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We discuss four-dimensional ‘‘spatially homogeneous’’ gravitational instantons. These are self-dual

solutions of Euclidean vacuum Einstein equations. They are endowed with a product structure R�M3

leading to a foliation into three-dimensional subspaces evolving in Euclidean time. For a large class of

homogeneous subspaces, the dynamics coincides with a geometric flow on the three-dimensional slice,

driven by the Ricci tensor plus an soð3Þ gauge connection. The flowing metric is related to the vielbein of

the subspace, while the gauge field is inherited from the anti-self-dual component of the four-dimensional

Levi-Civita connection.
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The aim of the present paper is to report on an intriguing
and potentially important relationship between four-
dimensional self-dual gravitational instantons and three-
dimensional geometric flows. The framework is that of
four-dimensional Euclidean geometry M4, which is topo-
logically R�M3 with leaves M3 assumed to be homo-
geneous spaces of Bianchi type.

Gravitational instantons are classical solutions of gen-
eral relativity and potential tools to handle quantum tran-
sitions; they are also important ingredients of strings and
branes, entering in various symmetry-breaking schemes.
Many solutions of Einstein’s equations were made avail-
able in the late 1970’s (see e.g. [1–5]); however, no crite-
rion has ever been presented that allows one to foresee,
according to an elegant, unified and comprehensive pat-
tern, the expected classes of Bianchi solutions. In this
paper we present such a criterion, with possible applica-
tions to more general situations.

On the other side, geometric flows of three-dimensional
homogeneous spaces are interesting in their own right; they
turned out to play a role in Hamilton’s program for proving
Poincaré’s and Thurston’s conjectures. A relevant question
is to ask whether and how this flow behavior of one-
parameter families of three-dimensional spaces is related
to the Euclidean-time evolution inside a gravitational in-
stanton, where the homogeneous spaces appear as the
leaves of the foliation. This question is motivated by
several facts.

First, Ricci-flow equations are renormalization-group
equations for two-dimensional sigma models, with t /
� log� the renormalization-group time [6–9]. Setting a
relation between the latter and the Euclidean time of a
gravitational instanton would be one more indication in
favor of the dynamical generation of time in string the-
ory—similar in spirit to the role of the Liouville field in
noncritical strings. Second, it was noticed, but overlooked
as a coincidence in [10,11], that some Ricci-flow interpre-

tation may exist for a particular class of Bianchi IX met-
rics. Geometric-flow first-order equations also emerge as
classical equations of motion in modified Einstein gravity
[12] as a consequence of a Bogomol’nyi-Prasad-
Sommerfield–like condition (the detailed balance). It is
thus legitimate to ask whether a self-duality condition
could have a similar effect, on more general grounds, under
appropriate homogeneity and foliation assumptions.
Lastly, the governing of gravitational behavior by a first
order equation is reminiscent of holographic situations.
Along the lines of [13], we hope that the first order flow
equations can ultimately be used to reconstruct the bulk
fields from the boundary data.
The achievements we will exhibit are twofold. On the

one hand, we show that real, nondegenerate, self-dual
solutions exist only for unimodular Bianchi groups or for
the one of type III, and are classified in terms of the
homomorphisms of g ! soð3Þ, where g is the real Lie
algebra of the Bianchi group under consideration and
SOð3Þ the anti-self-dual factor of the group SOð4Þ. On
the other hand, we observe that the self-duality require-
ment leads to first-order equations, which turn out to
describe a geometric flow for three-dimensional Bianchi
manifolds, driven by the Ricci tensor combined with a flat
SOð3Þ gauge field (tildes refer to three-dimensional ten-
sors):

d~gij
dt

¼ � ~Rij � 1

2
trð ~Ai

~AjÞ: (1)

As already stated, we seek Euclidean four-dimensional
spaces of the type M4 ¼ M3 � R with homogeneous
spatial sections M3. The latter are assumed to be of
Bianchi type: a three-dimensional group G acts simply
transitively on the leaves, which are therefore endowed
with the structure of a group manifold (hence we exclude
H3, H2 � S1 or S2 � S1). Unimodular groups are referred
to as Bianchi A and consist of the Abelian three-
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dimensional translation group, the Heisenberg group,
Eð1; 1Þ, Eð2Þ, SLð2;RÞ, and SUð2Þ. The metric for M4

can always be of the form

ds2 ¼ N2dT2 þ gij�
i�j; (2)

where gijðTÞ are functions to be determined and �i are

G-invariant forms. It is convenient to introduce an ortho-
normal frame f�a; a ¼ 0; 1; 2; 3 ¼ f0; �gg,

ds2 ¼ �ab�
a�b; (3)

by setting

�0 ¼ NdT; �� ¼ ��
j�

j with gij ¼ ����
�
i�

�
j;

