

of trajectories are vertically aligned ifWð�Þ � 0, since d�
d�

diverges due to the last term in Eq. (9). The inverted

derivative d�
d� j�¼0 vanishes, while the sign of d2�

d�2 j�¼0 �
1

Wð�Þ indicates the direction of the flow along the trajecto-

ries: passing from �> 0 to �< 0 if d2�
d�2 j�¼0 < 0 and

vice versa if d2�
d�2 j�¼0 > 0. The case of quadratic potential

is special, as now Wð�Þ � 0, and Eqs. (7) and (8) reveal
that besides the singular (indeterminate) point ð�?;�?Þ,
all points on the line � ¼ 0 are fixed points, i.e. the
trajectories do not pass through, but either begin or end
there.
Second, approaching on the vertical line � ¼ �? the

tangents of phase trajectories turn again vertical due to
ð2!ð�Þ þ 3Þ blowing up as � ! �?. As has been argued
above, the line � ¼ �? (� � 0) itself does not belong to
the domain of the definition of the system, and here we see
that the trajectories acknowledge this fact by not running
into that line, but radically deflecting ‘‘up’’ or ‘‘down’’

instead, depending on the sign of d�
d� j�!�?

.

These two features qualitatively control the behavior of
trajectories around the GR point. Consider for instance the
region �<�?, �> 0 where the flow is directed toward

�?. First, if
d2�
d�2 j�¼0 < 0 at least some of these trajectories

will cross over to the �< 0 belt and then flow away from
�?, effectively displaying a ‘‘saddle’’ type of behavior. On

the other hand, if d2�
d�2 j�¼0 > 0 there is no other option for

the trajectories but to persist in flowing toward �?, while
additional trajectories coming over from the �< 0 region
join their course. Second, near the � ¼ �? line if
d�
d� j�!�?

is positive, the flow is pushed ‘‘upward’’ to� !
1, while if d�

d� j�!�?
is negative, the push is ‘‘downward’’

toward smaller values of �. In the latter case the outcome
again depends on how the flow is directed on the � ¼ 0

line, viz. if d2�
d�2 j�¼0 < 0 the trajectories can cross over to

the �< 0 region at any � � �? and flow away, while if
d2�
d�2 j�¼0 > 0 the trajectories would have nowhere else to

go but to hit the point ð�?;�?Þ. A similar reasoning can be
put forth for �>�? as well. It may also happen that as

the potential Vð�Þ varies, the quantity d2�
d�2 j�¼0 � 1

Wð�Þ
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may be positive or negative depending on the value of �
and the global picture gets rather complicated.

What can be said about the trajectories at the singular
(indeterminate) point ð�?;�?Þ? The logic of the phase
space tells that passing through this point is possible from a
region of the phase space where the flow is directed toward
the point into a region of the phase space where the flow is
directed away from the point. Under a reasonable assump-
tion that (at least) the (physically relevant) solutions are
continuous and smooth there are two such possibilities.
First, the solutions may ‘‘slip through’’�? from the region
�<�?,�> 0 (�>�?,�< 0) to the region�>�?,

�> 0 (�<�?, �< 0) if d�
d� j�!�?;�!�?

¼ 0, i.e. the

tangent of the trajectory is aligned horizontally. Second,
the solutions may ‘‘bounce back’’ from�? from the region
�<�?,�> 0 (�>�?,�< 0) to the region�<�?,

�< 0 (�>�?, �> 0) if d�
d� j�!�?;�!�?

¼ 0, i.e. the

tangent of the trajectory is aligned vertically. Any trajec-
tory hitting this point under a tangent which is neither
horizontal nor vertical cannot pass through the point, but
must terminate there.

III. APPROXIMATE EQUATIONS

Equations (7) and (8) cannot be integrated without spec-
ifying the two arbitrary functions !ð�Þ and Vð�Þ. But
being interested in the behavior of solutions close to the
GR point ð�?;�?Þ we can still proceed by considering an
approximation which maintains the key properties of the
full system near this point. Although the full equations
become singular (indeterminate) at ð�?;�?Þ, we assume
that the Taylor expansions of the functions 1

2!ð�Þþ3 , Vð�Þ
are possible there.

Let us focus around the GR point,

� ¼ �? þ x; � ¼ �? þ y ¼ y; (10)

where x and y span the neighborhood of first order small
distance from ð�?;�?Þ. As phase space variables x and y
are independent from each other, and so their ratio y=x is
indeterminate at (x ¼ 0, y ¼ 0). The meaning of this in-
determinacy is perhaps better illuminated in the polar
coordinates ð�; �Þ, where the radius � is a first order small
quantity, but y=x � tan� 2 ð�1;1Þ becomes infinitely
multivalued at the origin.

