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We present a simple two-field model of inflation and show how to embed it in string theory as a

straightforward generalization of axion monodromy models. Phenomenologically, the predictions are

equivalent to those of chaotic inflation, and, in particular, include observably large tensor modes. The

whole high-scale large-field inflationary dynamics takes place within a region of field space that is

parametrically sub-Planckian in diameter, hence improving our ability to control quantum corrections and

achieve slow-roll inflation.
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In the observationally successful framework of infla-
tionary cosmology, we can study detectable consequences
of physics at very high energies. The energy scale at which
inflation took place is a free parameter that is still very
poorly constrained, and can range from the grand unified
theory (GUT) scale to the TeV scale (or even less). The
high-scale end of this interval is the most exciting: first, it is
the closest to the Planck scale1MP, where quantum gravity
should become important; second, the scale of inflation is
determined by the amplitude of primordial tensor modes,
which will be detectable in the cosmic background radia-
tion only if this scale is close to the GUT scale.

An interesting perspective on high-scale inflation is
given by the Lyth bound [1]. This says that detectably
large tensor modes, which are equivalent to high scale
inflation,2 require super-Planckian variation of the inflaton
field. This increases the UV-sensitivity of inflation, e.g. in
the sense that an infinite sequence of Planck-suppressed
higher dimension operators become crucial for assessing
the success of the model. This suggests that high-scale
large-field models provide a framework particularly well
suited to test candidate UV completions of quantum field
theory plus general relativity, such as string theory.

In this work we study a model of inflation, which we call
Dante’s Inferno, where high-scale large-field inflationary
dynamics takes place within a region of field space which
is parametrically sub-Planckian in diameter. This provides
a new perspective on the Lyth bound and its implications.
We organize our presentation as follows. First, we describe
the effective field theory implementation of this model,
which contains a mechanism to alleviate any �-problem
that might be present. Then we show how Dante’s Inferno
can be embedded in string theory, as a straightforward
generalization of axion monodromymodels. The multifield

dynamics alleviates two of the leading backreaction con-
straints present in the single-field case.

I. THE EFFECTIVE FIELD THEORY MODEL

Our effective model consists of two axions r and �
whose decay constants fr and f� obey fr < f�. A linear
combination of r and � receives a periodic potential from
some nonperturbative effect, which breaks their continuous
shift symmetry down to a discrete one. In addition, we
explicitly break the shift symmetry for r by introducing a
term WðrÞ in the potential, where WðrÞ is an a priori
arbitrary regular function. The resulting Lagrangian for
canonically normalized fields is

L ¼ 1
2ð@rÞ2 þ 1

2ð@�Þ2 � Vðr; �Þ; (1)

Vðr; �Þ ¼ WðrÞ þ�4

�
1� cos

�
r

fr
� �

f�

��
; (2)

where� is a nonperturbatively generated scale and r and �
have dimensions of mass. Notice that in the cosine we have
chosen a particularly simple linear combination. At the
level of the effective action this can be done without loss
of generality, since other values of the coefficients could be
reabsorbed in the definition of fr and f�. On the other
hand, in the string theory construction, fr and f� are
determined by the geometry of the compactification. We
will come back to this point in the next section. We define
WðrÞ such that the vacuum energy density vanishes at the
minimum.
We have performed our computations with WðrÞ an

arbitrary monomial in r and we will give explicit formulae
for this at the end of this section. In the axion monodromy
string models (about which more in the next section), so far
only the linear caseWðrÞ ¼ �3r has been studied, where�
is a constant. For the purpose of exposition, in the follow-
ing we will discuss details for the quadratic case WðrÞ ¼
1
2m

2r2 instead, for two reasons. First, it captures a few

1We use the reduced Planck mass defined by M2
P �

ð8�GNÞ�1.
2We assume perturbations are generated by the inflaton.
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minor additional complications which are absent in the
linear case only. Second, it is the archetypal potential
with an � problem.

We will soon find out that the whole observable infla-
tionary dynamics involves a range dr that can be made
parametrically small. If dr were arbitrarily small, we could
always expand anyWðrÞ around a minimum, hence obtain-
ing a quadratic potential. In concrete realizations, e.g. the
string theory model presented in the next section, the
various parameters are constrained and it is a model-
dependent question whether the quadratic approximation
is accurate. In any event, the validity of our mechanism
does not rely on WðrÞ being quadratic.