(4)

where �;�; . . . label orthonormal space indices. We will

make the convenient gauge choice N ¼ � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
detgij

p
, and

later use another ‘‘time’’ t defined as dt ¼ �dT.
Euclidean solutions to vacuum Einstein equations can be

obtained by imposing (anti-)self-duality of the Riemann
curvature twoform. This is a well-studied topic, and for
reasons that will become clear, we would first like to
elaborate. Spin connection and curvature forms belong to
the antisymmetric 6 representation of SOð4Þ. In four di-
mensions, this group of local frame rotations factorizes as
SOð3Þsd � SOð3Þasd, and the connection !ab and curvature
Rab SOð4Þ-valued forms can be reduced with respect to
the SOð3ÞðaÞsd as 6 ¼ ð3sd; 3asdÞ [14]:

�� ¼ 1

2

�
!0� þ ����

2
!��

�
;

A� ¼ 1

2

�
!0� � ����

2
!��

� (5)

for the connection, and similarly for the curvature which
now reads

S � ¼ d�� � �����
� ^��;

A� ¼ dA� þ ����A
� ^ A�:

(6)

The fS�;��g are vectors of SOð3Þsd and singlets of
SOð3Þasd and vice versa for fA�; A�g.

Imposing that S� or A� be zero is sufficient to solve
vacuum Einstein equations. We will focus here on the self-
dual solutions; anti-self-dual solutions are obtained by
Oð4Þ parity or time-reversal transformations.

First-order equations can be obtained by taking the spin
connection A� in (6) to be

A� ¼ 0: (7)

This first integral raises two questions: (i) does A� ¼ 0
lead to consistent vacuum solutions, and (ii) is this unique?
Concerning the second question, it is known that, barring
global issues, if A� ¼ 0 one can always find an SOð3Þasd
local transformation (see e.g. [2]) such that (7) holds in the
rotated frame, which is no longer invariant though. This

property opens a practical issue: if we insist on keeping the
original invariant frame, we must allow for flat anti-self-
dual parts in the connection. Listing all nonequivalent
connections of this type will provide a classification of
all possible spatially homogeneous self-dual instantons.
Both questions can be answered accurately. First, we can

prove that Eq. (7) admits nondegenerate solutions, except
at isolated points where the metric determinant may van-
ish, for the Bianchi A class and Bianchi III only. Second,
we show that there are as many nonequivalent G-invariant
connections A with vanishing anti-self-dual curvature A
as homomorphisms of g ! soð3Þ. We will refer to them as
branches of solutions, even though this distinction is to
some extent bound to our requirement of invariant frame
[16]. It will turn out that in every case there are two such
branches. We define general I�i such that A� ¼ 1

2 I�i�
i and

introduce this ansatz inA� ¼ 0 together with (2) and (4).
The equations we obtain are [17]

_� �i ¼ ��j½ðnj‘ � ak�
kj‘Þg‘i � 1

2�
j
in

k‘gk‘� ��I�i (8)

(where the dot stands for a derivative with respect to T)
plus a constraint on the constants of motion I�i,

I�‘c
‘
jk þ ����I

�
jI

�
k ¼ 0: (9)

This constraint defines a homomorphism of g ! soð3Þ and
its solutions are classified in terms of these homomor-
phisms. By using appropriate transformations, one can
bring the I�‘ into a diagonal form with entries
f	1; 	2; 	3g taking the values 0 or 1.
To make contact with existing literature [5], we note that

Eq. (9) can lead to imaginary solutions. These are related to
homomorphisms of g into real subalgebras of suð2;CÞ,
which provide more freedom but are not genuine instan-
tons. We summarize the various possibilities as follows:
Bianchi Class A.—The rank-zero homomorphism which

maps g to the null generator of soð3Þwith 	i ¼ 0 is always
available and leads to consistent solutions. There is always
a second homomorphism (unique up to trivial algebra
automorphisms), which is rank one in types I, II, VI�1,
and VII0, where it maps one generator of g onto one of
soð3Þ with a single nonvanishing 	i; and rank three in
type IX, where it is the isomorphism of g � soð3Þ to itself
with all 	i ¼ 1. The case of VIII exhibits a rank-three
homomorphism in C—	1 ¼ 1, 	2 ¼ 	3 ¼ �i—and cor-
responds to a real solution in a space with signature
ð�;�;þ;þÞ. The case VI�1 similarly admits a rank-one
homomorphism in C: 	1 ¼ i, 	2 ¼ 	3 ¼ 0. These cases
turn out to be necessary in setting the advertised relation
with the Ricci flow of three-dimensional Bianchi spaces.
Bianchi Class B.—Only rank-zero and rank-one homo-

