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We construct a multimetric gravity theory containing N � 3 copies of standard model matter and a

corresponding number of metrics. In the Newtonian limit, this theory generates attractive gravitational

forces within each matter sector and repulsive forces of the same strength between matter from different

sectors. This result demonstrates that the recently proven no-go theorem that forbids gravity theories of

this type in N ¼ 2 cannot be extended beyond the bimetric case. We apply our theory to cosmology and

show that the repulsion between different types of matter may induce the observed accelerating expansion

of the universe. In this way dark energy can be explained simply by dark copies of the well-understood

standard model.
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I. MOTIVATION

The widely accepted standard model in modern cosmol-
ogy is known as the�CDMmodel. Its theoretical basis is a
homogeneous and isotropic spacetime metric with dynam-
ics governed by general relativity. Already this simple
setting allows for a successful explanation of very different
astronomical observations, such as the cosmic microwave
background [1], the accelerating expansion of the universe
[2,3], and its large scale structure [4]. This explanation
requires that the visible standard model matter contributes
only about 5% to the total matter content of the universe
and must be augmented by an incredible 95% of dark
matter and dark energy. However, the constituents of
dark matter and dark energy are not specified by the
�CDM model, and their nature is presently unknown.

This situation has led to the development of numerous
models for dark matter and dark energy, both from the
perspectives of particle physics and of gravity. Particle
physics models for dark matter [5] include weakly inter-
acting massive particles [6], axions [7], or massive com-
pact halo objects [8]. Dark energy [9] is modeled e.g. by
scalar fields as quintessence [10,11] or K-essence [12,13],
as a Chaplygin gas [14], or by employing tachyons. In
contrast to these particle theoretic approaches, modifica-
tions of general relativity may be employed in order to
explain the effects that are otherwise attributed to dark
matter or dark energy. The simplest example of such a
modification is the introduction of a cosmological con-
stant. Other examples include modified Newtonian dynam-
ics [15], tensor vector scalar theories [16,17], curvature
corrections by the full Riemann tensor as in [18] or by the
Ricci scalar in fðRÞ theories [19], higher-dimensional
models such as the Dvali-Gabadadze-Porrati model

[20,21], or structural extensions such as nonsymmetric
gravity theory [22] and area metric gravity [23,24].
In a recent article [25] we speculated on the possibility

that both dark matter and dark energy might be constituted
by an additional copy of the standard model that couples to
a second metric and interacts with visible matter exclu-
sively through gravitation. If the gravitational coupling is
attractive within each matter sector, but repulsive between
the two different matter sectors, this might explain the dark
universe. Moreover, matter from a dark copy of the stan-
dard model could be located in the so-called galactic voids,
which are seemingly empty if one considers only visible
matter. Their presence then would assert a repulsive force
acting on visible galaxies, so that these are pushed away
from the galactic voids. Astronomical observations indeed
suggest the existence of forces of this type [26,27]. The
major advantage of such a model would be its clear and
simple interpretation: since dark matter and dark energy
are simply constituted by a dark copy of standard model
matter, their physical properties would be well understood.
This model would obey a version of the Copernican prin-
ciple: it seems more natural to assume that the dark uni-
verse is constituted by the same type of matter known from
the visible universe than that the visible universe is distin-
guished from the dark universe by its physical properties.
Unfortunately, gravity theories of the type on which this

speculation is based are not so easily realized. We could
prove a no-go theorem in [25] that excludes all canonical
bimetric extensions of Einstein gravity, i.e., all those bi-
metric theories with two copies of standard model matter
that have a Newtonian limit in which the attractive gravi-
tational forces within each matter sector and the repulsive
forces between matter belonging to different sectors are of
equal strength.
In this article we will demonstrate the existence of

canonical extensions of Einstein gravity with attractive
and repulsive forces beyond the bimetric case, i.e., forN �
3 metrics and a corresponding number of standard model
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copies. In Sec. II, we will explicitly construct an action for
such a theory, derive its equations of motion, and show that
the theory has the required properties. We will then discuss
the cosmological consequences of our theory in Sec. III.
For a simple model we will show that the accelerating
expansion of the universe conventionally attributed to
dark energy can indeed be induced by the mutual repulsion
between several copies of standard model matter. We will
conclude with a discussion in Sec. IV.