We can Taylor expand

1

2!ð�Þ þ 3
¼ 1

2!ð�?Þ þ 3
þ A?xþ � � � � A?x; (11)

and

ð2!ð�Þ þ 3Þ�2 ¼ y2

0þ A?xþ � � �
¼ y2

A?x
ð1þOðxÞÞ � y2

A?x
; (12)

where A? � Að�?Þ. In order to keep the expansion under

better control we have introduced here two additional
conditions: (c) A? � 0, and (d) 1

2!ð�Þþ3 is differentiable

at �? (A? and higher derivatives do not diverge) [12,13].
Although these assumptions somewhat constrain the pos-
sible forms of !, we are still dealing with a wide and
relevant class of theories. In fact, the set (a)–(d) guarantees
that the second condition for the cosmological background
value of the scalar field arising in the PPN analysis of STG
[7], 1

ð2!ð�Þþ3Þ3
d!
d� ! 0, is automatically satisfied [12].

To simplify the notation, let us denote the values of some
functions at ð�?;�?Þ as

C1 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2Vð�?Þ

�?

s
; C2 � A?W?; (13)

where W? � Wð�?Þ and Vð�?Þ � 0. The three constants
A?, W?, and C1 determine the leading terms in expansions
of the two functions !ð�Þ, Vð�Þ which specify a STG.
Now the expansion of the solution for H of the Friedmann
constraint (3) reads

H ¼ � �

2�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2!ð�Þ þ 3Þ �2

12�2
þ �2Vð�Þ

3�

s

� � y

2�?

þ C1

3

�
1þ 3�2

2C2
1

d

d�

�
V

�

�
?
x

þ 3

8C2
1�?A?

y2

x
þ � � �

�
: (14)

This explains the introduction of the � sign in the defini-
tion ofC1 in Eq. (13), as near the GR point (x ¼ 0, y ¼ 0) a
positive constant, C1 > 0, describes an expanding de Sitter
universe, while a negative one, C1 < 0, describes a con-
tracting de Sitter universe.
Having outlined the method of approximation in the

neighborhood of ð�?;�?Þ, let us apply it for the system
(7) and (8). If we assume, motivated by the condition (b),
that physically relevant trajectories linger in the region
close to the x axis, i.e. y

x ¼ tan� being first order small,

then in the expansion of Eq. (8) only the terms linear in

x and y survive at the first order, while terms like y2

x

[cf. Eq. (12)] can be dropped. This was the assumption
implicit in our earlier analysis [12,13]. In this case, denot-
ing the variables ~x and ~y, the approximation of (7) and (8)
yields a linear system

_~x ¼ ~y; (15)

_~y ¼ C2~x� C1~y; (16)

which, of course, is equivalent to a general second order
linear homogeneous differential equation

€~xþ C1
_~x� C2~x ¼ 0: (17)

Its phase space analysis is well known; there is a fixed point
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at (x ¼ 0, y ¼ 0) whose type depends on the values of the
constants C1 and C2 (see e.g. [19]).

However, in a more general case we must recognize the

term y2

x as being the same order as x and y. In other words,

we consider all finite values of tan�, and exclude only its
infinite value on the y axis which is outside the domain of
definition of the system as said before. Thus, keeping the

term y2

x in the approximation of (7) and (8), we obtain a

nonlinear system

_x ¼ y; (18)

_y ¼ y2

2x
� C1yþ C2x: (19)

The corresponding second order nonlinear differential
equation reads

€xþ C1 _x� C2x ¼ _x2

2x
: (20)

Note that as distinct from Eqs. (15) and (16), in this case
point (x ¼ 0, y ¼ 0) is not a fixed point with _x ¼ 0, _y ¼ 0
any more, but it is a singular point with an indeterminate

and possibly multivalued term y2

2x in Eq. (19).