morphisms are a priori possible. However, they generally
lead to singular metrics, except for a special case in
Bianchi III, which requires a nondiagonal metric.
We now focus on the Bianchi A class, where we may

always assume a diagonal coframe without restriction:
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��i ¼ �i��i. With this simplification, we can turn to the
interpretation of the Euclidean-time evolution in the above
gravitational instantons as a geometric flow of a family of
three-dimensional homogeneous spaces. For concreteness
we carry out first a well-studied case, that of Bianchi IX

[4]. We take I�i ¼ ð1� ~	Þ��i, with ~	 ¼ 0 (isomorphism)

corresponding to the Taub-NUT branch and ~	 ¼ 1 (trivial
homomorphism) to the Eguchi-Hanson branch. The self-
duality equations (8) read [ði; j; kÞ are circular permuta-
tions of (1, 2, 3)]

2
_�i

�i

¼ ð�j � �kÞ2 � �2
i þ 2~	�j�k: (10)

For the Taub-NUT branch (~	 ¼ 0) the observation (already
made in [10,11]) is that Eqs. (10) are Ricci-flow equations
for three-dimensional Bianchi IX geometries

d~s2 ¼ ~gij�
i�j ¼ ���

~�� ~��; (11)

which are also of the diagonal type: ~gijðtÞ ¼ �ij�iðtÞ.
For the Eguchi-Hanson branch (~	 ¼ 1), the flowing

three-dimensional geometries are again Bianchi IX with
(11). Examining the self-duality equations (10), we now

find in addition to the Ricci tensor an soð3Þ gauge field ~A
on the flowing three-spheres. It originates from the Levi-
Civita anti-self-dual connection A and reads

~A ¼ ~Ai�
i ¼ �~	��iT

��i; (12)

where T� are the generators of soð3Þ in the adjoint, sat-
isfying trðT�T�Þ ¼ �2���. This soð3Þ gauge field van-
ishes for the Taub-NUT case but is nonzero for the Eguchi-
Hanson case. In both cases, however, its field strength is
zero. With this field, Eq. (10) is recast as announced in the
beginning:

d~gij
dt

¼ � ~Rij � 1

2
trð ~Ai

~AjÞ: (13)

The flow equation (13) follows directly from (8) with an
soð3Þ gauge field

~A ¼ �~I�iT
��i: (14)

As a consequence of (9), the ~I�i’s are subject to

~I �‘c
‘
jk þ ����~I

�
j
~I�k ¼ 0; (15)

which is a flatness condition for ~A: ~F ¼ d ~Aþ ½ ~A; ~A� � 0.
The gauge field is a flat background field: it does not flow

( _~A ¼ 0) but contributes to the flow of the metric.
The above developments set a correspondence between

the time evolution in self-dual gravitational instantons
foliated with homogeneous leaves and the flow (parametric
in time) evolution of homogeneous Bianchi IX spaces,
valid for branches labeled by flat soð3Þ connections over
G. We now proceed to show that this correspondence holds
for all Bianchi A classes. We illustrate this correspondence
explicitly for the remaining Bianchi I, II, VI�1, VII0, and

VIII classes. Hence, the corresponding three-manifolds
M3 are endowed with a metric (11), where

~g ijðtÞ ¼ �ij ~�iðtÞ: (16)

Note that the correspondence does not take the three-
dimensional part of the four-dimensional metric to be
equal to the three-dimensional metric. Similarly, in the
diagonal ansatz, we take (14) as an soð3Þ gauge field with

~I �i ¼ ~	i��i; (17)

where ~	i are subject to the constraints (15), recast as

~	 ic
i
jk þ �ijk ~	j

~	k ¼ 0 (18)

(no summation on i, j, k). Consequently, the geometric-
flow equations obtained from (13) can be written as

_~�i

~�i

¼ � X3
j;k¼1

1

4
½ðcijkÞ2 ~�2

i � 2ðcjkiÞ2 ~�2
j þ 2cjkic

k
ij ~�j ~�k�

þ ~	2
i

~�1 ~�2 ~�3

~�i

; (19)

where the dot stands for ~�1 ~�2 ~�3 d=dt. Correspondingly,
the self-duality equations (8) read

_�i

�i

¼ X3
j;k¼1

�ijk
2

�
� cijk

2
�2
i þ

1

2
ðcjki�2

j þ ckij�
2
kÞ
�

þ 	i

�1�2�3

�i

(20)