II. CANONICAL EXTENSION OF EINSTEIN
GRAVITY

In this section we will show the existence of gravity
theories with N � 3 metrics and a corresponding number
of standard model copies that have a Newtonian limit in
which the attractive gravitational forces within each matter
sector and the repulsive forces between matter belonging to
different sectors are of equal strength. Starting from a set of
well-motivated assumptions, for instance, that all but one
sector appear dark for any observer, we will first construct
an action ansatz for such a theory. Second, we will derive
the corresponding equations of motion by variation and
show that the remaining parameters in the action can be
chosen so that the theory acquires the proposed Newtonian
limit. In the following section we will analyze the cosmo-
logical consequences of the theory.

A. Construction of the action

The basis for our extension of Einstein gravity is a four-
dimensional manifold. The field content we consider is
given by a set of N � 3 metric tensors g1; . . . ; gN and
also by N copies of the standard model with fields that
are collectively denoted by �1; . . . ;�N . This reflects our
motivation that dark matter and dark energy should be
constituted purely by additional copies of the standard
model without introducing any other field. A standard
model copy together with the corresponding metric gI

will be called a sector of our theory. To proceed toward
an ansatz for a suitable action we will use the following
assumptions:

(i) The fields �I of each copy of the standard model
couple only to the corresponding metric gI. This
assumption is needed in order to obtain the correct
behavior of matter within a gravitational field. The
fact that each type of matter is affected only by a
single metric guarantees that the motion of observers
in the sector with metric gI is governed by the
corresponding set of timelike geodesics, and the
standard notion of causality of matter fields �I is
provided by the Lorentzian cones.

(ii) Different sectors couple only through the gravita-
tional interaction between the metrics. Since there is
no nongravitational evidence for the existence of
additional standard model copies, we must assume
that there is no direct nongravitational coupling be-

tween them. In consequence, matter from any given
sector will appear dark for observers in all other
sectors.

(iii) The equations of motion contain at most second
derivatives of the metrics. This assumption is one
of mathematical simplicity and guarantees a reason-
able amount of technical control over the partial
differential field equations. It will be useful to re-
strict the possible terms in the action of our theory.

(iv) The theory is symmetric with respect to an arbitrary
permutation of the sectors ðgI;�IÞ. This assumption
is made for simplicity; it employs the Copernican
principle in the sense that the same laws of nature
should hold within each sector. It also follows that
the interaction between the different sectors will
satisfy Newton’s principle that action equals reaction
for the gravitational forces.

Establishing assumption (i) means that the action we look
for must contain in its matter part a sum over copies of
standard model actions

SM½gI;�I� ¼
Z

!ILM½gI;�I�; (1)

where !I ¼ d4x
ffiffiffiffiffi
gI

p
denotes the canonical volume form

related to gI, and LM½gI;�I� is the standard model scalar
Lagrangian. Assumption (ii) then implies that the remain-
ing gravitational part of the action can only depend on the
different metrics. Hence the total action can be decom-
posed in the form

S ¼ SG½g1; . . . ; gN� þ
XN
I¼1

SM½gI;�I�: (2)

We now turn our focus to the gravitational part of this
action, which can be written as

SG½g1; . . . ; gN� ¼ 1

2

Z
!0LG½g1; . . . ; gN� (3)

for a symmetric volume form !0 ¼ d4x
ffiffiffiffiffi
g0

p
with

g0 ¼
YN
I¼1

ðgIÞ1=N (4)

and a scalar Lagrangian LG½g1; . . . ; gN�. We use units so
that the Newton constant is normalized as 8�GN ¼ 1 and
½LG� ¼ L�2. As a consequence of assumption (iii), the
Lagrangian cannot contain terms with higher than second
derivatives of any metric gI. Hence the only tensors that
may appear in this Lagrangian are the metrics gI, the
connection difference tensors

SIJijk ¼ �Ii
jk � �Ji

jk; (5)

their covariant derivatives rI
pS

JKi
jk, and the Riemann

curvature tensors RIi
jkl for each metric. For simplicity,

and in analogy to Einstein gravity, we now construct our
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Lagrangian only from terms of the form gIijRJ
ij. From

assumption (iv) we then deduce that the prefactor of each
of these terms should be independent of the individual
sectors I and J. However, it may still depend on whether
I and J are equal or not. We therefore choose the following
ansatz for the Lagrangian,

L G½g1; . . . ; gN� ¼
XN
I;J¼1

ðxþ y�IJÞgIijRJ
ij: (6)

The parameters x and y are constant and imply that gIijRJ
ij

appears with prefactor xþ y if I ¼ J and prefactor x
otherwise.