IV. PHASE TRAJECTORIES

The phase trajectories for the nonlinear approximate
system (18) and (19) are determined by the equation

dy

dx
¼ y

2x
� C1 þ x

y
C2: (21)

Its solutions

jxjK ¼
��������12y2 þC1yx�C2x

2

��������expð�C1fðuÞÞ; u� y

x
;

(22)

depend on the sign of the expression C2
1 þ 2C2 � C, as the

function fðuÞ is given by

fðuÞ ¼ 1ffiffiffiffi
C

p ln

��������uþ C1 �
ffiffiffiffi
C

p

uþ C1 þ
ffiffiffiffi
C

p
��������; if C> 0;

¼ � 2

uþ C1

; if C ¼ 0;

¼ 2ffiffiffiffiffiffiffijCjp �
arctan

uþ C1ffiffiffiffiffiffiffijCjp þ n�

�
; if C< 0: (23)

Here K is a constant of integration which identifies the
trajectory according to initial data ðx0; y0Þ. Note that if we
choose initial conditions from the allowed region ( tan� is

finite), then our premise y2

x � y at deriving approximate

equations (18) and (19) is always valid, i.e. we get a small
constant of integration, K < 1.

In general, the right-hand side of Eq. (21) can be written
as a quotient of two second order homogeneous polyno-

mials; a qualitative classification of the solutions of differ-
ential equations of this type was given by Lyagina [20] a
long time ago. In a nutshell, the phase portraits for different
values of the constants C1 and C2 classify according to the
number of sectors which form on the phase space around
the origin (x ¼ 0, y ¼ 0), and the topology of trajectories
which inhabit these sectors. The sectors are separated by
the boundary x ¼ 0 and invariant directions. The latter are
lines y ¼ kx where the constant k is a real solution of an
algebraic equation

k ¼ k

2
� C1 þ C2

k
; (24)

i.e. straight trajectories y ¼ ð�C1 �
ffiffiffiffi
C

p Þx satisfying (21).
All possible options are listed in Table I and graphically
depicted in Fig. 1.
If C> 0 and C2 � 0 three directions divide the phase

space into six topologically distinct sectors. The sectors
can be elliptic where all trajectories start from the origin
and get back to the origin, hyperbolic where all trajectories
flow toward the origin but turn back before reaching it, or
parabolic where all trajectories either start from afar and
flow to the origin (stable case) or start from the origin and
flow away (unstable case).
If C1 � 0 and C2 ¼ 0, i.e. the potential has a special

form Vð�?Þ � 0, ð2Vð�?Þ � dVð�Þ
d� j�?

�?Þ ¼ 0, then it

follows from the original dynamical system (18) and (19)
that the entire x axis (the point x ¼ 0 excluded) is popu-
lated by degenerate fixed points. There are four sectors.
The two sectors which contain the x axis are special, and do
not properly belong to neither elliptic, hyperbolic, or para-
bolic classes, as the flow there is dominated by the cohort
of fixed points lying on the x axis. Let us provisionally call
these ‘‘sectors of degenerate fixed points.’’
If C ¼ 0 there are four sectors. If both C1 ¼ 0 and C2 ¼

0, the x axis consists again of fixed points, while the
generic trajectories are parabolas 2Kjxj ¼ y2. If C< 0
there are no real solutions to Eq. (24) and all we get are
two elliptic sectors on both sides of the y axis.
It is worth pointing out here that the phase portraits of

the nonlinear approximation display the same basic char-
acteristic features we inferred about the solutions of the full
system (9) before. First, on the horizontal axis (y ¼ 0) the
tangents of the trajectories are vertically aligned if C2 � 0,
and the direction of the flow across y ¼ 0 is determined by

the sign of d2x
dy2

jy¼0. If C2 ¼ 0 the horizontal axis is popu-

lated by fixed points. Second, next to the vertical axis (x ¼
0) the trajectories turn vertical and do not cross or intersect
with the x ¼ 0, y � 0 line, deemed to be outside of the
domain of definition of the system.
What happens at the origin (x ¼ 0, y ¼ 0), where the

sectors meet, needs extra consideration. Inspection of the
phase portraits on Fig. 1 shows that in all cases there are
multiple trajectories (identified by different values of K)
which all reach the point in question. Although our solu-
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tions for the trajectories, Eq. (22), are given in terms of the
phase space variables only and do not include time as an
explicit parameter, the considerations presented at the end
of Sec. II allow one to draw some qualitative conclusions.
First, there was a logical possibility of trajectories slipping
through the origin so that x changes its sign along a
trajectory. It is evident from the phase portraits that this
option is not realized in any of the cases, as none of the
trajectories has tan� ¼ 0 at this point. On the other hand,
the second possibility, where the trajectories could bounce
back from the origin so that y changes its sign along a
trajectory, is common to all cases, for there is always a
class of trajectories whose tangent is vertically aligned at
this point. Despite the fact that there seems to be loss of
predictability here (the initial condition x0 ¼ 0, y0 ¼ 0
does not fix the constant K uniquely), it would be natural
to continue all such trajectories through this point keeping
the same K along them. Finally, those trajectories which
reach the origin under finite tan� must either begin or end
their flow at this point, like it happens at a regular fixed
point.