We would also like to stress that the field space metric is
simply dr2 þ d�2, as can be seen from (1), and not the
induced flat space metric in polar coordinates.

We plot the potential as in Fig. 1. It is clear that the
distance traversed along each ‘‘trench’’ is (almost) the
same at different heights. However, the periodicity in � is
not manifest. We therefore also show Fig. 2, which is the
justification for the title of this work: the potential (2) in
polar coordinates looks like a spiral staircase, where the
periodicity � ! �þ 2�f� is manifest. However, in Fig. 2,
the induced field space metric is not faithfully represented,
unlike in Fig. 1 (it is dr2 þ d�2, as stated above). Indeed, in
Fig. 2, one can be misled to believe that the spiral trenches
at the bottom are much smaller per revolution than those
further up, but as we saw in Fig. 1 they are actually almost
the same length at different heights.

The inflationary dynamics can be intuitively read off
from either figure. The system starts somewhere up in the
WðrÞ potential, quickly rolls in the r direction to the closest
trench3 and from there it slowly spirals along the trench
mostly in the � direction. This classical two-field slow-roll
motion can be captured by an effective single-field poten-
tial that we are now going to derive.

First, it is convenient to rotate our coordinates by

~�
~r

 !
¼ cos� sin�

� sin� cos�

� �
�
r

� �
; (3)

with

sin� ¼ frffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2r þ f2�

q ; cos� ¼ f�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2r þ f2�

q ; (4)

after which the potential becomes

V ¼ 1

2
m2ð~r cos�þ ~� sin�Þ2 þ�4

�
1� cos

~r

f

�
; (5)

where f ¼ frf�=ðf2r þ f2�Þ1=2. As initial condition, we

assume the system starts high up in the quadratic potential,

but still at sub-Planckian values, i.e. f � rin <MP. An
interesting regime to consider is then
(A) fr � f� � MP,
(B) �4 � fm2rin.

It will turn out that useful values of � range from 10�3MP

to 10�1MP. Typical values for fr and f� to keep in mind
are 10�3MP and 10�1MP, respectively. The advantage of
considering sub-Planckian fr and f� is that we will even-
tually embed this model in controlled string models, where
super-Planckian axion decay constants seem elusive [2].
We will assume for the rest of this section that these two
conditions hold. Notice that condition A implies

cos� ’ 1; sin� ’ fr
f�

; f ’ fr; (6)

to leading order in fr=f�.

FIG. 1 (color online). The potential in (2) (for WðrÞ ¼ 1
2m

2r2)
in Cartesian coordinates, which faithfully represent the metric on
field space.

FIG. 2 (color online). The potential in (2) forWðrÞ ¼ 1
2m

2r2 in
polar coordinates, which do not faithfully reproduce the field-
space metric as given in (1), contrary to Cartesian coordinates in
Fig. 1. On the other hand, in polar coordinates, the periodicity in
� is apparent and the similarity with Inferno as described by
Dante [13] becomes evident.

3The initial condition problem here is no worse than in
standard chaotic inflation. If the inflaton has some downward
initial speed, then it needs to start at some larger r to achieve
enough e-folds of inflation.
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When the system rolls along the bottom of a trench, the
excitations in the ~r directions are very massive, i.e. @2~rV >
H, and ~r can be integrated out. This adiabatic approxima-
tion boils down to assuming that, as the system evolves

mostly along the trench in the ~� direction, the new
~�-dependent minimum in the ~r direction is reached very
quickly. So we need to solve @~rV ¼ 0, i.e.

�4

f
sin

~r

f
þm2 cos�ð~r cos�þ ~� sin�Þ ¼ 0; (7)

or equivalently

sin
~r

f
¼ �m2 cos�fr

�4
: (8)

Conditions A and B then imply sinð~r=fÞ � 1 at the initial
and all subsequent times. Modulo a shift in �, which is a
symmetry of the Lagrangian and in tilded coordinates

corresponds to ~r ! ~r� 2�f� sin� and ~� ! ~�þ
2�f� cos�, one finds ~r � f. Intuitively, this means that ~r
stays at the bottom of the trench throughout the infernal
dynamics (see Fig. 3). Hence we linearize (7) and find

~r ’ �~�
m2 cos� sin�f2

m2cos2�f2 þ�4
’ �~�

fr
f�

m2f2r
�4

; (9)

where again we made use of conditions A and B. Using the
adiabatic approximation, we can describe the dynamics in
the two-field potential (2) using a single-field potential.