Equations (2) and (6) define the gravity theory we wish
to investigate in the following.

B. Derivation of the field equations

We will now derive the gravitational field equations
from our action ansatz (2) and (6) by variation. In particu-
lar, we will show that the parameters x and y can be
determined so that the theory obtains a Newtonian limit
in which the attractive gravitational forces within each
matter sector and the repulsive forces exerted from matter
belonging to different dark sectors are of equal strength.

The variation of the gravitational part of the action can
be written in the form

�SG ¼ 1

2

XN
I;J¼1

ðxþ y�IJÞ
�Z

d4x�
ffiffiffiffiffi
g0

p
gIijRJ

ij

þ
Z

!0ð�gIijRJ
ij þ gIij�RJ

ijÞ
�
: (7)

It is straightforward to compute the variations of the occur-
ring terms. We will therefore give only a brief sketch of the
computation. For the variation of the volume form, note
that

�
ffiffiffiffiffi
g0

p ¼
ffiffiffiffiffi
g0

p
2N

XN
I¼1

gIab�gIab: (8)

The variation of the inverse metrics is given by the standard
formula �gIij ¼ �gIiagIjb�gIab. For the variation of the

Ricci tensors, we use the formula

�RJ
ij ¼ ðgJdða�bÞ

ði �
c
jÞ � 1

2g
Jab�c

ði�
d
jÞ

� 1
2g

Jcd�a
ði�

b
jÞÞrJ

drJ
c�g

J
ab: (9)

The occurring covariant derivatives on �gJab can be re-

solved by repeated use of the partial integration formula

Z
!0rI

iV
i ¼ �

Z
!0

~SIiV
i; (10)

which holds for arbitrary vector fields V. Here and in the
following calculation we use a convenient short notation
for contracted connection differences,

SIJi ¼ SIJpip; (11)

and for the arithmetic mean with respect to the first sector
index,

~S Ji
jk ¼

1

N

XN
I¼1

SIJijk;
~SJi ¼

1

N

XN
I¼1

SIJi: (12)

Further, note that covariant derivatives on the metrics can
be written asrI

ag
J
bc ¼ �2SIJdaðbg

J
cÞd, using the fact that g

J

is covariantly constant with respect to rJ. Thus we finally
obtain the variation of the gravitational part of the action in
the form

�SG ¼ � 1

2

XN
I¼1

Z
!0K

Iab�gIab (13)

with

KIab ¼ � 1

2N
gIab

XN
J;K¼1

ðxþ y�JKÞgJijRK
ij þ

XN
J¼1

ðxþ y�IJÞRJ
ijg

IiagIjb � 2

�
gIdða�bÞ

ði �
c
jÞ �

1

2
gIab�c

ði�
d
jÞ �

1

2
gIcd�a

ði�
b
jÞ

�

� XN
J¼1

ðxþ y�IJÞ
�
2gJpiSIJjpðc ~S

I
dÞ þ

1

2
gJij ~SIc ~S

I
d þ

1

2
gJijrI

c
~SId þrI

cS
IJi

dpg
Jjp

þ SIJpcqS
IJi

dpg
Jjq þ SIJicqS

IJj
dpg

Jpq

�
: (14)

We still have to compute the variation of the matter part
of the action with respect to the metric tensors. Since each
type of matter couples only to a single metric tensor, this
variation can be written in standard fashion in terms of the
matter energy-momentum tensors,

�SM½gI;�I� ¼ 1

2

Z
!ITIab�gIab: (15)

Note that this integral is performed using the volume form

!I, whereas the variation �SG above of the gravitational
part of the action contains the symmetric volume form !0.