It is also instructive to compare the phase portraits in the
linear and nonlinear approximations. In the linear approxi-
mation (15) and (16) the phase diagram is determined by

d~y

d~x
¼ �C1 þ ~x

~y
C2: (25)

Its solutions are

~K ¼ j~y2 þ C1~x ~y�C2~x
2j exp

�
�C1

2
fð~uÞ

�
; ~u � 2~y

~x
;

(26)

where fð~uÞ is given by the same expression (23), while
instead of C the solution is set by the sign of the expression
~C � C2

1 þ 4C2. Now the invariant sectors are separated by

the lines ~y ¼ ~k ~x , where the constant ~k is a real solution of

~k ¼ �C1 þ C2

~k
; (27)

i.e. ~k ¼ 1
2 ð�C1 �

ffiffiffiffi
~C

p
Þ. There is no indeterminacy in

Eqs. (15) and (16) and the point (~x ¼ 0, ~y ¼ 0) figures as
a regular fixed point. The corresponding phase portraits in
the neighborhood of the origin can be classified according
to a standard analysis [12,13], the results being presented
in Table I.

The phase portraits in the nonlinear and linear approx-
imations look markedly different, as in the linear case the
line ~x ¼ 0 is not a boundary, and the trajectories for nodes,
focuses, etc. are not hindered from crossing it. Yet, modulo

a factor of 2 in C vs 4 in ~C, there is an overall correspon-
dence in the classification, i.e. each distinct class in the
linear case is matched with a distinct class in the nonlinear
case (cf. Table I).

This correspondence in the classification occurs due to
an (accidental) property that the nonlinear system (18) and

(19) for ðx; yÞ can be formally obtained from the linear

system (15) and (16) for ð~x; ~yÞ by a replacement C2 ! C2

2

(to get ~C ! C) and a simple transformation ~x ¼ ffiffiffiffiffiffijxjp
, ~y ¼

y

2
ffiffiffiffi
jxj

p . The latter can be understood as a mapping between

the corresponding phase spaces. In particular, it squeezes
the whole ~y axis to a single point (x ¼ 0, y ¼ 0), which
manifests as the indeterminacy of the nonlinear system at
this point. Another characteristic property of the map is the
fact that the whole phase space ð~x; ~yÞ is mapped only on
one-half of the phase space ðx; yÞ, but covering it twice.
Since the transformation contains absolute value jxj, there
are two separate images symmetric with respect to the
y axis.
Although the mapping between the linear and nonlinear

systems seems to be only a mathematical coincidence and
not a consequence of the fact that both the linear and
nonlinear systems originate as approximations to the full
system of equations (the nonlinear being a more general
and refined one in this respect), we can nevertheless utilize
this correspondence to unravel some useful information.
Namely, the trajectories which cross the ~x ¼ 0 line at
arbitrary ~y in the linear case are mapped onto the trajecto-
ries which vertically hit the point (x ¼ 0, y ¼ 0), and thus,
as the former pass through the ~x ¼ 0 line the mapping
suggests that also the latter must pass through the point
(x ¼ 0, y ¼ 0), hence supporting our reckoning above.

Moreover, for C< 0 or ~C< 0 the trajectories depend not
only on the real constant K or ~K, but also on the integer n
due to the periodicity of arctan in Eq. (23). Here in the
linear case we have either a stable focus (spiralling trajec-
tories flowing inward into the origin) or unstable focus
(spiralling trajectories flowing outward from the origin),
while n decreases by 1 on each occasion when a trajectory
flows through the ~y axis. The mapping tells now that also in
the nonlinear case n must decrease by 1 on each occasion
when a trajectory flows through the point (x ¼ 0, y ¼ 0),
thus the overall picture is one of trajectories looping closer
and closer or farther and farther from the origin. [In Fig. 1
the diagrams (3a) and (3c) depict a trajectory with some
fixedK but different values of n; the direction of the flow is
indicated by the increasing number of arrows on a trajec-
tory loop.]
Thus (the mismatch of factor 2 vs 4 notwithstanding),

besides the correspondence in the classification of the
phase portraits, the linear and nonlinear approximations
also share a qualitative correspondence in final asymptotic
state of the flow, i.e. whether it ends up at the origin, or
departs away from it. To summarize the results, it turns out
that the GR point is an attractor for the asymptotic flow of
all trajectories only if C1 > 0 and C2 < 0 [cases (1c), (2a),
and (3a)]. If C1 > 0 and C2 ¼ 0 all trajectories flow to the
line � � �?, � ¼ 0 instead [case (1b)]. If C1 ¼ 0 and
C2 < 0 all trajectories loop through the GR point oscillat-
ing back and forth [nonlinear case (3b)], or if C1 < 0 and