Renaming ~� ¼ �eff , the solution (9) reduces (5) to

Veffð�effÞ ¼ 1

2
m2

eff�
2
eff ; meff � m

fr
f�

(10)

and the kinetic term is still canonical at leading order in
fr=f�.

To summarize, we have shown that the Dante’s Inferno
two-field potential leads to dynamics effectively equivalent
to that of the archetypal model of single-field chaotic
inflation, V ¼ 1

2m
2�2, for which the scalar-to-tensor ratio

is 0.14 and the spectral tilt is ns ’ 0:96. However, there are
two remarkable differences in the parameters.
First, the effective mass meff is suppressed by the small

factor fr=f� with respect to m. This parametrically im-
proves the ability to avoid a potential � problem. As a
figure of merit, if m�H as is typical in supergravity and
superstring models, then a modest hierarchy fr=f� �
Oð10�1Þ is sufficient to ensure the validity of the slow-
roll conditions.
Second, the interpretation of the Lyth bound is not the

same in the original variables r, � as in�eff . Wewill devote
the next subsection to this point.
Kim, Nilles, and Peloso [3] proposed an interesting two-

field model (based on [4]) that also has the two properties
of the previous paragraphs. A drawback of their model is
that it relies on a precise cancellation between two parame-
ters (their g1 and g2). As a figure of merit, starting with
axion decay constants of order g1; g2 � 10�1MP, fine tun-
ing on the order of 1% to 0.1% is needed for their model to
work. In Dante’s Inferno, no fine tuning is required to make
the potential suitable for 60 e-folds of slow-roll inflation. In
fact, fr and f� can be changed by order-one factors without
affecting the main result. Perhaps more importantly, our
setup is derived from a concrete string theory construction
(in the case WðrÞ ¼ �3r) that we will describe in the next
section.
Finally, we report similar results for a generic monomial

WðrÞ ¼ �pr
p=p!. In the regime analogous to that given by

the conditions A and B above, one finds that the effective
single-field potential is

Veff ¼
�eff
p

p!
�p

eff ; �eff
p ¼

�
fr
f�

�
p
�p: (11)

From the string-theory perspective that we will soon adopt,
an interesting special case of (11) is p ¼ 1, i.e. WðrÞ ¼
�1r, where �1 is a constant of dimension ðmassÞ3, called�3

in the string models. In this case ~r can be integrated out
exactly, without the need to expand (7). In fact, ~r is exactly
constant throughout the slow-roll inflationary dynamics.
For generic p, (11) shows that even if one starts with a
coupling �p dictated by naturalness, plus the assumption of

a MP (or lower) cutoff, a hierarchical choice of fr and f�
can still ensure slow-roll inflation. Intuitively, the infla-
tionary direction�eff is a mixture of the potentially steep r
direction and the nearly-flat � direction, with a small
mixing angle given by sin�� fr=f�.

Field range and Lyth bound

The Lyth bound [1] says that observably large tensor
modes, equivalent to high-scale inflation, require that the
length of the inflationary trajectory is super-Planckian. The
length is measured by ��eff ¼

R
d�eff , where �eff is

defined as the canonically normalized field always tangent
to the inflationary trajectory. In fact, this can be verified in
our model, where we found a tensor-to-scalar ratio of 0.14

FIG. 3 (color online). The field-space contour plot of the
potential. Brighter red shading corresponds to higher energy
and vice versa. The rotated and unrotated coordinates are shown
together with �eff , which is always tangent to the inflationary
trajectory. Upon the use of the � shift-symmetry, the whole
inflationary trajectory is contained in a region of sub-
Planckian linear size (‘‘diameter’’), indicated by the dotted box.
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and ��eff � 15MP. The relevance of the Lyth bound lies
in its implications for the robustness of the potential
against possible corrections. In order to discuss this, let
us introduce some more precise language. We call funda-
mental fields those that naturally appear in the Lagrangian
as derived from a fundamental UV theory, such as string
theory, which have a precise meaning in this UV theory. As

we will see, both fr; �g and f~r; ~�g are fundamental fields.
Symmetries, like the � shift symmetry in our case, are most
explicit in terms of these fields. We call effective fields the
result of those convenient field redefinitions that are useful
to describe particular phenomena. They may not have a
precise interpretation in the UV theory and may obscure its
underlying symmetries. For example, �eff is convenient to
describe the inflationary dynamics, but any notion of a
(discrete) shift symmetry � ! �þ const is lost in this
formulation, as in (11).