This can be accounted for easily by recalling that !0 ¼
!I

ffiffiffiffiffiffiffiffiffiffiffiffi
g0=g

I
p

. Thus, by combining (13) and (15) we finally
obtain the full equations of motion

TIab ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
g0=g

I
q

KIab: (16)

REPULSIVE GRAVITY MODEL FOR DARK ENERGY PHYSICAL REVIEW D 81, 104006 (2010)

104006-3



Note that the only maximally symmetric vacuum solu-
tion of these equations is gI ¼ �I� for constants �I and flat
Lorentzian metric �. So the Newtonian limit of the equa-
tions can be obtained by linear gauge-invariant perturba-
tion theory with the ansatz gI ¼ �Ið�þ hIÞ where one
assumes small components jhIabj � 1. The computation

can be performed in complete analogy to the bimetric case,
which is shown in detail in [25]. One needs to determine
the dependence of the gauge-invariant Newtonian poten-
tials �I on the matter densities �I (whose definition ab-
sorbs the constants �I). This calculation then results in
Poisson equations

4�I ¼ 1

2

XN
J¼1

AIJ�J (17)

with a constant coupling matrix AIJ. Linearizing Eq. (16)
of our theory here, we obtain the matrix components

AIJ ¼ 4

3
ðNx� yÞ�1

�
7Nxþ y

4NðNxþ yÞ � �IJ

�
: (18)

As discussed at the beginning of this section, canonical
extensions of Einstein gravity in our sense are defined by a
standard Newtonian limit within each matter sector; this is
achieved by diagonal entries AII ¼ 1 since 8�GN ¼ 1.
Moreover, the canonical extensions have repulsive gravi-
tational forces of equal strength between matter from
different sectors, i.e., off-diagonal entries AIJ ¼ �1 for
I � J. These two requirements are met for parameter
values

x ¼ 2N � 1

6Nð2� NÞ ; y ¼ �2N þ 7

6ð2� NÞ : (19)

There are two immediate special cases. For N ¼ 1 the
action of our theory [see (2) and (6)] reduces to the
Einstein-Hilbert action, and we obtain the Einstein equa-
tions with only one matter sector and standard Newtonian
limit. For N ¼ 2 the parameters x and y above are not
defined, and this is consistent with our no-go theorem [25]
for bimetric gravities of this type. Finally, for N � 3, this
result verifies our proposition on the existence of canonical
extensions of Einstein gravity.

III. COSMOLOGICAL MODELWITH
ACCELERATING EXPANSION

The construction of the previous section provides us
with an explicit gravity theory including dark sectors and
repulsive forces. We will now analyze some of its cosmo-
logical consequences under the standard assumption of a
homogeneous and isotropic universe. We will argue that
the very early and the very late universe should be ame-
nable to an effective metric description where the metrics
from all sectors have an approximately identical evolution.
For this case we will compute the reduced equations of
motion. We will show that these resemble the Einstein

equations, except for an additional negative factor that
depends on the number N � 3 of sectors and rescales the
gravitational constant. From the cosmological equations of
motion we will then read off several features of our model:
the universe must be open and its expansion is accelerating.
We confirm this also by obtaining all explicit solutions for
radiation and dust matter. The early universe turns out to
feature a big bounce rather than a big bang, while the
acceleration of the late universe naturally becomes small.

A. Effective metric ansatz

The extrapolation of the Hubble expansion of the uni-
verse back in time suggests that the early universe becomes
increasingly dense and hot. All matter hence moves rela-
tivistically so that one may describe this early stage dom-
inantly by radiation. In our multimetric theory we simply
extend this assumption to all matter sectors. This is another
instance of the Copernican principle, which suggests sym-
metry between the different sectors. On this philosophical
basis, it seems reasonable to assume that the initial con-
ditions for all matter sectors were the same at some early
time. The field equations that are symmetric under permu-
tation of the sectors then allow for a very similar non-
symmetry-breaking evolution of the sectors. This common
evolution applies both to the energy-momentum tensors as
well as to the metrics, if averaged over cosmological
scales. By this argument the very early universe can be
described by means of a single effective metric gIab ¼ gab
and single effective energy momentum TI

ab ¼ Tab. This

argument will break down as soon as perturbations in the
sectors start to grow. These will lead to local symmetry
breaking, which should eventually transfer to a different
cosmological evolution of the sectors.
The symmetry between all sectors in our theory suggests

that we should extrapolate our observation of the Hubble
expansion to all matter sectors. At very late times the
universe hence will have sufficiently expanded so that the
matter in all sectors can be described by dust. This implies
that the structure formed at an intermediate age of the
universe no longer influences the cosmological evolution.
Since the physical laws in all sectors are the same and the
initial conditions at some early time agree, as argued
above, it is a plausible assumption that the intermediately
different evolution of the sectors averages out again at very
late times so that the effective metric and effective energy-
momentum solutions of our theory become attractors.
With these arguments the effective metric description,