SCALAR-TENSOR COSMOLOGIES WITH A POTENTIAL IN . . . PHYSICAL REVIEW D 81, 104007 (2010)

104007-7



C2 <� C1

2 they oscillate further and further [nonlinear

case (3c)]. For the rest of the values of C1 and C2 all
trajectories eventually flow away from the GR point.

V. A SPECIAL EXAMPLE

To further illustrate how well the full system and its
approximations near the GR point fit together, let us con-
sider a STGwith a specific coupling function and potential,

!ð�Þ ¼ 3�

2ð1��Þ ; Vð�Þ ¼ 0: (28)

(Although this setup is rather unphysical it serves to sup-
port the mathematical scheme.) From the condition 2!þ
3 � 0 it follows that � � 1. The GR point is at �? ¼ 1,
�? ¼ 0, while the rest of the border line, �? ¼ 1, �? �
0, is deemed to be outside of the definition of the system.

The full equation for phase trajectories, (9), reads now

d�

d�
¼ � 3�

2�

�
�1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��
p

�
� �

2ð1��Þ : (29)

Fortunately it is amenable to integration, and the solution is

j�j ¼ K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p Þ3; (30)

where K1 is a constant of integration.
Zooming to the vicinity of the GR point by (10), 1�

� ¼ x > 0, � ¼ y, the solution (30) approximates to a
parabola jyj ¼ K1

ffiffiffi
x

p
, which by identifying the integration

constants K2
1 ¼ 2K is in perfect accord with the solution

y2 ¼ 2Kx of the nonlinear approximate equation (21) with
C1 ¼ 0,C2 ¼ 0 [case (2b)]. This provides further evidence
that the behavior of the full dynamical system (7) and (8)
near the GR point is adequately approximated by the non-
linear system (18) and (19). Note also that in the linear

approximation we get a free motion, i.e. straight lines ~y ¼ffiffiffiffi
~K

p
, which qualitatively gives a correct asymptotic state

for the trajectories (flow away from the GR point), but
clearly does not provide a faithful phase portrait in com-
parison with the full solution.

VI. SUMMARYAND DISCUSSION

This paper considers general STG in the Jordan frame
with arbitrary coupling!ð�Þ and potential Vð�Þ. We have
presented and justified an approximate theory for the be-

havior of the scalar field in flat FLRW cosmological STG
models in the era when the cosmological matter density is
negligible in comparison to the density of the scalar po-
tential, and in the regime where the local weak field experi-
ments are satisfied. In terms of the phase space (�,
_� � �) the latter is understood as the neighborhood of
the GR point ð�?;�?Þ, defined by (a) 1

2!ð�?Þþ3 ¼ 0,

(b) �? ¼ 0. We propose that if (c) d
d� ð 1

2!ð�?Þþ3Þ � 0 and

(d) the higher derivatives of 1
2!ð�?Þþ3 do not diverge, then in

the neighborhood of the GR point the nonlinear system
(18) and (19) can be considered as an adequate approxi-
mate description of the full dynamical system (7) and (8),
since both are endowed with the same characteristic fea-
tures. The phase portraits, summarized in Table I and
depicted in Fig. 1, typically showmany trajectories passing
through the GR point either once on multiple times. In the
expanding universe, only if

Vð�?Þ> 0;

d

d�

�
1

2!ð�Þ þ 3

����������?

�
2Vð�Þ � dVð�Þ

d�
�

����������?

< 0 (31)

does the GR point function as an asymptotic attractor for
the flow of all trajectories in the vicinity.
These analytic results could not have been predicted by

numerical simulations, as the numerical calculations be-
come rather problematic near the GR point due to the
indeterminacy present in the equations. It would be very
interesting to study how the different looping behaviors
through the GR point manifest themselves in terms of
observational predictions. It would also be of obvious
physical relevance to extend the analysis to the case of
non-negligible matter density, although the treatment of
the problem would face the difficulty of having an addi-
tional phase space dimension to deal with.
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