The Lyth bound is usually supplemented by some preju-
dice about possible corrections. Without further specifica-
tion, one generically expects that a large field range opens
up the possibility for large corrections, which in turn makes
it harder to ensure flatness of the potential, among other
problems. It is appropriate to discuss corrections in terms
of fundamental fields, because they have a clear interpre-
tation in the UV theory from which these corrections can
come. Also, in terms of these fields, symmetries can be
most effectively used to understand and control such cor-
rections, as usual in effective field theory. In Dante’s
Inferno, for example, the periodicity in � can be used to
argue that no polynomial corrections can spoil the flatness
in that direction. On the other hand, the Lyth bound is a
statement about the range of effective fields. This dichot-
omy is latent in single-field models but becomes particu-
larly sharp in multifield models such as Dante’s Inferno. A
super-Planckian inflationary trajectory can fit into a region
of sub-Planckian diameter as shown in Fig. 3. This would
be impossible in a single field model.4 Let us make this
quantitative. In the r direction the entire inflationary dy-
namics is contained in a region of diameter:

dr ¼ frffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2r þ f2�

q ��eff ’ fr
f�

��eff

�
1�O

�
f2r
f2�

��
: (12)

Thus, provided one can achieve a large enough hierarchy
fr=f�, this yields dr <MP � ��eff . The � direction en-
joys a shift symmetry, hence the largest diameter possible
is the period itself, i.e. d� ¼ 2�f�. To summarize, dr �
MP and d� � MP (from condition A). Hence we have
shown that the entire high-scale chaoticlike inflationary
dynamics can be contained in a region of sub-Planckian
diameter. The discussions in this section applies mutatis
mutandis to any p.

II. THE STRING THEORY MODEL

In this section we show how to embed Dante’s Inferno in
string theory. The construction is a simple generalization of
the axion monodromy models constructed in [5–7] (see
also [8]). We discuss only those ingredients that are new
and special to the two-field model (2) and refer the reader
to [6,7] for further details on the explicit construction. The
bottom line is that Dante’s Inferno relaxes some constraints
and dangerous backreaction effects present in single-field
axion monodromy models. Roughly speaking, the impor-
tance of backreaction and other corrections turns out to be
proportional to the range of variation of the axions in-
volved in the model. Explicit examples are the backreac-
tion of four-cycle volumes and light Kaluza-Klein masses
discussed in [7]. In Dante’s Inferno, as opposed to the
single-field case, the ranges of variation dr and d� of the
axions, i.e. the fundamental fields in (2), are small in
Planck units. This holds even though the length of the
inflationary trajectory, as measured by the effective field
�eff in (11), is super-Planckian (inflation takes place at the
GUT scale).

A. Ingredients

The first step is to ensure that the two axionic fields in (2)
are present in the low energy effective action of string
theory. Following [6,7], we consider Type IIB Calabi-Yau
orientifold compactifications. The integral of ten-
dimensional twoform fields over two-cycles leads to
four-dimensional axions which are in one-to-one corre-
spondence with the homology classes H�

ð1;1Þ of

orientifold-odd two-cycles. Hence we require dimH�
ð1;1Þ �

2. These axions enjoy a shift symmetry to all orders in
perturbation theory that is broken only by either nonper-
turbative effects or by the presence of branes.
In string theory, the nonperturbative effects leading to

the cosine term in (2) can come from Euclidean branes, i.e.
solitonic objects which extend only in spatial directions
and are pointlike in time. These can be thought of as
higher-dimensional generalizations of field theory instan-
tons and in fact reduce to them in appropriate limits. For a
review, see [9].
We consider a situation in which Euclidean D1-brane

(ED1) instantons are present with the right number of
fermionic zero-modes (four) in order to correct the
Kähler potential.5 Without loss of generality, we choose a
basis H�

ð1;1Þ such that the two-cycle �ED1 that supports the

4Of course invoking a noncanonically normalized single field
does not help because the diameter of a region in field space has
to be measured in terms of the field-space metric.