gIab ¼ gab and TI
ab ¼ Tab, becomes available as a simple

model for both the very early and the very late universe. We
will now discuss the consequences of this assumption
under which the equations of motion (16) greatly simplify.
First, note that the connection difference tensors SIJ de-
fined in (5) all vanish; this is due to the fact that all
connections are equal. Second, the sums over sector in-
dices I, J in the equations of motion can be performed
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explicitly. This procedure results in precisely the same
effective equation for each of the sectors:

ð2� NÞTab ¼ Rab � 1
2Rgab: (20)

Remarkably, these are the Einstein equations except for the
additional factor 2� N, which acts as a rescaling of the
gravitational constant. Our assumption N � 3 implies that
this factor is negative. Thus, the sign of the gravitational
constant flips, and gravity for the effective metric becomes
repulsive. By specializing the effective metric to the
Robertson-Walker form in the following subsection, we
will see that this results in an accelerating universe.

B. Cosmological equations

Homogeneous and isotropic cosmologies are character-
ized by the existence of six Killing vector fields respon-
sible for spatial translations and rotations. The requirement
that these fields are symmetry generators for all metrics gI

in our theory restricts their form to be of the Robertson-
Walker type,

gI ¼ �n2I ðtÞdt � dtþ a2I ðtÞ���dx
� � dx�; (21)

with lapse functions nIðtÞ, scale factors aIðtÞ, and a com-
mon purely spatial metric ��� of constant curvature k 2
f�1; 0; 1g and Riemann tensor Rð�Þ���� ¼ 2k��½�����.
Note that the lapse function n1 in a single-metric theory
may be set to unity by an appropriate rescaling of the
cosmological time t. In a multimetric theory, however,
there are N independent functions nI, which cannot be
set to unity simultaneously.

The matter content consistent with the cosmological
symmetries is given by a set of N homogeneous fluids
with density �IðtÞ and pressure pIðtÞ. Their energy-
momentum tensors can be written as

TIab ¼ ð�I þ pIÞuIauIb þ pIg
Iab (22)

with velocities normalized by the relevant metrics from
their sector so that gIabu

IauIb ¼ �1. These tensors can be

decomposed into the components TI
00 ¼ �In

2
I and TI

�� ¼
pIa

2
I���.

We will now restrict this general multimetric cosmologi-
cal model to the effective metric case of relevance to the
very early and very late universe, as argued in the previous
subsection. This means we can omit the sector index I from
all matter densities and pressure functions as well as from
the lapse functions and scale factors. We may now rescale
the cosmological time so that nðtÞ � 1. Since all metrics
are now equal, we can use the symmetric field Eq. (20) and
insert the Robertson-Walker metric (21) (without sector
index). This leads to the cosmological equations of motion
wherein dots denote derivatives with respect to t:

� ¼ 3

2� N

�
_a2

a2
þ k

a2

�
; (23a)

p ¼ � 1

2� N

�
2
€a

a
þ _a2

a2
þ k

a2

�
: (23b)

The second equation can be replaced equivalently by the
continuity equation

_� ¼ �3
_a

a
ð�þ pÞ; (24)

which can be derived alternatively from energy-
momentum conservation raT

a0 ¼ 0, which is a conse-
quence of diffeomorphism invariance.
The first crucial observation from the above equations is

that the matter density � can be positive only if the uni-
verse is open with k ¼ �1. This is a prediction of our
simple cosmological model and contrasts general relativity
where cosmological solutions for all three cases k ¼ 1, 0,
�1 exist. We further see that positive � constrains _a by the
inequality _a2 < 1.
Without solving the equations of our cosmological

model, we may obtain another remarkable result: an accel-
erating universe. To see this we form a suitable linear
combination of Eqs. (23) to obtain the acceleration equa-
tion

€a

a
¼ N � 2

6
ð�þ 3pÞ: (25)

The strong energy condition,

ðTab � 1
2TgabÞtatb � 0 (26)

for all timelike vector fields ta, holds for all standard model
matter. For perfect fluid energy momentum and using ta ¼
ua this implies �þ 3p � 0. Since N � 3, it then immedi-
ately follows from the acceleration equation that €amust be
positive. This is a major difference to the cosmological
solutions obtained in Einstein gravity with N ¼ 1, where a
positive acceleration cannot be obtained without either a
cosmological constant or an exotic type of matter that has
sufficiently negative pressure p <��=3. Within our the-
ory, the acceleration is caused solely by the fact that the
sign of the gravitational constant, i.e., signðN � 2Þ, flips for
N � 3.