(as already quoted, here the dot stands for �1�2�3 d=dt).
Each of the above equations has two branches. From the

self-dual four-dimensional side, this is determined by each
of the two nonequivalent homomorphisms of g ! soð3Þ,
as a consequence of the flatness of the anti-self-dual Levi-
Civita connection A. From the three-dimensional view-
point, this corresponds to the two nonequivalent flat

soð3Þ—G-invariant—connections ~A over the group mani-
fold G. This holds over the real numbers for Bianchi I, II,
VII0, and IX, whereas Bianchi VI�1 and VIII require us to
pass to the complex i.e. change signature. In all Bianchi A
spaces, the advertised correspondence holds as one-to-one
for each class and each branch. It goes as follows: in
cases I, II, VII0, IX, we must set for the metric ~�i ¼
�i; 8 i, whereas there is a fine structure for the gauge

field: ~	i ¼ 	i 8 i for I and II, and ~	i ¼ 1� 	i 8 i for
VII0 and IX [18].
For VI�1 we find the correspondence f~�1; ~�2; ~�3g ¼

fi�1; i�2; �3g for the metric coefficients, while for the

connection, the coefficients f	ig and f~	ig are interchanged
as f0; 0; 0g $ fi; 0; 0g. Similarly, for VIII we find the cor-
respondence f~�1; ~�2; ~�3g ¼ f�1;�i�2;�i�3gwith f	ig and
f~	ig interchanged as f0; 0; 0g $ f0;�i;�ig.
Because of their complex nature, the classes VI�1 and

VIII are not interesting for gravitational instantons. They
are nevertheless useful for setting the correspondence on
universal grounds and may play a more physical role in the
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search of self-dual solutions in a four-dimensional setting
with signature ð�;�;þþÞ.

The correspondence described here, involving in three
dimensions the ‘‘square root’’ of the four-dimensional
metric, has a genuine intrinsic geometrical meaning, re-
lated to a remarkable scaling property of the Riemann
tensor in three-dimensional homogeneous spaces [19]. It
has, furthermore, some immediate consequences. For ex-
ample, there is a potential application of the integrability
properties of self-duality equations to tackle Ricci or re-
lated flows beyond the usual asymptotic analysis [20].
Another, more fundamental result is the appearance of a
new and yet unravelled kind of flow, namely, Ricci flow in
the presence of a gauge field. As it stands, this flow exhibits

two intriguing features: the absence of evolution for ~A and
its flatness, both resulting from the flatness of the anti-self-
dual four-dimensional Levi-Civita connection which in
turn follows from the self-duality requirement.

More general flows with nonvanishing _~A and ~F can be
obtained by replacing the self-duality condition on the
Riemann curvature with a milder one, still allowing a
first-order time evolution without imposing that the anti-
self-dual Levi-Civita connection be a pure gauge. This is
possible by allowing for a cosmological constant in four
dimensions. In this case, self-duality of the Riemann is
traded for that of the Weyl tensor. The anti-self-dual part of
the connection now explicitly depends on time, and the
corresponding curvature is nonzero. This is illustrated in
the celebrated solution of Fubini-Study for Bianchi IX.
Translated in the three-dimensional side, the equation for
the metric flow is still given by (13) but is now accompa-

nied by a flow for ~A and a constraint for ~F. The gauge field
thus carries dynamics, which decouples when the cosmo-
logical constant is turned off.

As a conclusion we would like to make some final
remarks and stress the role of each ingredient that we
have used in setting the gravitational-instanton/geomet-
ric-flow correspondence. We worked in four dimensions,
where the orthogonal group is factorized into two three-
dimensional subgroups and all degrees of freedom are
reduced as self-dual plus anti-self-dual. The foliation
plus homogeneity assumption further introduces three-
dimensional leaves and another three-dimensional group,
G related to SOð3Þ with nontrivial homomorphisms.
Finally, the self-duality requirement effectively reduces
the system to a three-dimensional one, whose dynamics
turns out to be equivalent to a geometric flow on homoge-
neous three-manifolds endowed with an soð3Þ gauge con-
nection. Although the present scheme seems quite rigid,
generalizations are possible in several ways. Self-duality
can be directly implemented in seven dimensions and
possibly generalized in higher dimensions in the sense of
reducing degrees of freedom by trading second-order equa-
tions for first-order ones. Understanding the geometrical
underpinnings of the correspondence, based on higher-
dimensional flows, may give insight into such generaliza-
tions. Multi-instantons [15] provide another rich play-
ground for extensions, although the absence of
homogeneity may be an obstruction.
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