5At present, the precise details of these nonperturbative cor-
rections are not known, but along the lines of [10], we expect
there to be progress on this in the near future. It would be useful
to know in more detail in which cases they arise, and the precise
conditions under which they give nonholomorphic contributions.
For the rather limited scope of this short note, the corrections
merely need to exist and satisfy one requirement that we state
below.
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instanton is a linear combination of two basis elements �r

and �� that correspond to the four-dimensional axions r
and � respectively. This arrangement produces a cosine
term as in (2) but with a possibly different argument:

cos

�
�

r

fr
� 	

�

f�

�
(13)

for some real numbers � and 	, that are in principle
determined by a calibration condition on �ED1. Now �4 /
e�SED1 where SED1 is the instanton action, which is propor-
tional to the volume of �ED1. Higher instanton contribu-
tions are suppressed by further powers of e�SED1 .

The crucial assumption is that one can introduce a
monodromy for one of the two axions, say r, in a control-
lable manner. A first attempt would be to assume that r
comes from the NSNS B-field and � comes from the RR
twoform field C. In this case the shift symmetry of the B-
type axion would be broken by the nonperturbative correc-
tions to the superpotential required in a moduli stabiliza-
tion à la KKLT [11], while the C-type axion would be
unaffected. A nonperturbative effect generated by
ðp; qÞ-string instantons could depend on a linear combina-
tion of B- and C-type axions corresponding to the same
cycle, with e.g. ð�;	Þ ¼ ð1; 1Þ in the leading instanton
contribution. But the axion decay constants for C-type
axions turn out to be suppressed with respect to B-type
axions by a factor of gs. This makes it hard to ensure the
hierarchy fr=f� that was crucial for the mechanism de-
scribed above, so this first attempt is unsuccessful.

An alternative that does work was proposed in [6]: a
monodromy for a C-type axion can be obtained wrapping
an NS5-brane on the two-cycle that supports the axion.
Another NS5-brane can wrap a homologous two-cycle
with opposite orientation in order to cancel the tadpole.
For example, the two NS5-branes could be located in two
different warped throats as in Fig. 4. Then a potential
barrier prevents the classical instability, rendering the con-
figuration metastable. As the height of the barrier is con-
trolled by the warping, the quantum instability due to
tunneling can be parametrically suppressed. In addition,

warping provides control of the supersymmetry breaking.
Hence the crucial requirement is that the two-cycle �r is a
member of a family of homologous two-cycles that extends
into a warped throat as shown in Fig. 4. Via S-duality we
expect the induced monodromy term to be




gsð2�Þ5�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 þ

�
2�gsr

fr

�
2

s
’ �3rþ const (14)

where 
 encodes the warping. In the single-field axion
monodromy model it is important that (14) is the leading
term in the potential. The analysis of [7] shows that a
potentially competing effect comes from the backreaction
on the geometry of the D3-charge induced by the large vev
of the inflaton. In the same paper, a resolution of this
problem was proposed that requires both the NS5-brane
and the tadpole-canceling anti-NS5-brane to be placed in a
warped bifurcated throat such that the backreaction is due
to a dipole as opposed to a monopole. In the present model,
we do not need to resort to such model-building tricks. The
precise form of the monodromy termWðrÞ is not crucial to
the success of inflation, and in fact WðrÞ could be a steep
potential that by itself would not give rise to slow-roll
dynamics. Had we overlooked an effect that would induce
an � problem in the r direction, we would simply need to
consider a larger hierarchy fr=f�. The Dante’s Inferno
setup hence alleviates the difficulty of precisely determin-
ing the leading breaking of the shift symmetry.
Let us now turn to the question of generating the small

hierarchy fr=f� in the first place. In the string theory
construction, the axion decay constant for a C-type axion
corresponding to a generic two-cycle � is [7,12]

f2
�

M2
P

¼ gs
8�2

c���v
�

V
; (15)

where c�	� are intersection numbers, V is the volume of

the compact space and v� are two-cycle volumes. Hence,
the condition that needs to hold is

fr
f�

¼ 	

�

c�rrv
�

c���v
� � 1; (16)

where again � and 	 are the coefficients of the linear
combination of two-cycles involved in the nonperturbative
effect. As stated earlier, in a typical situation a ratio
fr=f� �Oð10�1–10�2Þ is enough to give 60 e-folds of
slow-roll inflation within a region of sub-Planckian diame-
ter. Without any further information on the nonperturbative
effect, we cannot be more specific, but it is only when 	=�
is a large number that our mechanism would fail. In typical
compactifications, intersection numbers and two-cycle vol-
umes can both easily range over one or 2 orders of magni-
tude. Hence, we believe that (16) can easily be satisfied.
Further work on ED1 instantons should help clarify this
situation.
As a side remark, there is another possibility to construct