C. Explicit solution

Wewill now find the exact solutions to the cosmological
equations of motion of our model. These will explicitly
confirm that the accelerating universe also is expanding.
We will see that the acceleration tends to zero for very late
times and that the early universe features a big bounce, not
a big bang as it does in Einstein gravity.
In order to solve the cosmological Eqs. (23), we intro-

duce the conformal time parameter �, which is defined by
dt ¼ a d�. Denoting derivatives with respect to � by a
prime 0, we obtain the open universe k ¼ �1 equations
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� ¼ 3

2� N

�
a02

a4
� 1

a2

�
; (27a)

p ¼ � 1

2� N

�
2
a00

a3
� a02

a4
� 1

a2

�
: (27b)

Applying these equations to the radiation-filled early uni-
verse requires an equation of state p ¼ !� with equation
of state parameter ! ¼ 1=3, while the late universe re-
quires the choice ! ¼ 0 for dust matter. Inserting the
equations of motion above into the equation of state leads
to

0 ¼ !�� p

¼ 1

ð2� NÞa4 ð2a
00aþ ð3!� 1Þa02 � ð3!þ 1Þa2Þ:

(28)

The general solution of this equation takes the form

a ¼
�
a1 exp

�
3!þ 1

2
�

�
þ a2 exp

�
� 3!þ 1

2
�

��
2=ð3!þ1Þ

(29)

for integration constants a1 and a2. Employing this explicit
expression for the scale factor in Eq. (27a), we compute the
matter density

� ¼ 12

N � 2
a1a2

�
a1 exp

�
3!þ 1

2
�

�

þ a2 exp

�
� 3!þ 1

2
�

���ðð6!þ6Þ=ð3!þ1ÞÞ
: (30)

The values of the integration constants in this solution
are constrained by the requirement that a and � should be
positive. This can be achieved only if both a1 and a2 are
positive. Then it is not difficult to check another important
feature of the solution: the scale factor a attains a positive
minimal value

a0 ¼ ð4a1a2Þ1=ð3!þ1Þ (31)

at conformal time

�0 ¼ 1

3!þ 1
ln
a2
a1

: (32)

This property of our cosmological model tells us that every
solution features a big bounce where the matter density
becomes maximal,

�0 ¼ 3

ðN � 2Þa20
: (33)

An alternative way to parametrize the solutions uses the
values �0 and a0 at the big bounce instead of the original
integration constants a1 and a2, which yields

a ¼ a0

�
cosh

�
3!þ 1

2
ð�� �0Þ

��
2=ð3!þ1Þ

; (34a)

� ¼ �0

�
cosh

�
3!þ 1

2
ð�� �0Þ

���ðð6!þ6Þ=ð3!þ1ÞÞ
: (34b)

From this representation of the solutions one immediately
sees why a0 and �0 are extrema of the scale factor and
matter density, respectively. Using the definition dt ¼ a d�
and (34a) we may transform the solutions back to cosmo-
logical time. For general ! the integrated relation between
t and � is

t ¼ � a0
43!þ1e���0 2F1

� �1

3!þ 1
;

�2

3!þ 1
;

3!

3!þ 1
;

� eð3!þ1Þð���0Þ
�
; (35)

in terms of the hypergeometric function 2F1. Now the big
bounce at � ¼ �0 corresponds to t ¼ 0.
The early universe (near the big bounce) is filled with

radiation with ! ¼ 1=3. In this case the solutions simply
become

15 10 5 5 10 15

t

a0

5

10

15

a

a0

FIG. 1. The scale factors of the radiation-filled universe
(dashed line) and the dust-filled universe (solid line) plotted
over cosmological time.

4 2 2 4

t

a0

0.2

0.4

0.6

0.8

1.0
0

FIG. 2. The matter densities of the radiation-filled universe
(dashed line) and the dust-filled universe (solid line) plotted
over cosmological time.
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a

a0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2=a20

q
;

�

�0

¼ ð1þ t2=a20Þ�2: (36)

These are plotted as the dashed lines in Figs. 1 and 2. The
late universe is modeled by dust with ! ¼ 0. For this case
we may consider the asymptotic behavior of the accelera-
tion. One can check that the acceleration €a as a function of
� is

€a ¼ 2

a0ð1þ coshð�� �0ÞÞ2
: (37)

For late times t ! 1 that correspond to � ! 1 the accel-
eration tends to zero. The dust solutions for the scale factor
and matter density are plotted as solid lines in Figs. 1 and 2.

IV. CONCLUSION

In this article, we have presented a multimetric exten-
sion of Einstein gravity with the field content of N � 3
metric tensors and a corresponding number of standard
model copies. The theory is constructed so that all but
one copy appear dark and gravitationally repulsive for
any observer. We have shown that the cosmology of this
multimetric theory naturally explains an accelerating
universe.

Motivation for our theory comes from the basic idea that
Newtonian gravity allows positive and negative mass ob-
servers, but relativistic Einstein gravity does not (while it is
well known that it may contain negative mass sources).
The main observation needed to transfer this idea into a
general relativistic framework is that N different types of
observers require for their definitionN different metrics, as
already argued in our article [25]. Corresponding to these
different metrics one then also needs different copies of the
standard model to distinguish the sources. Interestingly, the
same article proves a no-go theorem that makes it impos-
sible to construct bimetric gravity theories in which a
repulsive gravitational interaction between the different
standard model sectors is contrasted by an attractive gravi-
tational interaction of equal strength within each sector.
Hence the first important result of this paper is the proof, by
explicit construction, that this no-go theorem cannot be
extended beyond N ¼ 2, simply because canonical exten-
sions of Einstein gravity with the stated properties exist for
N � 3.

This construction, as far as we are aware, provides the
first relativistic gravity theory with local repulsive forces
and suitably reacting observers that does not contain addi-
tional fields without clear interpretation, but merely extra
dark copies of the well-understood standard model. Thus
the dark universe is constituted by the same type of matter
known from the visible universe, rather than that the visible
universe is distinguished from the dark side by its physical
properties.

Since repulsive gravity is contained in our theory, one
could expect it to explain dark energy. To see whether this

is indeed the case, we have analyzed a simple homoge-
neous and isotropic cosmological model. We have argued
that the very early and the very late universe, which are in
all sectors dominated by radiation or matter, respectively,
can be plausibly described by a single effective metric and
energy-momentum tensor. An essential ingredient of this
argument was an extended Copernican principle of sym-
metry between all sectors with regard to initial conditions.
We have derived the cosmological equations of motion and
computed the general solutions for radiation and dust
matter. Both solutions feature an open universe and the
scale factor displays a big bounce. But most remarkably,
this simple model also leads to accelerating expansion, and
the acceleration becomes naturally small at late times. This
effect does not rely on exotic new matter; it is a direct
consequence of the mutual repulsion between the different
standard model copies in the theory.
In this article we have discussed only the simple setting

of a homogeneous and isotropic universe whose density
and pressure functions effectively agree within each sector.
Since this is plausible only for the early and late universe,
one should also consider the more general cosmological
setting where these functions evolve independently. This
requires a study not only of the simplified effective Eq. (20)
but of the more complicated full equations of motion (16)
with the general cosmological ansatz (21) and (22).
In further research, it would be interesting to apply the

theory presented here to other important astronomical ob-
servations on noncosmological scales that involve nonho-
mogeneous mass distributions. In this context one should
discuss the consequences of the additional dark standard
model copies for the physics of the solar system, for rota-
tional curves of galaxies, gravitational lensing, or structure
formation. Could it be that effects conventionally attrib-
uted to dark matter simply follow from the dark standard
model sectors? We know from the symmetry assumption
between all sectors that all types of matter have the same
physical properties, and thus should form the same struc-
tures, like stars and galaxies, as does visible matter. What
we do not yet know can be learned by applying the com-
prehensive parametrized post-Newtonian (PPN) formalism
[28] to our theory. In our case, this formalism will involve
two sets of PPN parameters: the first will describe the usual
gravitational interaction within each sector, and the second
will specify the cross interaction between different sectors.
Once these parameters are available, we will be in the
position to link them to astronomical observations.
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