a small ratio fr=f�. Recall that r corresponds to a two-
FIG. 4 (color online). A cartoon of the ingredients required to
embed Dante’s Inferno in string theory.
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cycle that must extend into a warped region (otherwise the
NS5-brane would break supersymmetry at the string scale).
Then fr is suppressed by a factor e�Atop [6], which is the
largest value taken by the warp factor in the family of two-
cycles homologous to �r. This warping suppression could
account for the required hierarchy in cases where the
ingredients in (16) do not offer enough flexibility.

One can always contend that the small ratio fr=f� that
we used to suppress corrections may itself be unstable to
corrections. This was not investigated in [6,7], since there
was only one f. We believe that the case for this to be
stable is better than, for example, the case for the inflaton
mass to be stable. It would be interesting to investigate this
in more detail, however, for example, in toy string models.

To summarize, we have shown how to embed Dante’s
Inferno in string theory as a straightforward generalization
of the axion monodromy model in [6,7]. The main differ-
ence compared to earlier work is that we consider the
situation where nonperturbative effects (such as ED1 in-
stantons) and monodromy-inducing effects (such as
wrapped NS5-branes) are associated with two-cycles that
partially overlap but are globally distinct. As far as we can
see, there is no obstruction, in principle, to the existence of
this class of configurations. We leave the study of more
detailed examples for future work.

B. Constraints

The main computability constraints of our model are:
(i) gs � 1 for string theory to be perturbative.
(ii) V � Umod, where Umod is a moduli-stabilization

barrier, for the inflationary dynamics not to destroy
moduli stabilization.

(iii) Volumes of cycles large in string units, v � 1, in
order to neglect world-sheet instantons and �0
corrections.

(iv) Small (but not negligible) nonperturbative correc-
tions, in order to neglect higher instanton
contributions.

We have checked that these constraints are satisfied in the
same way as they are in the class of single-field axion
monodromy models studied in [6,7].

More constraints come from the consistency of the string
theory construction. The key observation here is that these
constraints arise when an axion with a monodromy re-
ceives a large vev. In Dante’s Inferno this vev is parametri-
cally smaller than in single-field axion monodromy, by a
factor fr=f�. Hence each constraint is relaxed by factors of
this form.

First we consider the backreaction on the geometry,
mainly due to the large induced D3-brane charge on the
NS5-brane. We notice that the induced effective D3-brane
charge is

ND3 ¼ r

2�fr
: (17)

This induced charge is now parametrically smaller than in
the single-field axion monodromy case, because the r
range required for 60 e-folds of inflation is now (taking
the linear case for definiteness) 11MPfr=f� as opposed to
11MP. This extends the possible parameter range of the
model as compared to the discussion in [7].
A second concern is the backreaction on the warp factor

that in turn changes the four-cycle volumes. The latter are
stabilized, and hence this interplay can generate an �
problem for single-field axion monodromy. Two different
model building tricks to alleviate this problem were pro-
posed in [7]. For the present two-field model this issue can
conceivably be solved without resort to such tricks. To see
this, recall that the inflaton direction is not r but a linear
combination of r and �. Even if the r direction sees its
approximate flatness destroyed by corrections, it is likely
that slow-roll inflation still proceeds because the mass for
the effective inflaton is suppressed with respect to the mass
of r by a small factor of the order fr=f�. This is the reason
why in the previous sections we stressed that our mecha-
nism works for quite general monodromy terms WðrÞ in
(2).
Finally, a last concern comes from the KK modes on the

world-volume of the NS5-brane that induces the monod-
romy for r. These become light due to the large flux and an
estimate [7] gives

m2
KK;NS5 ¼

g2
g2 þ ðr=frÞ2

m2
KK; (18)

where g2 is the determinant of the metric on the two-cycle
wrapped by the NS5-brane. This effect can be intuitively
understood in a T-dual picture where a brane with flux
becomes a tilted brane. The larger the flux, the more times
the T-dual brane winds around, and the longer it becomes.
The KK modes in this long direction become increasingly
light. Again, in Dante’s Inferno, r takes parametrically
smaller vacuum expectation values than in the single-field
case, which ensures heavier KK masses.
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